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Numerical methods for hyperbolic systems

Exercise sheet 3: Linear hyperbolic systems

Exercice 1
We consider the wave equation {

∂tp+ ∂xu = 0,
∂tu+ ∂xp = 0,

(1)

1. Diagonalize the system and show that the upwind scheme is given by
vn+1
j − vnj

∆t
+
vnj − vnj−1

∆x
= 0,

wn+1
j − wn

j

∆t
−
wn
j+1 − wn

j

∆x
= 0,

(2)

with v = p+ u and w = p− u.

We sum and subtract the two equations of (1) to obtain{
∂t(p+ u) + ∂x(p+ u) = 0,
∂t(p− u)− ∂x(p− u) = 0,

(3)

This computation shows that the eigenvalues of (1) are 1 and −1. The eigenvectors are (1, 1)
and (1,−1). Now we define v = p+ u, w = p− u.
When we apply the upwind scheme to advection equation ∂tu+ a∂xu = 0 the flux is defined by

uj+ 1
2

=

{
uj if a > 0,
uj+1 if a < 0.

Consequently the upwind scheme for the system (3) is
vn+1
j − vnj

∆t
+
vnj − vnj−1

∆x
= 0,

wn+1
j − wn

j

∆t
−
wn
j+1 − wn

j

∆x
= 0,

(4)

with v = p+ u and w = p− u.



2. Prove that the upwind scheme (2) for the initial system (1) can be write on the following
form


pn+1
j − pnj

∆t
+
unj+1 − unj−1

2∆x
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
−
unj+1 − 2unj + unj−1

2∆x
= 0,

(5)

and use the scheme (5) to compute the consistency error.

Firstly we sum the equations and multiply by 0.5, secondly we subtract the equations and
multiply by 0.5. We obtain

pn+1
j − pnj

∆t
+
−wn

j+1 + (wn
j + vnj )− vnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
wn
j+1 + (vnj − wn

j )− vnj−1

2∆x
= 0,

(6)

Using the definition of v and w we obtain the result.

Now we propose to prove the result of consistency error. We define u(xj , tn) the exact solution.


p(xj , t

n+1)− p(xj , tn)

∆t
+
u(xj+1, t

n)− u(xj−1, t
n)

2∆x
− p(xj+1, t

n)− 2p(xj , t
n) + p(xj−1, t

n)

2∆x
= 0

u(xj , t
n+1)− u(xj , t

n)

∆t
+
p(xj+1, t

n)− p(xj−1, t
n)

2∆x
− u(xj+1, t

n)− 2u(xj , t
n) + u(xj−1, t

n)

2∆x
= 0

(7)
Using the Taylor expansion as the previous exercise sheet we obtain

∂tp(xj , t
n) +O(∆t) + ∂xu(xj , t

n) +O(∆x2)− ∆x

2
∂xxp(xj , t

n),

∂tu(xj , t
n) +O(∆t) + ∂xp(xj , t

n) +O(∆x2)− ∆x

2
∂xxu(xj , t

n),
(8)

Since p(xj , t
n) and u(xj , t

n) are solution the consistency error is O(∆x + ∆t) for the two
equations.

3. Prove that the scheme (4) satisfy the maximum principle for the quantities under a CFL
condition.



We consider the scheme (4) 
vn+1
j − vnj

∆t
+
vnj − vnj−1

∆x
= 0,

wn+1
j − wn

j

∆t
−
wn
j+1 − wn

j

∆x
= 0,

(9)

As previously we write the scheme on a convex combination form.
vn+1
j =

(
1− ∆t

∆x

)
vnj +

∆t

∆x
vnj−1 = 0,

wn+1
j =

(
1− ∆t

∆x

)
wn
j +

∆t

∆x
wn
j+1 = 0,

(10)

For each equation we obtain convex combinations on the CFL condition ∆t
∆x < 1.

4. Prove that the scheme (2) is stable for all lq norms (1 ≤ q ≤ ∞) using the previous result
and convex functions. The lq norm is defined by

||(v, w)||lq =

∆x
∑
j

||(vj , wj)||qq

 1
q

,

with ||(vj , wj)||qq = |vj |q + |wj |q.



We define α = ∆t
∆x < 1, consequently

vn+1
j = (1− α) vnj + αvnj−1 = 0,

wn+1
j = (1− α)wn

j + αwn
j+1 = 0,

(11)

We define the convex function f(x) = |x|p, since this function is convex we have
f(vn+1

j ) ≤ (1− α) f(vnj ) + αf(vnj−1),

f(wn+1
j ) ≤ (1− α) f(wn

j ) + αf(wn
j+1),

(12)

Now we introduce the lq norm associated with the (9)

||(vn+1, wn+1)||qlq =

∆x
∑
j

||(vn+1
j , wn+1

j )||qq

 = ∆x
∑
j

|vn+1
j |q + |wn+1

j |q.

Using (12) we obtain

∆x
∑
j

|vn+1
j |q + |wn+1

j |q ≤ ∆x
∑
j

(1− α)|vnj |q + α|vnj−1|q + (1− α)|wn
j |q + α|wn

j+1|q.

Since the boundary are periodic
∑

j v
n
j =

∑
j v

n
j−1 and

∑
j |vj−1|q =

∑
j |vj |q thus we have

||(vn+1, wn+1)||qlq = ∆x
∑
j

|vn+1
j |q + |wn+1

j |q ≤ ∆x
∑
j

|vnj |q + |wn
j |q = ||(vn, wn)||qlq .

For the L∞ norm it is simple. The norm is defined by ||(v, w)||∞ =
{max(C1, c2),maxj |vj | ≤ C1,maxj |wj | ≤ C2}. Since the the maximum principle is pre-
served the scheme is stable for L∞ norm with C1 = maxj v

0
j and C2 = maxj w

0
j .

Additional question

We introduce the damped wave equation{
∂tp+ ∂xu = 0,
∂tu+ ∂xp = −σu, (13)

and the upwind scheme associated


pn+1
j − pnj

∆t
+
unj+1 − unj−1

2∆x
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
−
unj+1 − 2unj + unj−1

2∆x
= −σunj ,

(14)

5. We call ”steady states” the solutions of the systems defined by ∂xu = 0 and ∂xp = −σu.
Prove that (14) preserve exactly the steady states.



We take unj = a and pnj = −aσxj + b. This choice correspond to the discretization of the steady
state.
Plugging these definitions in the fluxes we remark that

un
j+1−un

j−1

2∆x = 0 and
un
j+1−2un

j +un
j−1

2∆x = 0.
We obtain 

pn+1
j − pnj

∆t
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
= −σa,

(15)

Now we remark that

pnj+1 − 2pnj + pnj−1

2∆x
=

aσ

2∆x
(xj+1 − 2xj + xj−1),

pnj+1 − 2pnj + pnj−1

2∆x
=

aσ

2∆x
(∆x−∆x) = 0,

and

pnj+1 − pnj−1

2∆x
= − aσ

2∆x
(xj+1 − xj−1),

pnj+1 − 2pnj + pnj−1

2∆x
= − aσ

2∆x
(2∆x) = −aσ.

Consequently 
pn+1
j − pnj

∆t
= 0,

un+1
j − unj

∆t
− σa = −σa,

(16)

and pn+1
j = pnj , un+1

j = unj .


