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1 Introduction

Hearing the shape of a room might sound like a literary poetic phrase but it is a scientific
question that takes a large interest from scientists in the field of signal processing and
architectural acoustics. Many animals like bats and dolphins and some birds are already
using the sound or more precisely the echo of a sound for localisation and reconstructions
of the surrounding, and some humans also use sound to hear a part of the shape of their
way while moving.

So why reconstructing the geometry of a room from sound is getting such interest? If we
are able to find the solution to this problem, the method will have many applications.
For example in architectural acoustics, it would be easier to make a diagnosis of a room
just using a sound source and a microphone array. It can be also useful to improve the
simulation of rooms for 3D virtual and augmented reality reconstruction. It can also
help getting the form of cavities that are not easily accessible, as in the case of historical
monuments. That was the scientific motivation, but it is not only about developing new
scientific methods for curiosity. If there is a method that meets the need, we can also
save money that we lose on diagnostics that use expensive materials and are costly. So
there is an economic benefit as well.

The question of using the sound to recover the form of an object remained unusual till
Mark Kac decided to explore the possibility of estimating the shape of the outline of a
drum from the sound it produces in his famous 1966 article ”Can One Hear the Shape of
a Drum ?” [7] which is a two-dimensional problem. The case of a three-dimensional room
has been the subject of more recent works, but remains largely open to this day.

There are some works that have tried to address the issue of recovering the room geometry
from a sound, as in the article ”Acoustic echoes reveal room shape” Dokmanić et al. [6].
The authors use a specific method to answer this question, based on acoustic echoes and
the image source model [2]. Using 5 microphones in their experiments, they tried to anal-
yse the peaks of so-called room impulse responses, a type of acoustic measurement that
will be introduced in details in the next section. For a given measurement, three steps are
required to get the final result. First, peaks are extracted from it, which in this case was
done manually. Then, the right association between peaks and walls must be found, a
problem referred to as echo labelling which is combinatorially hard. Finally, triangulation
is used to infer the wall positions. The authors obtained satisfying results when testing
this approach to hear the shape of the Lausanne cathedral. However, it is still not fully
automated and requires three independent steps that may be suboptimal, each error in
a step leading to subsequent errors in the next ones. In addition, this approach strongly
relies on the availability of broadband, high frequency signals in order to extract sharp
peaks. A number of subsequent other articles used a simular 3 step approach, with the
same limitations [14, 9, 3, 8].

To reconstruct the geometry of a room from an emitted sound and a microphone array,
the choice of the microphone impacts also the quality of the 3D information in the signal.
Hence, several researchers studied the correct shape and positions of microphones on the
array, as detailed in the article of Park and Rafaely [11]
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For our experiments, we will use room impulse responses obtained from a single point
source and a compact spherical microphone array. Sound waves from a point source
propagate as a sphere, they have a celerity and an energy that dissipates during the
travel. The sound interacts with the surfaces of the surrounding, it can be transmitted,
absorbed or reflected depending on the material.

Our method is based on the image source model. Hence we will use the reflections of the
sound wave, also known as echoes. In many situations, echoes are seen as disturbances
hindering sound understanding. However, the information they contain can help local-
ization. For example, the times arrival of the reflected sound gives information about the
distance travelled. In this work, we are interested only in the early reflections because
they can be easily separated while the late reflections mix up in a phenomenon commonly
known as reverberation.

The algorithm we use is an extension of Matching Pursuit [10], a greedy algorithm well
known in the signal processing literature. It has notably been used for denoising, the
resolution of linear inverse problems, and source separation. In this work, we will cast
the problem of hearing the shape of a room as a unified inverse problem in which we are
given acoustic measurements and we need to know the wall positions that match those
measurements.

In Section 2.1 we introduce the necessary background in acoustics and signal processing,
and present the proposed mathematical formulation of the problem at hand in the form
of a single optimization problem. In Section 2.2 we present the proposed extension of
the Matching Pursuit algorithm for the considered problem. In Section 3 we present
extensive quantitative and qualitative results obtained with our method using a room
acoustic simulator. Finally, Section 4 presents perspectives and leads for future work.
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2 Background and Method

2.1 Problem statement

Sound waves propagate through any physical elastic medium at a speed c related to the
medium. In room acoustics the sound is traveling within the air with a speed close to
343 meters per second at 20◦C and thus the pressure field u generated by this wave obeys
the homogeneous wave equation :

1
c2
∂2u

∂t2
−∇2u = 0. (1)

In the presence of a perfect impulse sound emitted at time t = 0 by a point source
placed at r(S)

0 in a free field (no walls) the resulting pressure field obeys the following
inhomogeneous wave equation:

1
c2
∂2u(r, t)
∂t2

−∇2u(r, t) = a0δ(t)δ(r− r(S)
0 ). (2)

Here, a0 is a constant corresponding to an arbitrary mass flow rate at the source in kg·s−1.
The value of this constant can be set to 1 without loss of generality, as pressures will only
be considered up to a global normalising factor in this study.

The problem addressed in this work is the reconstruction of a convex polyhedral room
from an emitted impulse sound propagating inside. Microphones are placed at r(M)

1 , ...

r(M)
M ∈ R3. The sound source is placed in r(S)

0 ∈ R3. In this situation, the pressure
field verifies the wave equation with an additional rigid boundary condition of the form
n · ∇u + b∂u

∂t
= 0 where n is the unit normal vector outward of the boundary and b is a

non-negative function defined on the boundary.

Such conditions do not lead to analytical solutions in the general case. To simplify the
problem, we are going to use the image source model introduced in Allen and Berkley [2],
which applies to the case of rigid, perfectly reflecting surfaces at the boundaries. Such
surfaces induce specular reflections only, which is analogous to the light reflected by a
mirror, i.e., the incidence angle is equal to the reflection angle as in the Snell–Descartes’s
law. The reflected ray or the echo then seem to be emitted from a hidden image source
behind the wall. The position of the wall is hence the bisector between the real source in
the room and the image source. Then, the first order image sources are the six reflections
from the walls as shown in figure 1.

To obtain a higher order of reflections, we can consider every single image source as the
initial source and look for its symmetries. In the following we consider a shoebox (or
cuboid) room which is a simple model of convex rooms. Indeed, most rooms and offices
are rectangular and in the case of rigid surfaces the image solution rapidly approaches an
exact solution of the wave equations. Nevertheless, the proposed methodology is general
and could be applied to any convex room.

In this simplified case, the pressure field verifies the following wave equation :

1
c2
∂2u

∂t2
−∇2u =

K∑
k=0

akδ
(
r− r(s)

k

)
δ(t) (3)

7



Figure 1: First order image sources.

where:

• ak depends on the absorption of the walls.

• The wall is the bisector of (r0, rk) k=1,. . . ,6.

The image source model reveals that finding the positions of the 6 walls in a shoebox room
is equivalent to the problem of localizing in 3D the emitting source and its 6 first-order
image sources.

Note that here and in the remainder of this thesis, we will only consider first order
reflections and neglect higher order ones. This gives K = 6 for a shoebox room. While
this is an strong simplification, it is justified by the fact that higher order echoes are less
energetic and occur later in recorded signals. In a real room, K is in fact infinite.

The classical solution of the corresponding Helmholtz equation in the Fourier domain
gives the solution:

u(r, t) =
K∑

k=0
ak

δ
(
t−

∥∥∥r− r(s)
k

∥∥∥ /c)
4π
∥∥∥r− r(s)

k

∥∥∥ (4)

The recording of the response to a point source emitting a perfect impulse in a room by
a microphone placed at r(M)

m is called a room impulse response (RIR). RIRs are among
the most commonly used measurements in room and building acoustics, and there exist a
number of techniques and protocols to reliably estimate them, see e.g. [13]. An impulse
response is the output signal of a linear time-invariant system (such as a room) that is
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obtained from an temporal impulse at the input, i.e. a sudden and brief variation of the
signal, modeled as a Dirac. It characterize the system in the sense that if we know the
impulse response of a system g, the output of this system given any signal v at its input
will simply be the convolution g ∗ v.

The image source method can be explicitly linked to room impulse response measurements
based on equation (4). Each peak in the RIR represents either the direct path of the emit-
ted sound or its echoes that corresponds to peaks with a delay and an attenuation. Hence
the signal received by the microphone antenna is a constellation of all rays coming from K
image sources of all orders namely the direct path and all the echoes of the emitted sound.

In practice, microphone does not directly record the sound field, but a filtered and dis-
cretized version of the pressure signal at the microphone location:

xm,n = (φ ∗ u(r(M)
m , .))(n/fs)

where: φ(t) = sinc(t) = sin(t)
t

is the chosen filter in this case. This corresponds to an ideal

low pass filter with cutoff frequency fs

2 .

Then, for a microphone m, the signal observed at t = n is:

xm,n =
K∑

k=0

ak

4π‖r(M)
m − r(S)

k ‖
sinc

 n

fs

− ‖r
(M)
m − r(S)

k ‖
c

 def=
K∑

k=0
akhm,n(r(S)

k ) (5)

We denote by x = [xm,n]n,m ∈ RMN the vector of all observations at all microphone
m = 1 . . .M and all discrete time samples n = 1 . . . N . Then:

x =
K∑

k=0
akh(r(S)

k ) (6)

where h : R3 −→ RMN . In order to estimate the position of the source and its images
from recorded impulse responses, and hence, hear the shape of the room, we aim to find
a solution to the following optimisation problem:

argmin
r0,...,rK∈R3, a0,...,aK∈R

∥∥∥∥∥x−
K∑

k=0
akh(rk)

∥∥∥∥∥
2

2
. (7)

The key difficulty is that h is a non-linear non-convex function, so it is hardly invertible,
and the algorithms based on gradient descent are not applicable because of local minimum
hindrance.

To alleviate this, we explored the possibility of solving this problem on a grid. Let

G =
{
r′p
}P

p=1
⊂ R3 be a grid of 3D points. The main idea is to find the K+1 positions on

this grid that minimize our cost function (7) and hence correspond to the nearest positions
to the image sources of the room. Then, the problem turns from finding K positions in
all of R3 which is an infinite space to the finite space G limited by a predefined number
P of points. Therefore, we will optimize the following problem:
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argmin
r0,...,rK∈G, a0,...,aK∈R

∥∥∥∥∥x−
K∑

k=0
akh(rk)

∥∥∥∥∥
2

2
.

Let D = [h (r′1) , . . . ,h (r′P )] ∈ RMN×P , then the problem becomes equivalent to solving:

argmin
z∈RP s.a ‖z‖0=K+1

‖x−Dz‖2
2,

where the K + 1 non-zero coefficients of the sparse vector z are {a0, . . . , aK}. In the
following, the matrix D will be referred to as a dictionnary and its columns di as atoms,
following the litterature on sparse estimation, e.g. [10].

To approximate the real positions, we need a large grid G with a sufficient number of
points to cover the volume of the room and the surrounding. If we choose 100 point for
each direction of the grid, we can easily reach one million point. Choosing K+ 1 position
from P = 1, 000, 000 seems to be an intractable combinatorial problem since there is(

P
K + 1

)
possibilities. This appears like looking for a needle in a haystack. To tackle

this task, we will make use of a greedy algorithm to find the sparse vector z. We choose
to proceed with the Matching Pursuit algorithm.

2.2 Matching Pursuit a greedy iterative algorithm

The strategy of Matching Pursuit is to estimate the coefficients ak ∈ R and the cor-
responding indices ik ∈ [|1, P |] of dictionary columns one by one, without going back
on each choice, which is why the algorithm is called ”greedy”. It was first introduced
for signal processing by Mallat and Zhang [10]. It is an iterative algorithm that takes
the signal x and a dictionary D as input, then selects the corresponding atoms of D to
reconstruct x. In other words, x is a weighted sum of a finite number of atoms from
the dictionary D. Atoms from D correspond to RIRs calculated at each position on the
grid which are seen as a source position. Using a correlation function, the algorithm can
select iteratively from P points in G the list of K + 1 coefficients or weights and indices
for the corresponding atoms which are the output. The algorithm hence chooses the
indices that contribute to the reconstruction of the received signal. In summary, we have
‖x −Dz‖2

2 = ‖x −∑K
k=0 akdik

‖2
2, where dik

= h(rik
) with rik

∈ G. This is illustrated in
figure 2.

The proposed extension of Matching Pursuit for our problem is described in Algorithm 1
in the form of pseudo-code.
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Figure 2: Reconstruction of x from atoms of D

Algorithm 1 Matching Pursuit

Input: x, D ∈ RMN K, radsep, angsep.

Output: {ak}K
k=0 , {rik

}K
k=0

// Initialisation:

1: g ←− x
2: D ←− D
3: for k = 0, . . . , K do
4: ak, ik ←− argmin

i∈[|1,P |] ; a∈R
‖g− ah(ri)‖2

2 .

5: g←− g - akh(rik
)

6: D ←− D \{h(r) : r ∈ G, gcdist(r, rik
) < angsep, |‖r‖2 − ‖rik

‖2| ≤ radsep}
7: end for
8: return {ak}K

k=0 , {rik
}K

k=0

In Line 4, ik is the index i maximizing the inner product
|〈g,h(ri)〉|
‖h(ri)‖2 , and ak=

〈g,h(rik
)〉

‖h(rik
)‖2 .

Preliminary test of Matching Pursuit showed that the algorithm tended to estimate many
positions clustered around the image sources with strongest amplitudes, and hence missed
some of the image sources with lower amplitudes. This is a well known limitation of this
type of on-grid method, see Denoyelle et al. [4]. To overcome this issue, we implemented
a procedure iteratively removing points from the grid contained in a safe zone with a pre-
defined angular width angsep and radial width radsep around each of the detected position.
This can be seen in Line 6, of algorithm 1, where some columns are progressively removed
from the searched D, initialized by D in Line 2. We do not only remove the position in G
corresponding to the selected index ik, but we remove all the points r ∈ G around it that
verify: gcdist(r, rik

) < angsep and |‖r‖2 − ‖rik
‖2| ≤ radsep where gcdist is the great circle

distance which is the shortest distance between two points on the surface of a sphere, and
‖‖2 is the euclidean norm.
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We explored two types of grid. First we considered a Cartesian grid which is a grid
with regular steps along the axis X,Y and Z with Cartesian coordinates (x,y,z), that
did not lead to satisfying results in preliminary experiments. This can be explained by
the fact that the angular resolution is related to the microphone array used while the
radial resolution is related to the frequency of sampling of the microphones fs only. We
concluded that we needed to control both types of resolution which is not possible with a
Cartesian grid. Hence, a spherical grid seemed like a more natural choice. We considered
angles uniformly spaced on the whole sphere, to avoid condensed points at the poles,
using a uniform angular steps. We use the spherical coordinates system to fill in the
grid’s positions (r, θ, φ). The radius r varies from 1 to 15 meters with a certain radial
resolution ∆r = radstep. We used an elevation angular step angstep = ∆φ where φ ∈ [0, π]
is the elevation. The azimuth angular step ∆θ is then a function of the angle φ and
angstep such that: ∆θ = angstep × cos(φ − π/2). In the next section, several radial and
angular grid resolution radstep and angstep will be tested.
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3 Experiments

3.1 Tools and hypothesis

The experiments of this internship are all implemented based on the room simulator Py-
roomacoustics, which is a python package for audio room acoustics introduced in Scheibler
et al. [12].

We did our experiments under simplifying hypothesis to explore first results, with the
idea that if the results are encouraging we can add more realistic hypothesis in future
works. First, we only considered shoebox rooms, i.e., cuboid rooms, since most of rooms
and offices in the majority of contemporary buildings are rectangular. Hence we will
have six surfaces to estimate. We choose frequency-independent absorption coefficients
fixed to 0.1 for each of the 6 walls. Such absorption profiles are typical of highly reflexive
materials such as tiles or concrete. Moreover, we only consider specular reflections while
neglecting all the diffuse ones. As explained in the previous section, we use the image
source method for simulation, and since the acoustic echoes of first order are sufficient to
estimate the geometry of a room, we limit ourselves to the first order. So our aim is to
find the position of the true source together with the six positions of the image sources
given by the first order acoustic echoes using our Matching Pursuit algorithm.

For the microphone array, we used the geometry of the commercially available spheri-
cal array of 32 microphones embedded in a rigid sphere called eigenmike Acoustics [1]
patented by mhacoustics, as shown in figure 3.

Figure 3: The Eigenmike used for simulating the RIRs

As we can see this microphone array is compact not bulky and small which make it
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practical for measurement and displacements. Its radius, as cited in Acoustics [1], is
about 4.2 cm. Hence, the diameter of the microphone antenna is 8.4 cm. However,in our
experiments, we tested different scaling of the array to see if the size of the microphone
array influences our results.

Remark: For the microphone array we gave only a file containing all the coordinates of its
32 microphones to the pyroomacoustics simulator. We did not do any hand manipulation
with the real microphone antenna for this preliminary study.

3.2 Parameters

For each experiment we generated 100 room geometries width length, with and height
respectively picked uniformly at random in [4, 8]× [4, 8]× [3, 6] meters. This corresponds
to dimensions of typically encountered rooms in buildings. For each room, the source
and receiver are also positioned at randomly peaked positions while respecting some
constraints. First, both of the positions must be far from all of the 6 walls at least by 1m.
Second, they must be distant from each other by at least 1m. This is do avoid situations
where some acoustic reflections would be highly prominent with respect to others, and
also corresponds to standard measurement protocols in acoustics.

We fixed the the minimum radius rmin and the maximum radius rmax of our spherical
grid G respectively at 1 and 15 m. Since the minimum distance between the microphone
array and the sound source is 1 m that justifies our choice of rmin. Meanwhile, rmax is
the maximum radius that an image source can reach for the configuration of dimensions
that we previously defined. So we want to detect all image sources situated between rmin

and rmax on our grid G
The only grid parameters we vary are the radial resolution radstep given by ∆r, the step
in the radial direction, and the angular resolution angstep for both angular directions as
detailed in the last paragraph of section 2. We will also manipulate the microphone size
and the frequency of sampling fs.

3.2.1 Default parameters

For all the experiments, we define a set of default values for parameters radstep, angstep,
Mic size × and fs as shown in Table 1.

radstep angstep Mic size × fs

0.2 m 5◦ 5 4 kHz

Table 1: Default parameters of the experiments

As we can see in Table 1, radstep is set to 0.2m, which means that we are looking for image
sources in every 20 cm in the radial direction. angstep is set to 5°, which is equivalent to
check positions within 5 degrees in both of the angular directions. For Mic size ×, we
choose to multiply the microphone size by 5, yielding a diameter of 42cm, which remains
relatively compact.

14



The frequency of sampling fs is fixed to 4000Hz. Since most microphones can record at
44.1 or 48 kHz, this is a relatively low frequency. However, many commonly encountered
sound sources such as e.g. human voice are most energetic under 2 kHz. Since higher
frequencies are not available in such signals, using higher sampling rates would be redun-
dant. The fs parameter will test the ability of our method to work in challenging, low
frequency regimes.

In practice, all the RIRs were cut to a fixed duration of tmax = rmax/c = 15
343 ≈ 43.75 ms,

where c is the speed of sound. This corresponds to only keeping information from sources
at a distance smaller than rmax = 15 m.

3.2.2 Evaluation metrics

Metrics

To evaluate the proposed method we used two different metrics defined as follows: the
true positive rate

TPR = The number of True Positives

The number of true sources
,

and false positive rate

FPR = The number of False Positives

The number of estimated sources
,

where :

• The number of True positives is the number of true sources detected by the algo-
rithm according to predefined thresholds,

• The number of true sources is the number of image sources corresponding to each
wall which is 6 plus the real source which make a total of 7 true sources,

• The number of false positive is the number of sources selected by the algorithm that
exceed the thresholds we fixed,

• The number of estimated sources is the total number of sources selected by the
algorithm. In other words, it is the number of iteration K + 1 in Matching Pursuit.

Thresholds

The thresholds we fixed correspond to the precision with which we want to detect the
sources. In this case we fixed a radial threshold radthresh at 25cm and a angular threshold
angthresh at 10°. We will examine the influence of these thresholds on metrics later How
the sources are sorted

After recovering the output results from Matching Pursuit and fixing the values of our
thresholds, we use the great circle distance to calculate the angular distance between the
real sources of the room and the estimated sources of Matching Pursuit. If the angular
distance is below the angthresh we fixed and if the radial distance is less than radthresh we
say that it is a true positive, if only one of the two conditions is not verified we say that
the estimated source is a False positive.
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As we do the calculations over 100 room in each experiment, we take the mean values of
the metrics of over 100 rooms.

3.2.3 Experiment with defaults parameters

For the first experiment, we used the set of defaults parameters listed in table 1. The
chosen radial and angular resolution yielded a grid of 115,659 points. The RIRs length
corresponding to tmax is about 5, 600 samples. This gives a dictionary of size 115, 659×
5, 600 which can yield to computer memory issue without some careful implementation.
Hence, in practice, we divided our dictionary into Q sub-dictionaries (in this experiment
Q = 71) of smaller size, which were independently screened at each iteration of Matching
Pursuit.

radstep angstep Mic size × fs radthresh angthresh TPR FPR
0.2m 5° 5× 8.2cm 4 kHZ 0.25 10° 54% 46 %

Table 2: Results of the first experiment.

The results are showed in table 2. As we can see, for the radial resolution radstep = 0.2m
and the angular resolution angstep = 5° and a microphone array’s size amplified 5 times
at the frequency of sampling fs = 4000Hz, we obtain a TPR of 54% and a FPR of 46%.
This means that for our predefined metric and thresholds set at 25 cm for radthresh and
10° for angthresh, Matching Pursuit is able to recover 54% of sources with high precision.
This is equivalent to 54%×7 = 3.75 ≈ 4 sources out of 7 per room. Hence, the algorithm
found the true source and 3 image sources which is the same as locating 3 walls, since a
wall is the bisector between the real source and an image source. At first glance, these
results may give the impression that the algorithm works only 50% of the time like for
heads or tails, but in fact, finding 4 out of 7 sources within a grid of 115,659 point at a
precision of 25cm and 10° is more akin to successfully finding a needle in a haystack.While
not perfect, these results show the ability of the proposed technique to partially ”hear the
shape” of the room, with much higher precision than chance.

For the remainder of this section we will focus for conciseness on the TPR metric as it is
easier to read and interpret.

Remark In practice, the computational time of the method, coded in python, was about
12 hours to pre-compute the dictionary and another 12 hour for running the Matching
Pursuit algorithm on 100 rooms, using the CPU of a regular laptop and no specific
optimization.

The influence of thresholds and precision

To see the impact of thresholds on the results, we fixed all the parameters as in the table
2 except for the angular threshold which was set to 30° as shown in table 3.

We can see that the TPR rate have increased to become 60% which is equivalent to find
4.2 sources of 7. Hence increasing angthresh may increase the number of sources we find,
and we can deduce the same thing for radthresh as they play a symmetrical role. All
depend on at which precision we want to evaluate our algorithm. For the rest of the
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radstep angstep Mic size × fs radthresh angthresh TPR FPR
0.2m 5° 5× 8.2cm 4kHZ 0.25 30° 0.60% 0.4 %

Table 3: The fist experiment results after varying the angular threshold

experiments we fixed our thresholds at 25 cm for radthresh and 10° for angthresh. In the
following we are rather interested in the influence of the other parameters on the precision
of our method.

3.3 Influence of algorithmic and measurement parameters

In this part, we will discuss the results of all experiments where we tested the influence
of 4 different parameters on the performance of the method.

3.3.1 The influence of the frequency sampling on the method

In this experiments we vary the frequency of sampling fs from 2kHz to 8kHz while the
other parameters are set to default values. We tested fs values as described in Table 4.

fs1 fs2 fs3 fs4
1000 Hz 2000Hz 4000 Hz 8000 Hz

Table 4: fs values tested with the other default parameters.

The results of those experiments are summarized in table 5.

(TPR) fs1 (TPR) fs2 (TPR) fs3 (TPR) fs4
0.3% 61% 54% 32%

Table 5: Influence of fs on the True Positive Rate.

Figure 4 shows the influence of varying the frequency of sampling from 2000 to 8000 Hz.
We can see that at fs = 1000Hz the method failed dramatically and did not find any
source position. Then we tried fs = 2000Hz which gives 61% of sources. Hence at this
frequency the method seems to be the most efficient. As a last trial we calculated the
TPR rate for fs = 8000Hz which gave 32% of sources. Interestingly, we can conclude
that the intuitive hypothesis that increasing the frequency of sampling would give better
results fails. We can rather say that there is an optimal frequency of sampling for every
predefined grid G. In fact, the frequency of sampling and the radial resolution are highly
related. The sharpness of the peaks in the RIRs depends on the frequency of sampling fs:
the higher it is, the sharper the peaks. Considering the grid G if the peak falls directly
on a point of the grid it will be easily detectable but if it is between two points it is less
likely to be selected. To conclude, we can say that the frequency of sampling influences
highly the results of our method and that fs = 2000Hz fits better our predefined grid G.
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Figure 4: Influence of fs on the True Positive Rate.

3.3.2 The influence of the microphone size on the method

In this experiments we vary the microphone array size (Mic size ×) from 1 × 8.4cm to
10×8.4cm while the other parameters are set to default values. We tested Mic size values
as described in Table 6.

Mic size 1 Mic size 2 Mic size 3 Mic size 4
1× 8.4cm 2× 8.4cm 5× 8.4cm 10× 8.4cm

Table 6: Mic size × values tested with the other default parameters.

The results of those experiments are summarized in Table 7.

(TPR) Mic size 1 (TPR) Mic size 2 (TPR) Mic size 3 (TPR) Mic size 4
0.1% 1.4% 54% 55%

Table 7: Results of varying the microphone array size .

Figure 5 shows the influence of varying the microphone array size from 1× 8.4cm to 10×
8.4cm. We can see that for the Mic size 1 which is exactly the real size of the microphone
array 8.4 cm, the method failed to select any point source. Then we considered a mic size
two times bigger, i.e., an antenna diameter of 16.8cm. For this experiment the (TPR)
rate is around 1.4%. Hence even for this mic size, the method failed. For the third
experiment we took a microphone array five time bigger than the original one, the mic
diameter is then equal to 42cm this time the (TPR) rate is about 54%. We can see clearly
the big jump of the (TPR), so the microphone array size is also a critical parameter to
check. After this satisfying result we tend to say that the larger the mic size, the better
the precision will be. In this final experiment on mic size the diameter this time is 10
times the original version, so it is about 84cm. The (TPR) of the method using this size
of microphone array is approximately 55%. Comparing to the results of Mic size 3, we
notice that there is not a large difference. Since the results are almost the same for Mic

18



Figure 5: Results of varying the microphone array size.

size 4 and Mic size 3, it is more practical to choose Mic size 3 for our microphone array
because it is two times smaller than Mic size 4 and it generates a good results and it is
ergonomic.

To conclude, mic size is an important parameter that influences the precision of our
method. This due to the fact that the microphone antenna is strongly linked to the
angular resolution in sound source localization. In our experiments the microphone array
we use is a compact rigid sphere of 8.2cm diameter and contains 32 microphones. That
means that the microphones are so close that they cannot distinguish the times of arrival
of sound sources for the considered frequency rangr . In other words, a too small diameter
for the 32 microphones becomes equivalent to having a single microphone for our method,
and for 3D localization we need more than one microphone. This explains why we obtain
better results with a larger microphone array.

3.3.3 The influence of the radial grid resolution on the method

In this experiments we vary the radial resolution radstep of the grid from 0.1m to 1m.
The smaller the step, the denser is the grid and vice versa. We set the other parameters
at default values. We tested radial resolution values as described in the following Table
8.

radstep1 radstep2 radstep3 radstep4
0.1 m 0.2 m 0.4 m 1 m

Table 8: radstep values tested in 4 experiments with the other parameters set to default
values.

The results of those experiments are summarized in Table 9 below.
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(TPR) radstep1 (TPR) radstep2 (TPR) radstep3 (TPR) radstep4
83% 54% 33% 18%

Table 9: Results of varying the radial resolution.

Figure 6: Results of varying the radial resolution.

Figure 6 shows the influence of varying the radial resolution from 0.1m to 1m. We started
with small steps in the radial direction, the smallest the step, the higher the resolution
will be. This means that for the smallest step the grid G contains a higher number of
points that the algorithm have to check. We can see in the curve that for the highest
resolution we tested radstep1 = 0.1, the method succeeded to find around 83% of sources,
this is equivalent to 0.83 × 7 = 5, 81 ≈ 6 sources out of 7 which is a very satisfying
result. It means that we found 5 walls out of 6. With radstep2 = 0.2m we obtained
a TPR rate of 54% which means 3 walls of 7. Hence, it suggests that decreasing the
radial resolution impacts the quality and the precision of our method. We can check this
hypothesis by making more experiments and decreasing the radial resolution once again
to radstep3 = 0.4m. The result of this experiment shows that at this radial resolution, the
method can detect only 33% of sources, it is about 0.33× 7 = 2, 31 ≈ 2 sources and only
1 wall, which supports our hypothesis. We did a final experiment on the radstep to have
a clear conclusion, this time we fixed it to radstep4 = 1m. The number of true positive
sources detected at this resolution is 0.18× 7 = 1.26 ≈ 1 source and no walls detected.

Overall, we see clearly that the radial resolution radstep is a critical parameter and to
achieve our goal which detect the geometry of the room we need to work at high radial
resolution. Because we have constraints of computer memory and time calculation we
fixed our default parameter only at radstep = 0.2m. Indeed, the higher the radial resolu-
tion, the higher number of points in the grid, which significantly increases computational
time and memory costs.
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3.3.4 The influence of the angular resolution on the method

In this experiments we vary the angular resolution angstep from 5° to 20°. We set the
other parameters at default values. We tested angular resolution values as described in
the following table 10.

angstep1 angstep2 angstep3 angstep4
5° 10° 15° 20°

Table 10: angstep values tested in 4 experiments with the other parameters set to default
values.

The results of those experiments are summarized in the table angInflRes.

(TPR) angstep1 (TPR) angstep2 (TPR) angstep3 (TPR) angstep4
54% 51% 41% 33%

Table 11: Results of varying the angular resolution.

Figure 7: Results of varying the angular resolution.

Figure 7 shows the influence of varying the angular resolution from 5° to 20° this parameter
plays a similar role to the radial resolution. As we can see, the curve is decreasing which
means that the true positive rate is decreasing while reducing the angular resolution as in
the case of the radial resolution curve. For the fist experiment the angular resolution is
fixed to angstep1 = 5°, the method selected 54% of sources. We then reduced the angular
resolution to angstep2 = 10° which gave 51% of sources, which is not a significant difference
from the previous result. Let up keep reducing the angstep and this time fix it to 15°.
The (TPR) rate then drops to about 41%. This is equivalent to finding approximately
3 sources or 2 walls. In the last experiment, we fixed angstep to 20°. The result of the
(TPR) is around 33%, which is equivalent to finding 1 wall on average.
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We can clearly see that our method is also sensitive to the angular resolution paramete.
Hence, it must be chosen carefully as a compromise between computational efficiency and
precision.

3.4 Qualitative results

In this part we will finally show some qualitative results for a specific room, whose ge-
ometry is showed in Figure 8.

Figure 8: Representation of a room of dimension 5× 7× 4m3. The microphone array is
fixed at (2, 1, 1.5) and is represented by the small sphere in the center of the reference
frame, while the sound source is placed at (3.5, 4, 2). The blue points are the image
sources for this room.

For this experiment, we use the default parameters described in the table 1. We can see
visually the true and the estimated sources of this room in Figure 9.
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Figure 9: The true image sources of the room are in blue color while the estimated ones
are red

To see visually how close the estimations were, for each sphere of our spherical grid,
we display as a colormap the score of the Matching Pusruit algorithm during the first

iteration, i.e.,
|〈x,h(ri)〉|
‖h(ri)‖2 . In the following we will show only the colormaps of the spheres

that contains important information.

In the figure 10 above, we see that in the 13th sphere

which corresponds to a radius of 3.4 m, the bright zone is the area where the scores are
higher than the rest, the red point here is the real source and the magenta cross shape
represents the estimated source using Matching Pursuit. It appears that the estimated
point source corresponds to the real source in that case.

Let us move to the next interesting sphere, which is the 20th one, situated at a radius of
4.8m and showed in Figure 11. As already mentioned, the brightest zone is the area with
higher calculated scores. We can see that the estimated source in magenta cross shape
is closely fitting the red real source, hence the method succeeded to detect this source.
Then since we have the real source and an image source we can affirm that we localized
a wall. The brightness of points in this sphere is less than the previous one. This may be
because the intensity of the signal of that the peak of the RIRs is closer to the grid but
did not reach it, and also due to the attenuation of sound as a function of distance and
wall absorption.
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Figure 10: The colormap score of the first interesting sphere where the real sound source
is detected.

Now let’s see the sphere number 22 situated at the radius 5.2m and displayed in Figure 12.

For this sphere, the method also found a point source close to the real source, hence we
can count 2 walls detected for the moment.

The following sphere is the 23th one situated just next to the previous sphere at a radius
of 5.4m and showed in the figure 13 below:

The figure 13 above is a little bit different. The effect of artefacts is clearly visible on
the colormap score of the points of this sphere. We can observe many bight zones which
suggests the existence of important information although there is only one real source
on the sphere. Seeing the estimated point source in magenta cross shape close to the
red real source, we could think that it is a true positive source. But even if they are on
the same sphere and so close, with the angular threshold we fixed at 10° we see that it
is not close enough. This estimated point source is hence a false positive. The artefact
effect may be caused by an interference with two or more peaks, leading the algorithm to
detect the echoes of the previous image source, since it is situated on a neighbour sphere.
There are several hypothesis that could explain this phenomenon, and further theoretical
investigation would be needed to understand it better. It is likely that the presence of
many sources at small distances from this sphere can cause such effect. There exists also
another point source in the following sphere as we will see in the next figure 14, which
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Figure 11: The colormap score of the 2nd interesting sphere at radius 4.8 m.

Figure 12: The colormap score of the 3rd interesting sphere at radius 5.2 m.

strengthens the hypothesis.

The sphere we mentioned is the 24th one, situated at the radius 5.6m. We can observe
the power of the estimated source from the brightness of scores around it, and we see
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Figure 13: The colormap score of the 4th interesting sphere at radius 5.4 m.

clearly that it is matched to a real source, hence we located a 3rd wall. The colormap of
this sphere is displayed in the figure 14 below:
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Figure 14: The colormap score of the 5th interesting sphere at radius 5.6 m.

In the following we will see a particular case of colormap score as showed in the next
figure 15 beneath :

Figure 15: The colormap score of the 6th interesting sphere at radius 6.2 m.

In the figure above we see a ring of bright scores around the real red source on this sphere
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and that the selected source using our method is situated on a point of that ring. Clearly
the algorithm failed to the detect the real source since the angular distance is largely
above the threshold. The ring phenomenon could be due to the source detected in the
previous sphere, since its energy was clearly strong. The explication that may justify this
case is that the echo of the previous source disturbed the signal of this one, causing the
angular precision to fail.

The penultimate colormap is for the sphere number 28, situated at the radius 6.8 m and
showed in the figure below:

Figure 16: The colormap score of the 7th interesting sphere at radius 6.4 m.

In this sphere there is no real source, even though the algorithm selected a point source
on this sphere. From the colormap score we can see again the ring form of the higher
scores on this sphere. The only explanation of the selection problem is the higher signal
intensity of the sources behind this sphere, as we mentioned before. Hence, this estimation
is drastically missed out.

Finally the last sphere we display is the sphere number 42, localized at a radius of 9.2m.
We see that there is a slightly bright area of score with the real red source situated in its
center. We can not observe any existing estimated source in this sphere. It can be because
of the dissipation of the sound energy while moving away from the sound source that the
signal emitted by this image source was not strong enough for a peak to be detected. It
is still just a hypothesis since we already saw that there are many parameters influencing
the precision of our method. The figure corresponding to this sphere is just below:
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Figure 17: The colormap score of the 8th interesting sphere at radius 9.2 m.
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4 Conclusion and perspectives

In this thesis we studied the problem of recovering the 3D geometry of a convex polyhe-
dral room from room impulse response measurements with a microphone array, and we
proposed a new method to solve it. It is an on-grid method based on the image source
model introduced by Allen and Berkley [2]. It is about separating the peaks of the room
response impulses that correspond to early sound reflections which are the analogue of
the room’s image sources. What is new about our method, is that we do not need any
hand manipulation to select peaks, we adopted the Matching Pursuit algorithm to do it
automatically. What characterizes this algorithm is that it is greedy and sparsen which
helps solving combinatorial problems, such as in this case choosing 7 point sources from
115,659 points in the space.

For the experiments, we used a point-like single sound which is omni-directional and
perfectly synchronized with the receiver. The receiver we used is a compact spherical
microphone array of 32 microphones distributed on the rigid sphere of the microphone
antenna and it is commercially available and named eigenmike. We fixed the higher
radius that our grid can reach at 15m, that corresponds to the maximum distance where
we can check the presence of the point sources. Then, thanks to the Pyroomacoustics
simulator we generated 100 room to make a quantitative study of our method using
default parameters and then we started varying them to see the influence of each one on
the true positive rate of estimated points. We thus evaluated the precision of our method
at fixed thresholds, they are the precision at which we want to select our points.

After running our tests with different values of the frequency of sampling fs, the micro-
phone array size Mic size, and both the radial and angular grid resolutions, we have seen
that each parameter influence the precision of the method. Hence, based on the previous
results, we can conclude that each grid have an optimal frequency of sampling that makes
it more efficient. We can see also that microphone size is an important parameter since
the method failed to find any point source for a diameter less than 42cm which is five
time greater that the original diameter. We can also conclude that there is no need to
take 10 times the diameter of the original antenna, i.e 84cm, because the difference in
accuracy it gives is not too remarkable compared to the results obtained with the Mic
size= 42cm. The big influence we noticed also is when we varied the resolutions of the
grid G.

Since the sound propagates in a spherical way, it has a radial resolution and a spherical
resolution and we must manipulate both radial steps and the angular steps to get an
appropriate result. In fact, in the beginning of the experiments we noticed that having
one step parameter in the case of Cartesian grid was not adapted to the problem we
are trying to resolve and rapidly switched to a spherical grid to control both radial
resolution and angular resolution. The previous results show that both resolutions have
an important influence on the method, since the true positive rates decreased by lowering
the resolution. The radial resolution parameter still have the biggest impact. With higher
resolution, we succeeded in getting 83% of sources which is about the same as finding 5
walls out of 6 on average.

It seems easy to say that we can simply increase the resolution to get better results, but
we must remember that we are limited in terms of memory and computing time because
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increasing the resolution also means increasing the number of points on the grid that the
algorithm have to scan and calculate. For the memory storage, this is binding.

Future work will need to check the robustness of the method to noise, because signals
in real life contain noise and artefacts from measuring devices and the interaction with
the surrounding. It also remains to use the RIRs with echoes of higher order. Indeed
in the real situations the signal is a combination of echoes of all orders and there is not
only the specular reflections, but also diffuse reflections depending on the type of surface
absorption.

In the literature, there are some promising future directions to improve the results we
get with our method, include improving matching pursuit using some of its extension
such as Orthogonal Matching Pursuit. In this extension, we also select the K + 1 atoms
one-by-one but at each new atom selection, we recalculate the projection of x on the
vector space generated by the selected vectors. Orthogonal Matching Pursuit can quickly
converge to a zero error if x is a linear combination of dk, which is not the case for the
basic Matching Pursuit.

As we saw that the grid resolution is a critical parameter, then a multiresolution approach
could be a promising avenue. Multiresolution algorithms are an adaptive techniques
based on a hierarchical decomposition of the signal that can help reducing dramatically
computations and memory costs in the estimation. In the beginning of the calculations
there is no need to start with a high resolution, the algorithm starts by selecting the likely
area that contains the image source and increases the resolution only in that area and so
on. The only risk is that this method introduces dependencies between data at different
grid levels and it is then difficult to manage their locality.

Another promising avenue to avoid the dependency to the grid resolution is to use an
off-grid method, in other words, working with super-resolution approaches, such as the
Sliding-Frank Wolfe algorithm. It is also a sparse algorithm, also known as conditional
gradient, that uses non-convex optimization steps as we have a non convex cost function.
It has for instance been used for blind RIR estimation in the article of Di Carlo et al. [5].
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