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Numerical methods for hyperbolic systems

Exercise sheet 4: Nonlinear scalar equations

Exercice 1
Firstly we consider the Burgers equation on the non-conservative form

ou+ud,u=0, VreR, t>0, (1)
We propose to approximate (1) with the finite volumes scheme
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T ) (™ ) = 2
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. . . . ulr+u
where the discrete velocity is given by a} = 7, aj = u}_; or af = —L it

1. Discussing the conservativity of the scheme for the different discrete velocities.
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This sum is not necessary equal to zero if the solution is not constant, consequently the scheme
u’]+u"

is not conservative. The result is the same for a” = u” For a” = %’1 the sum can be
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rewritten on the following form
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Since the boundary conditions are periodic u; = uy the sum is equal to zero. Consequently
the scheme is conservative.

Now we consider a nonlinear scalar equation

Ou+ 0pf(u) =0, VexeR, ¢t>0, (3)
’U,(t = 0,%) = uo(x)v
and the following scheme
wt g S =
J J + Jt3 73 _ 0, (4)
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with £7 ) = S(F(uly ) + Fu) + §(u2 — ), m = ming uo(z), M = max, uo(e)
2
and max,,<z<nm \f, ()| <e.

2. Prove that the scheme satisfy the maximum principle under a CFL condition.

Using the definition of the fluxes the scheme can be rewrite on the following form
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equivalent to
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We remark that a} = f/(z?) with min(uj_;,uf},) < 2} < max(u]_;,u} ;) (Mean Value
theorem corollary of Rolle’s theorem).
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with a? =

Now we rewrite the scheme to obtain
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The sum of the coefficients associates to w?, ui_y, and w7, is equal to one. By definition of

c the coefficient ¢ — a’ > 0 consequently all the coefficients are positive on the CFL condition

%‘; < 1. We obtain a convex combination thus the scheme preserve the maximum principle.

Additional questions
Now we propose to prove that the scheme is entropic which correspond to satisfy
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with (n(u),&(u)) a couple entropy-entropic flux and f;‘+ , the numerical entropic flux
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3. Prove that
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Since 7 is a convex function we obtain
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Consequently




4. Prove that ¢ (z) <0, ¢(z) < 0 under the CFL gﬁi < 1 and conclude.

We consider ¢ (w) = v(c — f (w)) <17, (uf +ve(w —uf) —v(f(w) — f(u}))) — n (w)) with

VvV = Az’

By definition of ¢ the term ki = v(c — f (w)) is positive. We obtain

/

¢ (w) = ku (0 (uf +ve(w =) = v(f(w) = F@})) =7 (w)). (6)

If a function f is convex we have (f (y) — f (z))(y — x) > 0. Therefore we can define ky > 0
with f'(y) — f () = ko(y — ). Consequently when we apply this property for (6) we obtain

¢ (w) = kiky (W + ve(w —ul) — v(f(w) — f(u}))) — w). (7)

The equation (7) is equivalent

¢ (w) = kiks (1 —ve+ l/(f(u?) — f(w))> (u”? —w). (8)
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Using the Mean value theorem we obtain that w
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U, —w
c. Under the CFL gﬁi < 1 the term
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= f/(z) with z € [w,uﬂ with |f/(2')‘ <
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Consequently ¢ (w) = K (w)(u} —w) with K(w) > 0. Indeed ¢ is convex consequently

$(uf) > (w) + ¢ (w)(uff — w).

Since ¢(uf) = 0 and ¢ (w) = K(w)(u} —w) then ¢(w) < 0.

Now we study the second term

¥ (w) = v(e+ f (w)) (0 (uf + ve(w =) = v(F() = f(w))) = (w)).

Using the same arguments that ¢ we obtain ' (w) = K(w)(u} —w) with K(w) > 0. Since ¢ is
convex and ¢ (u7) = 0 we obtain ¢ (w) < 0.

To conclude 1 (w) < 0, p(w) < 0 and (5) imply that the scheme is entropic.

Additional exercise We consider a linear hyperbolic system with stiff nonlinear source term.

{ Orp + Opu = 0,

O+ adep = ~(f(p) — u), 9




with v/a > | (p)]-
1. Formally prove that when ¢ tends to zero, the system (9) tends to dyp + 0, f(p) =0

/

Idea : Try to obtain dyu + 8, f(u) = €0y | (a — f (p)2)8xp] + o(e?).

The second equation of (9) gives
u = f(p) — e(Opu + adyp). (10)

Taking the derivate of (10) we obtain dyu = Of(p) — €(Onu + adip). Now we plug the last
relation in (10) to obtain

u = f(p) =@ f(p) + adup) + O(?),
= flp)—<(f (p)9ip + adyp) + O(E?),
= f(p) —e(=f (P)Bv + adyp) + O(?).

The last relation is obtained using the first equation on (10). Now we use u = f(p) + O(e) to
obtain

u fp) —e(=f'(p 01f (p) + adkp) + O(c?),
F(p) —e((a— f'()*)0up) + O(?).
Consequently we obtain
Op + 0uf(p) = €0:((a — £ (p)*)0up) (11)

This result show that the system (9) tends to dyp + 0, f(p) when ¢ tend to zero. The condition
va > |f (p)] is a condition to obtain a dissipative equation.

2. We propose the splitting scheme (12)-(13)
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Assuming that ug-) =f (p?) + O(g) (the initial data are close to the equilibrium). Explain
why this scheme is not adapted to treat the system (9) with big time step.



We assume that this equality u? =f (p?) + O(e) is propagated in time consequently uj =
f(p}) + O(e). Now we propose to study the step n + 1. Using (12) we have
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= (L—2hu? + f(p?) + (1 - 2H)£(pD),

= [ +2(1—2Hf(p7) + O + At).

The last relation come from to uj = f(p})+O(e). Plugging the last relation in the first equation
of (13) we obtain
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For example we choose At = Y5~. In this case we obtain
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If € tends to zero the coefficient between the term discretizing 0, f(u) is very large. Conse-
quently the limit scheme is not a good approximation of the limit equation dyu + 8, f (u) = 0
when € tends to zero. We obtain a good approximation if At << €.

3. Propose a modification of the previous scheme to obtain a better accuracy for big time
step and justify your modification.



To solve the problem we propose the following scheme

n+i
p; *—pj 0
At
) (14)
nt3 n
w, 2 —ul 1 1 1
j n+ n—+
’ A =Wl ) )
ntl _ 13 +3 _ nt3 nty g nty 0ty
I BN T W S WA R ke B U S W
At 2Azx 2 Ax? ’ 1)
nl _ ntz  nty  ntg nts nty oty
wiT g Pt il VeAw g =2 T
At 2Ax 2 Az? '

We assume that this equality u? = f(p?) + O(e) is propagated in time, thus u} = f(p}) + O(e).
Now we propose to study the step n + 1. Using (14) we have
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Simplifying the last estimation we obtain

n+l € n At n
i o= 5+Atu3 + At~|—sf(p])'
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Using u} = f(p}) + O(e) we obtain u?+2 = f(p}) + O(g). Indeed (%5;) = O(e) because
- < 1.
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Plugging u}HQ = f(p}) + O(e) in the scheme (15) we obtain
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We obtain a good approximation of the limit equation d,u + 9, f(u) = 0 when ¢ tends to zero
for all values of At.




