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Numerical methods for hyperbolic systems

Exercise sheet 4: Nonlinear scalar equations

Exercice 1
Firstly we consider the Burgers equation on the non-conservative form

∂tu+ u∂xu = 0, ∀x ∈ R, t > 0, (1)

We propose to approximate (1) with the finite volumes scheme

un+1
j − unj

∆t
+
anj
∆x

(unj − unj−1) = 0, (2)

where the discrete velocity is given by anj = unj , anj = unj−1 or anj =
un
j +un

j−1

2 .
1. Discussing the conservativity of the scheme for the different discrete velocities.

A scheme is conservative if
∑

j u
n+1
j =

∑
j u

n
j which is equivalent to

∑
j a

n
j (unj − unj−1) = 0. If

anj = unj we have∑
j

= unj (unj − unj−1) = u2,n
1 − un0un1 + u2,n

2 − un1un2 + ...+ u2,n
N − unN−1u

n
N .

This sum is not necessary equal to zero if the solution is not constant, consequently the scheme

is not conservative. The result is the same for anj = unj−1. For anj =
un
j +un

j−1

2 the sum can be
rewritten on the following form∑

j

= unj (unj − unj−1) =
1

2

∑
j

u2,n
j − u2,n

j−1 = un1 − unN .

Since the boundary conditions are periodic u1 = uN the sum is equal to zero. Consequently
the scheme is conservative.

Now we consider a nonlinear scalar equation{
∂tu+ ∂xf(u) = 0, ∀x ∈ R, t > 0,

u(t = 0, x) = u0(x),
(3)

and the following scheme

un+1
j − unj

∆t
+
fn
j+ 1

2

− fn
j− 1

2

∆x
= 0, (4)



with fn
j+ 1

2

= 1
2(f(unj+1) + f(unj )) + c

2(unj − unj+1), m = minx u0(x), M = maxx u0(x)

and maxm≤x≤M |f
′
(x)| ≤ c.

2. Prove that the scheme satisfy the maximum principle under a CFL condition.

Using the definition of the fluxes the scheme can be rewrite on the following form

un+1
j = unj +

c∆t

2∆x
(unj+1 − 2unj + unj−1)− ∆t

2∆x
(f(unj+1)− f(unj−1)),

equivalent to

un+1
j = unj +

c∆t

2∆x
(unj+1 − 2unj + unj−1)− ∆t

2∆x
anj (unj+1 − unj−1),

with anj =
f(unj+1)− f(unj−1)

(unj+1 − unj−1)
.

We remark that anj = f
′
(znj ) with min(unj−1, u

n
j+1) ≤ znj ≤ max(unj−1, u

n
j+1) (Mean Value

theorem corollary of Rolle’s theorem).

Now we rewrite the scheme to obtain

un+1
j =

(
1− c∆t

∆x

)
unj +

∆t

2∆x

(
c− anj

)
unj+1 +

∆t

2∆x

(
c+ anj

)
unj−1.

The sum of the coefficients associates to unj , unj−1, and unj+1 is equal to one. By definition of
c the coefficient c − anj > 0 consequently all the coefficients are positive on the CFL condition
c∆t
∆x ≤ 1. We obtain a convex combination thus the scheme preserve the maximum principle.

Additional questions

Now we propose to prove that the scheme is entropic which correspond to satisfy

η(un+1
j )− η(unj )

∆t
+
ξn
j+ 1

2

− ξn
j− 1

2

∆x
≤ 0,

with (η(u), ξ(u)) a couple entropy-entropic flux and ξn
j+ 1

2

the numerical entropic flux

ξn
j+ 1

2

=
ξ(unj+1) + ξ(unj )

2
+
c

2
(η(unj )− η(unj+1)).

3. Prove that

η(un+1
j )− η(unj )

∆t
+
ξn
j+ 1

2

− ξn
j− 1

2

∆x
≤ 1

2
(φ(unj+1) + ψ(unj−1)),

with

φ(z) = ν
(
unj + ∆t

∆xc(z − u
n
j )− ∆t

∆x(f(z)− f(unj ))
)
− η(unj )− ∆t

∆xc(η(z)− η(unj )) + ∆t
∆x(ξ(z)−

ξ(unj )),

and



ψ(z) = ν
(
unj + ∆t

∆xc(−u
n
j + z)− ∆t

∆x(f(unj )− f(z))
)
−η(unj )−∆t

∆xc(−η(unj )+η(z))+ ∆t
∆x(ξ(unj )−

ξ(z)).

We write the scheme of the following form

un+1
j =

1

2

(
unj +

c∆t

∆x
(−unj + unj−1)− c∆t

∆x
(f(unj )− f(unj−1))

)
+

1

2

(
unj +

c∆t

∆x
(unj+1 + unj )− c∆t

∆x
(f(unj+1)− f(unj ))

)
.

Since η is a convex function we obtain

η(un+1
j ) ≤ 1

2
η

(
unj +

c∆t

∆x
(−unj + unj−1)− c∆t

∆x
(f(unj )− f(unj−1))

)
+

1

2
η

(
unj +

c∆t

∆x
(unj+1 − unj )− c∆t

∆x
(f(unj+1)− f(unj ))

)
,

η(un+1
j )− η(unj ) ≤ 1

2
η(unj ) +

1

2
η

(
unj +

c∆t

∆x
(−unj + unj−1)− c∆t

∆x
(f(unj )− f(unj−1))

)
.

+
1

2
η(unj ) +

1

2
η

(
unj +

c∆t

∆x
(unj+1 − unj )− c∆t

∆x
(f(unj+1)− f(unj ))

)
.

By definition of ξj+ 1
2
, φ and ψ

∆t

∆x
(ξj+ 1

2
− ξj− 1

2
) =

1

2
(φ(unj+1) + ψ(unj−1)) + η(unj )

−1

2
η

(
unj +

c∆t

∆x
(−unj + unj−1)− c∆t

∆x
(f(unj )− f(unj−1))

)
−1

2
η

(
unj +

c∆t

∆x
(unj+1 − unj )− c∆t

∆x
(f(unj+1)− f(unj ))

)
,

Consequently

η(un+1
j )− η(unj )

∆t
+
ξn
j+ 1

2

− ξn
j− 1

2

∆x
≤ 1

2
(φ(unj+1) + ψ(unj−1)). (5)



4. Prove that ψ(z) ≤ 0, φ(z) ≤ 0 under the CFL c∆t
2∆x < 1 and conclude.

We consider φ
′
(w) = ν(c − f

′
(w))

(
η
′
(unj + νc(w − unj )− ν(f(w)− f(unj )))− η′(w)

)
with

ν = ∆t
∆x .

By definition of c the term k1 = ν(c− f ′(w)) is positive. We obtain

φ
′
(w) = k1

(
η
′
(unj + νc(w − unj )− ν(f(w)− f(unj )))− η′(w)

)
. (6)

If a function f is convex we have (f
′
(y) − f ′(x))(y − x) > 0. Therefore we can define k2 > 0

with f
′
(y)− f ′(x) = k2(y − x). Consequently when we apply this property for (6) we obtain

φ
′
(w) = k1k2

(
unj + νc(w − unj )− ν(f(w)− f(unj )))− w

)
. (7)

The equation (7) is equivalent

φ
′
(w) = k1k2

(
1− νc+ ν

(f(unj )− f(w))

unj − w

)
(unj − w). (8)

Using the Mean value theorem we obtain that
f(un

j )−f(w)

un
j −w

= f
′
(z) with z ∈

[
w, unj

]
with |f ′(z)| ≤

c. Under the CFL c∆t
2∆x < 1 the term(

1− νc+ ν
(f(unj )− f(w))

unj − w

)
≥ 0.

Consequently φ
′
(w) = K(w)(unj − w) with K(w) > 0. Indeed φ is convex consequently

φ(unj ) > φ(w) + φ
′
(w)(unj − w).

Since φ(unj ) = 0 and φ
′
(w) = K(w)(unj − w) then φ(w) ≤ 0.

Now we study the second term

ψ
′
(w) = ν(c+ f

′
(w))

(
η
′
(unj + νc(w − unj )− ν(f(unj )− f(w)))− η′(w)

)
.

Using the same arguments that φ we obtain ψ
′
(w) = K(w)(unj −w) with K(w) > 0. Since ψ is

convex and ψ(unj ) = 0 we obtain ψ(w) ≤ 0.

To conclude ψ(w) ≤ 0, φ(w) ≤ 0 and (5) imply that the scheme is entropic.

Additional exercise We consider a linear hyperbolic system with stiff nonlinear source term.{
∂tp+ ∂xu = 0,

∂tu+ a∂xp =
1

ε
(f(p)− u),

(9)



with
√
a ≥ |f ′(p)|.

1. Formally prove that when ε tends to zero, the system (9) tends to ∂tp+ ∂xf(p) = 0.

Idea : Try to obtain ∂tu+ ∂xf(u) = ε∂x

[
(a− f ′(p)2)∂xp

]
+ o(ε2).

The second equation of (9) gives

u = f(p)− ε(∂tu+ a∂xp). (10)

Taking the derivate of (10) we obtain ∂tu = ∂tf(p) − ε(∂ttu + a∂t,xp). Now we plug the last
relation in (10) to obtain

u = f(p)− ε(∂tf(p) + a∂xp) +O(ε2),

= f(p)− ε(f ′(p)∂tp+ a∂xp) +O(ε2),

= f(p)− ε(−f ′(p)∂tv + a∂xp) +O(ε2).

The last relation is obtained using the first equation on (10). Now we use u = f(p) + O(ε) to
obtain

u = f(p)− ε(−f ′(p)∂tf(p) + a∂xp) +O(ε2),

= f(p)− ε((a− f ′(p)2)∂xp) +O(ε2).

Consequently we obtain

∂tp+ ∂xf(p) = ε∂x((a− f ′(p)2)∂xp) (11)

This result show that the system (9) tends to ∂tp+ ∂xf(p) when ε tend to zero. The condition√
a ≥ |f ′(p)| is a condition to obtain a dissipative equation.

2. We propose the splitting scheme (12)-(13)
p
n+ 1

2
j − pnj

∆t
= 0,

u
n+ 1

2
j − unj

∆t
=

1

ε
(f(pnj )− unj ).

(12)


pn+1
j − pn+ 1

2
j

∆t
+
u
n+ 1

2
j+1 − u

n+ 1
2

j−1

2∆x
−
√
a∆x

2

p
n+ 1

2
j+1 − 2p

n+ 1
2

j + p
n+ 1

2
j−1

∆x2
= 0,

un+1
j − un+ 1

2
j

∆t
+
p
n+ 1

2
j+1 − p

n+ 1
2

j−1

2∆x
−
√
a∆x

2

u
n+ 1

2
j+1 − 2u

n+ 1
2

j + u
n+ 1

2
j−1

∆x2
= 0.

(13)

Assuming that u0
j = f(p0

j ) + O(ε) (the initial data are close to the equilibrium). Explain
why this scheme is not adapted to treat the system (9) with big time step.



We assume that this equality u0
j = f(p0

j ) + O(ε) is propagated in time consequently unj =
f(pnj ) +O(ε). Now we propose to study the step n+ 1. Using (12) we have

u
n+ 1

2
j = unj + ∆t

ε f(pnj )− ∆t
ε u

n
j ,

= (1− ∆t
ε )unj + f(pnj ) + (1− ∆t

ε )f(pnj ),

= f(pnj ) + 2(1− ∆t
ε )f(pnj ) +O(ε+ ∆t).

The last relation come from to unj = f(pnj )+O(ε). Plugging the last relation in the first equation
of (13) we obtain

pn+1
j − pn+ 1

2
j

∆t
+
f(pnj+1)− f(pnj−1)

2∆x
−
√
a∆x

2

pnj+1 − 2pnj + pnj−1

∆x2

+2

(
1− ∆t

ε

)
f(pnj+1)− f(pnj−1)

2∆x
+O(ε+ ∆t).

For example we choose ∆t =
√
ε

2 . In this case we obtain

pn+1
j − pn+ 1

2
j

∆t
+

(
3− 1√

ε

)
f(pnj+1)− f(pnj−1)

2∆x
−
√
a∆x

2

pnj+1 − 2pnj + pnj−1

∆x2
.

If ε tends to zero the coefficient between the term discretizing ∂xf(u) is very large. Conse-
quently the limit scheme is not a good approximation of the limit equation ∂tu + ∂xf

′
(u) = 0

when ε tends to zero. We obtain a good approximation if ∆t << ε.

3. Propose a modification of the previous scheme to obtain a better accuracy for big time
step and justify your modification.



To solve the problem we propose the following scheme
p
n+ 1

2
j − pnj

∆t
= 0,

u
n+ 1

2
j − unj

∆t
=

1

ε
(f(p

n+ 1
2

j )− un+ 1
2

j ).

(14)


pn+1
j − pn+ 1

2
j

∆t
+
u
n+ 1

2
j+1 − u

n+ 1
2

j−1

2∆x
−
√
a∆x

2

p
n+ 1

2
j+1 − 2p

n+ 1
2

j + p
n+ 1

2
j−1

∆x2
= 0,

un+1
j − un+ 1

2
j

∆t
+
p
n+ 1

2
j+1 − p

n+ 1
2

j−1

2∆x
−
√
a∆x

2

u
n+ 1

2
j+1 − 2u

n+ 1
2

j + u
n+ 1

2
j−1

∆x2
= 0.

(15)

We assume that this equality u0
j = f(p0

j ) +O(ε) is propagated in time, thus unj = f(pnj ) +O(ε).
Now we propose to study the step n+ 1. Using (14) we have

u
n+ 1

2
j = unj +

∆t

ε
f(p

n+ 1
2

j )− ∆t

ε
u
n+ 1

2
j ,(

1 +
∆t

ε

)
u
n+ 1

2
j = unj +

∆t

ε
f(pnj ).

Simplifying the last estimation we obtain

u
n+ 1

2
j =

ε

ε+ ∆t
unj +

∆t

∆t+ ε
f(pnj ).

Using unj = f(pnj ) + O(ε) we obtain u
n+ 1

2
j = f(pnj ) + O(ε). Indeed ( ε

ε+∆t) = O(ε) because
ε

ε+∆t ≤ 1.

Plugging u
n+ 1

2
j = f(pnj ) +O(ε) in the scheme (15) we obtain

pn+1
j − pn+ 1

2
j

∆t
+
f(pnj+1)− f(pnj−1)

2∆x
−
√
a∆x

2

pnj+1 − 2pnj + pnj−1

∆x2
+O(ε).

We obtain a good approximation of the limit equation ∂tu + ∂xf(u) = 0 when ε tends to zero
for all values of ∆t.


