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Numerical methods for hyperbolic systems

Exercise sheet 3: Linear hyperbolic systems

Exercice 1
We consider the wave equation {

∂tp+ ∂xu = 0,
∂tu+ ∂xp = 0,

(1)

1. Diagonalize the system and show that the upwind scheme is given by
vn+1
j − vnj

∆t
+
vnj − vnj−1

∆x
= 0,

wn+1
j − wn

j

∆t
−
wn
j+1 − wn

j

∆x
= 0,

(2)

with v = p+ u and w = p− u.

We sum and subtract the two equations of (1) to obtain{
∂t(p+ u) + ∂x(p+ u) = 0,
∂t(p− u)− ∂x(p− u) = 0,

(3)

This computation shows that the eigenvalues of (1) are 1 and −1. The eigenvectors are (1, 1)
and (1,−1). Now we define v = p+ u, w = p− u.
When we apply the upwind scheme to advection equation ∂tu+ a∂xu = 0 the flux is defined by

uj+ 1
2

=

{
uj if a > 0,
uj+1 if a < 0.

Consequently the upwind scheme for the system (3) is
vn+1
j − vnj

∆t
+
vnj − vnj−1

∆x
= 0,

wn+1
j − wn

j

∆t
−
wn
j+1 − wn

j

∆x
= 0,

(4)

with v = p+ u and w = p− u.



2. Prove that the upwind scheme (2) for the initial system (1) can be write on the following
form


pn+1
j − pnj

∆t
+
unj+1 − unj−1

2∆x
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
−
unj+1 − 2unj + unj−1

2∆x
= 0,

(5)

and use the scheme (5) to compute the consistency error.

Firstly we sum the equations and multiply by 0.5, secondly we subtract the equations and
multiply by 0.5. We obtain

pn+1
j − pnj

∆t
+
−wn

j+1 + (wn
j + vnj )− vnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
wn
j+1 + (vnj − wn

j )− vnj−1

2∆x
= 0,

(6)

Using the definition of v and w we obtain the result.

Now we propose to prove the result of consistency error. We define u(xj , tn) the exact solution.


p(xj , t

n+1)− p(xj , tn)

∆t
+
u(xj+1, t

n)− u(xj−1, t
n)

2∆x
− p(xj+1, t

n)− 2p(xj , t
n) + p(xj−1, t

n)

2∆x
= 0

u(xj , t
n+1)− u(xj , t

n)

∆t
+
p(xj+1, t

n)− p(xj−1, t
n)

2∆x
− u(xj+1, t

n)− 2u(xj , t
n) + u(xj−1, t

n)

2∆x
= 0

(7)
Using the Taylor expansion as the previous exercise sheet we obtain

∂tp(xj , t
n) +O(∆t) + ∂xu(xj , t

n) +O(∆x2)− ∆x

2
∂xxp(xj , t

n),

∂tu(xj , t
n) +O(∆t) + ∂xp(xj , t

n) +O(∆x2)− ∆x

2
∂xxu(xj , t

n),
(8)

Since p(xj , t
n) and u(xj , t

n) are solution the consistency error is O(∆x + ∆t) for the two
equations.

3. Prove that the scheme (4) satisfy the maximum principle for the quantities under a CFL
condition.



We consider the scheme (4) 
vn+1
j − vnj

∆t
+
vnj − vnj−1

∆x
= 0,

wn+1
j − wn

j

∆t
−
wn
j+1 − wn

j

∆x
= 0,

(9)

As previously we write the scheme on a convex combination form.
vn+1
j =

(
1− ∆t

∆x

)
vnj +

∆t

∆x
vnj−1 = 0,

wn+1
j =

(
1− ∆t

∆x

)
wn
j +

∆t

∆x
wn
j+1 = 0,

(10)

For each equation we obtain convex combinations on the CFL condition ∆t
∆x < 1.

4. Prove that the scheme (2) is stable for all lq norms (1 ≤ q ≤ ∞) using the previous result
and convex functions. The lq norm is defined by

||(v, w)||lq =

∆x
∑
j

||(vj , wj)||qq

 1
q

,

with ||(vj , wj)||qq = |vj |q + |wj |q.



We define α = ∆t
∆x < 1, consequently

vn+1
j = (1− α) vnj + αvnj−1 = 0,

wn+1
j = (1− α)wn

j + αwn
j+1 = 0,

(11)

We define the convex function f(x) = |x|p, since this function is convex we have
f(vn+1

j ) ≤ (1− α) f(vnj ) + αf(vnj−1),

f(wn+1
j ) ≤ (1− α) f(wn

j ) + αf(wn
j+1),

(12)

Now we introduce the lq norm associated with the (9)

||(vn+1, wn+1)||qlq =

∆x
∑
j

||(vn+1
j , wn+1

j )||qq

 = ∆x
∑
j

|vn+1
j |q + |wn+1

j |q.

Using (12) we obtain

∆x
∑
j

|vn+1
j |q + |wn+1

j |q ≤ ∆x
∑
j

(1− α)|vnj |q + α|vnj−1|q + (1− α)|wn
j |q + α|wn

j+1|q.

Since the boundary are periodic
∑

j v
n
j =

∑
j v

n
j−1 and

∑
j |vj−1|q =

∑
j |vj |q thus we have

||(vn+1, wn+1)||qlq = ∆x
∑
j

|vn+1
j |q + |wn+1

j |q ≤ ∆x
∑
j

|vnj |q + |wn
j |q = ||(vn, wn)||qlq .

For the L∞ norm it is simple. The norm is defined by ||(v, w)||∞ =
{max(C1, c2),maxj |vj | ≤ C1,maxj |wj | ≤ C2}. Since the the maximum principle is pre-
served the scheme is stable for L∞ norm with C1 = maxj v

0
j and C2 = maxj w

0
j .

Additional question

We introduce the damped wave equation{
∂tp+ ∂xu = 0,
∂tu+ ∂xp = −σu, (13)

and the upwind scheme associated


pn+1
j − pnj

∆t
+
unj+1 − unj−1

2∆x
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
−
unj+1 − 2unj + unj−1

2∆x
= −σunj ,

(14)

5. We call ”steady states” the solutions of the systems defined by ∂xu = 0 and ∂xp = −σu.
Prove that (14) preserve exactly the steady states.



We take unj = a and pnj = −aσxj + b. This choice correspond to the discretization of the steady
state.
Plugging these definitions in the fluxes we remark that

un
j+1−un

j−1

2∆x = 0 and
un
j+1−2un

j +un
j−1

2∆x = 0.
We obtain 

pn+1
j − pnj

∆t
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
= −σa,

(15)

Now we remark that

pnj+1 − 2pnj + pnj−1

2∆x
=

aσ

2∆x
(xj+1 − 2xj + xj−1),

pnj+1 − 2pnj + pnj−1

2∆x
=

aσ

2∆x
(∆x−∆x) = 0,

and

pnj+1 − pnj−1

2∆x
= − aσ

2∆x
(xj+1 − xj−1),

pnj+1 − 2pnj + pnj−1

2∆x
= − aσ

2∆x
(2∆x) = −aσ.

Consequently 
pn+1
j − pnj

∆t
= 0,

un+1
j − unj

∆t
− σa = −σa,

(16)

and pn+1
j = pnj , un+1

j = unj .


