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Numerical methods for hyperbolic systems

Exercise sheet 4: Nonlinear scalar equations

Exercice 1 We consider the Burgers equation
∂tu+ ∂x

(
u2

2

)
= 0, ∀x ∈ R, t > 0,

u(t = 0, x) =

{
uL, x < 0,
uR, x > 0,

(1)

with uL ≤ uR

1. Prove that

u(t, x) =

{
uL,

x
t < 0.5(uL + uR),

uR,
x
t > 0.5(uL + uR),

(2)

and

u(t, x) =


uL,

x
t < uL,

x
t , uL <

x
t < uR,

uR,
x
t > uR,

(3)

are weak solutions of (1).



A function u(t, x) is a weak solution of (1) if u(t, x) is solution of∫
R

∫
R+

(u∂tφ+
u2

2
∂xφ)dxdt+

∫
R
u0(x)φ(0, x)dx = 0, φ ∈ C1

0 , (4)

with C1
0 the space of C1 functions with compact support (φ(t = 0, x) = 0 if |x| > A and t > T )

and if the discontinuity velocity σ of u(t, x) satisfy the Rankine-Hugoniot jumps conditions

σ =
f(uR)− f(uL)

uR − uL
,

with f(u) = u2

2 . Integrating (4) by parts we obtain∫
R

∫
R+

(∂tu+ ∂x
u2

2
)φdxdt+

∫
R

(u0(x)− u(0, x))φ(0, x)dx = 0, φ ∈ C1
0 . (5)

Consequently to prove that (2) and (3) are solutions of (5), we prove that the continuous
parts are solutions of (5) and the discontinuity velocity satisfy the Rankine Hugoniot jumps
conditions.

First function u(t, x) = (2)

On ]−∞, 0.5(uL + uR)[, u(t, x) is constant, therefore on this interval u(t, x) is solution of (5).
On ]0.5(uL + uR),+∞[, u(t, x) is constant, therefore on this interval u(t, x) is solution of (5).

Now we apply the Rankine Hugoniot jumps conditions σ = 0.5
u2
R−u2

L
uR−uL

= 0.5 (uR−uL)(uL+uR)
uR−uL

=
0.5(uL + uR).

Consequently (2) satisfy the Rankine Hugoniot jumps conditions and is a weak solution of (1).

Second function u(t, x) = (3)

This function is C1 by part and globally C0 thus (3) is a weak solution of (1) if (5) is verified.
On ]−∞, uL] and ]uR,+∞[ it is trivial to prove that (3) satisfy (5) because (3) is constant. To
finish we study∫ uR

uL

∫
R+

(∂tu+ ∂x
u2

2
)φdxdt+

∫ uR

uL

(u(0, x)− u0(x))φ(0, x)dx = 0, φ ∈ C1
0 . (6)

Firstly u(0, x) = u0(x).

Since ∂t
(
x
t

)
+ ∂x

(
x2

t2

2

)
= − x

t2
+ 2x

2t2
= 0 then (6) is equal to zero. Consequently (3) is a weak

solution of (1).



2. We define the entropy η(u) = u2p

2p + αu2

2 (α > 0, p > 2) associated with (1) and the

entropic flux associated with ξ(u) = u2p+1

2p+1 + αu3

3 . Prove that the function (2) is not a weak
entropy solution and the function (3) is a weak entropy solution. Give a condition on uL and
uR such as (2) is a weak entropy solution.
Corollary useful: for the equation ∂tu + ∂xf(u) = 0, if f is convexe a shock is entropic if
f

′
(uL) > σ > f

′
(uR).



A function u(t, x) is a weak entropic solution of (1) if u(t, x) is solution of∫
R

∫
R+

(η(u)∂tφ+ ξ(u)∂xφ)dxdt+

∫
R
η(u0(x))φ(0, x)dx ≥ 0, φ ∈ C1

0 , φ ≥ 0. (7)

with C1
0 the space of C1 functions with compact support (φ(t = 0, x) = 0 if |x| > A and t > T )

and if the discontinuity velocity σ of u(t, x) satisfy

σ =
f(uR)− f(uL)

uR − uL
and − σ[η(uR)− η(uL)] + ξ(uR)− ξ(uL) ≤ 0, (8)

equivalent to

f
′
(uL) > σ > f

′
(uR), (9)

when the flux is convex.

Integrating (7) by parts we obtain∫
R

∫
R+

(∂tη(u) + ∂xξ(u))φdxdt ≤ 0, φ ∈ C1
0 , φ ≥ 0. (10)

Consequently to prove that (2) and (3) are solutions of (10), we must prove that the continuous
parts are solutions of (10) and the discontinuity velocity satisfy the Rankine Hugoniot equality.

First function u(t, x) = (2)

We propose to show that (2) satisfy (9) since f(u) = u2

2 is convex. Since f
′
(uL) = uL,

f
′
(uR) = uR and uR > uL the condition (9) is not satisfy. To obtain a entropy solution we

must have uL > uR.

Second function u(t, x) = (3)

The function u given by (3), η(u) and ξ(u) are C1 by part and globally C0 consequently (3) is
a weak solution of (1) if (10) is verified. On ]−∞, uL] and ]uR,+∞[ it is trivial to prove that
(3) satisfy (10) because (3) is constant. To finish we study∫ uR

uL

∫
R+

(∂tη(u) + ∂xξ(u))φdxdt ≤ 0, φ ∈ C1
0 , φ ≥ 0. (11)

Since ∂tη(xt ) + ∂xξ(
x
t ) = − x2p

t2p+1 − αx2

t3
+ (2p+1)x2p

(2p+1)t2p+1 + α3x2

3t3
= 0 then (11) is equal to zero.

Consequently (3) is a weak entropy solution of (1).
If uL > uR (3) is a multi-valuate function consequently (3) with uL > uR is not a solution.

Remark:
For the elliptic equations the weak solutions are unique. However for the nonlinear hyperbolic
equations the weak solutions are not unique consequently we add a physical criterion : the
entropy. The weak entropy solutions are unique. For the model (1) the unique solution is (3)
for uR > uL and (2) for uL > uR.


