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Numerical methods for hyperbolic systems

Exercise sheet 3: Linear hyperbolic systems

Exercice 1
We consider the Maxwell equation{

µ∂tB + c∂xE = −cσ∗B,
ε∂tE + c∂xB = −σE, (1)

with periodic boundary condition on Ω = [0, L] and µ > 0, ε > 0, σ > 0, σ∗ > 0.

1. Prove the following energy inequality and the uniqueness of the solutions.

d

dt

(∫
Ω
ε|E(t, x)|2 + µ|B(t, x)|2dx

)
= −

∫
Ω
σ|E(t, x)|2 + σ∗µ|B(t, x)|2dx. (2)

We multiply the first equation of (1) by B, the second equation by E and after we integrate the
equations. 

µ

∫
Ω
B∂tB + c

∫
Ω
B∂xE = −

∫
Ω
σ∗B2,

ε

∫
Ω
E∂tE +

∫
Ω
E∂xB = −

∫
Ω
σE2,

(3)


1

2

d

dt

∫
Ω
µ|B|2 + c

∫
Ω
B∂xE = −

∫
Ω
σ∗|B|2,

1

2

d

dt

∫
Ω
ε|E|2 + c

∫
Ω
E∂xB = −

∫
Ω
σ|E|2.

(4)

Summing the equations of (4), we obtain

E(t) =
1

2

d

dt

∫
Ω

(µ|B|2 + ε|E|2) + c

∫
Ω
∂x(EB) = −

∫
Ω

(σ∗|B|2 + σ|E|2).

We remark that
∫

Ω ∂x(EB) = [EB]Ω = 0 because the boundary conditions are periodic. We de-
fine two solutions (B1, E1) and (B2, E2) with (B1(t = 0, x), E1(t = 0, x)) = (B2(t = 0, x), E2(t =
0, x)) and the term

Ed(t) =
1

2

d

dt

∫
Ω

(µ|B1(t, x)−B2(t, x)|2 + ε|E1(t, x)− E2(t, x)|2)

Since Ed(t) ≤ 0, E
′
d(t) ≤ q and Ed(t = 0) ≥ 0 we have the uniqueness of the solution.



2. We introduce the plane waves (which are a good approximations of physical waves)
defined by E(t, x) = E0e

i(wt−kx) and B(t, x) = B0e
i(wt−kx) with E0 ∈ R, B0 ∈ R, k the wave

vector and w the frequency. Give the conditions (called dispersion relation) on w and k such as
the planar waves are solutions of (1) for σ = 0 and σ∗ = 0

We plug the definition of E(t, x) and B(t, x) in (1). We obtain{
µB0iwe

i(wt−kx) − ckE0ie
i(wt−kx) = 0,

εE0iwe
i(wt−kx) − ckB0ie

i(wt−kx) = 0,
(5)

which are equivalent to {
µB0w − ckE0 = 0,
εE0w − ckB0 = 0.

(6)

Now use use E0 = ckB0
ε . Plugging this relation in the first equation of (6). We obtain

k2 =
w2

c2
µε.

In this part we assume that σ = 0 and σ∗ = 0. Now we introduce the DG centered scheme

for (1). The mesh Ωh is defined by n+ 1 points xi and n cells Ki =
[
xi− 1

2
, xi+ 1

2

]
. The volume

of the cell Ki is ∆xi = |xi+ 1
2
− xi− 1

2
|. We call a generic cell K. To finish the test function are

defined by v ∈ Vh = {v/v|K ∈ Pp(K)}. The scheme is given by


ε

k∑
l=0

∫
Ki

φilφ
i
m

(
En+1
l,i − E

n
l,i

∆t

)
− c

k∑
l=0

Bn
l,i

∫
Ki

φil∂xφ
i
m + c

k∑
l=0

[
Bφim

]x
i+ 1

2
x
i− 1

2

= 0, ∀0 ≤ m ≤ k,

µ
k∑
l=0

∫
Ki

φilφ
i
m

(
Bn+1
l,i −B

n
l,i

∆t

)
− c

k∑
l=0

Enl,i

∫
Ki

φil∂xφ
i
m + c

k∑
l=0

[
Eφim

]x
i+ 1

2
x
i− 1

2

= 0, ∀0 ≤ m ≤ k,

(7)

with
[
Bφim

]x
i+ 1

2
x
i− 1

2

= 1
2

(
Bn
l,i+1φ

i+1
l (xi+ 1

2
)φim(xi+ 1

2
) +Bn

l,iφ
i
l(xi+ 1

2
)φim(xi+ 1

2
)
)

−1
2

(
Bn
l,i−1φ

i−1
l (xi− 1

2
)φim(xi− 1

2
) +Bn

l,iφ
i
l(xi− 1

2
)φim(xi− 1

2
)
)

.

3. We consider Vh = P 1(K). We propose to use the Lagrange polynomial associated with
the point xj− 1

2
and xj+ 1

2
. Prove that the family is a basis of Vh. Write the scheme in a cell Ki.



We we study the family

(
x−x

j− 1
2

∆x ,
x
j+ 1

2
−x

∆x

)
.

λ1

x− xj− 1
2

∆x
+ λ2

xj+ 1
2
− x

∆x
= 0,

is equivalent to

(λ1 − λ2)
x

∆x
+
xj+ 1

2
λ2 − xj− 1

2
λ1

∆x
= 0.

This relation is true for all x if (λ1 − λ2) = and
x
j+ 1

2
λ2−xj− 1

2
λ1

∆x = 0. Consequently λ1 = λ2 and

xj+ 1
2
λ1 − xj− 1

2
λ1

∆x
= λ1

xj+ 1
2
− xj− 1

2

∆x
= λ1 = 0

Consequently the family of vectors is free. Since dimP 1(Ki) = 2 the family is a basis.

To write the scheme we begin by a remarkφi0 =
x
j+ 1

2
−x

∆x = φ̂0(
x−x

j− 1
2

∆x ) and

φi1 =
x−x

j− 1
2

∆x = φ̂1(
x−x

j− 1
2

∆x ) with φ̂1 = a and φ̂0 = 1− a.

Using this remark we propose to compute the different integral and terms∫
Ki

φi1φ
i
1 = ∆x

∫ 1

0
φ̂i1φ̂

i
1 =

∫ 1

0
a =

∆x

3
.

The same principle of computation give∫
Ki

φi0φ
i
1 =

∫
Ki

φi1φ
i
0 =

∆x

6
,

∫
Ki

φi1φ
i
1 =

∆x

3
.

∫
Ki

φi0∂xφ
i
0 =

∫
Ki

φi1∂xφ
i
0 = −∆x

2
,

∫
Ki

φi0∂xφ
i
1 =

∫
Ki

φi0∂xφ
i
0 =

∆x

2
.

We have also

φi0φ
i
0(xj+ 1

2
) = 0, φi0φ

i
1(xj+ 1

2
) = φi1φ

i
0(xj+ 1

2
) = φi1φ

i
1(xj+ 1

2
) = 1,

φi0φ
i
0(xj− 1

2
) = 1, φi0φ

i
1(xj− 1

2
) = φi1φ

i
0(xj− 1

2
) = φi1φ

i
1(xj− 1

2
) = 0,

φi+1
0 φi1(xj+ 1

2
) = 1, φi+1

0 φi0(xj+ 1
2
) = φi+1

1 φi0(xj+ 1
2
) = φi+1

1 φi1(xj+ 1
2
) = 0,

φi−1
1 φi0(xj− 1

2
) = 1, φi−1

0 φi0(xj− 1
2
) = φi−1

0 φi1(xj− 1
2
) = φi−1

1 φi1(xj− 1
2
) = 0.

Now we can compute the scheme. We define Eni = (En0,i, E
n
1,i) and Bn

i = (Bn
0,i, B

n
1,i). The

scheme is given by


εMi

(
En+1
i −Eni

∆t

)
− cDiB

n
i + cKi,+B

n
i+1 + cKiBi + cKi,−Bi−1 = 0, ∀0 ≤ m ≤ k,

µMi

(
Bn+1
i −Bn

i

∆t

)
− cDiE

n
i + cKi,+E

n
i+1 + cKiEi + cKi,−Ei−1 = 0, ∀0 ≤ m ≤ k,

(8)

with

Mi =
∆x

3

(
1 1

2
1
2 1

)
, Ki =

∆x

2

(
−1 −1
1 1

)
and

Ki,+ =
1

2

(
0 0
1 0

)
, Ki =

1

2

(
1 0
0 1

)
, Ki,− =

1

2

(
0 1
0 0

)



4. In this exercise we propose to study the numerical dispersive relation which define the
numerical wave vector k̃ for Vh = P 0(K) = Span(1). Write the scheme for this basis. Now we

define Bn
i = B0e

j(wn∆t−k̃i∆x) and Eni = E0e
j(wn∆t−k̃i∆x) with j the complex number. Gives the

relation between w and k̃ such as the discrete plane waves are solutions of (7). Show that the

numerical dispersive relation is k̃2 = w2

c2
+O(∆xp + ∆tq) with p > 2 and q > 2.



The DG scheme for Vh = P 0(K) = Span(1) is
ε
En+1
i − Eni

∆t
−
Bn
i+1 −Bn

i−1

2∆x
= 0,

µ
Bn+1
i −Bn

j

∆t
+
Eni+1 − Eni−1

2∆x
= 0,

(9)

Plugging the definition of Eni and Bn
i in (9) we obtain

εE0

(
ejw∆t − 1

)
= − c∆t

2∆x
B0

(
ejk̃∆x − ejk̃∆x

)
,

µB0

(
ejw∆t − 1

)
= − c∆t

2∆x
E0

(
ejk̃∆x − ejk̃∆x

)
,

(10)


εE0

(
ejw∆t − 1

)
= −jc∆t

2∆x
B0

(
sin(k̃∆x)

)
,

µB0

(
ejw∆t − 1

)
= −jc∆t

2∆x
E0

(
sin(k̃∆x)

)
,

(11)


εE0

(
ej

w∆t
2 − e−j

w∆t
2

)
= −jc∆t

2∆x
B0

(
sin(k̃∆x)

)
,

µB0

(
ej

w∆t
2 − e−j

w∆t
2

)
= −jc∆t

2∆x
E0

(
sin(k̃∆x)

)
,

(12)


εE0

(
2j sin

(
w∆t

2

))
ej

w∆t
2 = −jc∆t

2∆x
B0

(
sin(k̃∆x)

)
,

µB0

(
2j sin

(
w∆t

2

))
ej

w∆t
2 = −jc∆t

2∆x
E0

(
sin(k̃∆x)

)
,

(13)

Plugging the second equation of (11) in the first equation to obtain(
sin2

(
w∆t

2

))
ej

w∆t
2 =

c2∆t2

4∆x2
sin2(k̃∆x)

This relation is the numerical dispersive relation. Using limited expansion we obtain(
w∆t

2
+O(∆t3)

)2

(1 +O(∆t)) =
c2∆t2

4∆x2

(
k̃∆x+O(∆x2)

)2

which is equivalent to (
w∆t

2

)2

=
c2∆t2

∆x2

(
k̃∆x

2

)2

+O(∆t3) +O(∆x3).

To finis we observe that the previous equality is equal to k̃2 =
(
w
c

)2
+O(∆t3) +O(∆x3).


