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67000 Strasbourg, FRANCE

Supervisor : Pierre Ocvirk (pierre.ocvirk@astro.unistra.fr)
Co-Supervisor : Emmanuel Franck (emmanuel.franck@inria.fr)



M2 internship report Maxime Gressier

Aknowledgements
I would like to thank Pierre and Emmanuel for their great supervision and all their help
during this internship.
I also thank Mei and Joubine for their kind support during the project.
A special thanks to my mother, Nathalie, for always being there and supporting me. I also
want to thank my friends from the Master’s program in Strasbourg — Camille, Samuel,
Lucille, Nicolas, and Baptiste — for their help and encouragement during this time.

Abstract
In cosmological simulations, radiative transfer is often performed using the M1 method
because of its ease of implementation and computational efficiency. However, it results in a
family of artifacts linked to its fluid-like treatment of photons. More accurate approaches,
such as the Pn method, offer better physical fidelity but are significantly more demanding
in terms of computational time and memory footprint. In this work, we propose a neural-
network-based alternative. We investigate a neural networks approach that leverages
radiative transfer equations to predict the system’s evolution without relying on training
data. This report introduces the method, referred to as the discrete Physically Informed
Neural Network (discrete PINN), and tests it on simple scenarios where the M1 method
fails to produce realistic results. We demonstrate that our method can yield qualitatively
satisfactory outcomes opening the way to more extended future implementations and
studies.

1



M2 internship report Maxime Gressier

Contents
Aknowledgements 1

1 Introduction 3

2 Basics on Neural Networks 7

3 Methodology 8
3.1 Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Physically Informed Neural Networks . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Continuous-Time PINNs . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Discrete PINNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Framework and Mesocenter . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 SCIMBA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 High Performance Computing Environment . . . . . . . . . . . . . 17

4 Results 17
4.1 Crossing Gaussian Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Time Continuous Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Crossing Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Isotropic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Sensitivity to the parameters . . . . . . . . . . . . . . . . . . . . . . 25

5 Discussion 28

6 Conclusion 28

A Slurm job script 29

B Additional plots from the end of the internship 29
B.1 Tests for the Crossed Sources with 0.02 time step . . . . . . . . . . . . . . 29
B.2 Tests on the size (spatial and angle dispersion) of the source . . . . . . . . 32
B.3 Test in 3D for isotropic sources . . . . . . . . . . . . . . . . . . . . . . . . 41

2



M2 internship report Maxime Gressier

1 Introduction
Shortly after the Big Bang, the Universe consisted of a hot plasma of nucleons and elec-
trons, with temperatures too high to allow electrons to bind with hydrogen nuclei. As the
Universe expanded, the energy of photons decreased until the temperature dropped to
approximately 104K, allowing electrons to combine with protons to form the first atoms,
predominantly hydrogen. This also led to a significant drop in the density of free elec-
trons, reducing the interactions between photons and electrons. Consequently, photons
were able to travel freely through the plasma. This event, known as recombination, began
at a redshift of z ≈ 1100 and marked the point when the Universe became mostly neutral.

At recombination, the Universe became transparent to cosmic microwave background
(CMB) photons but remained opaque to the UV ionizing photons. The epoch that followed
is referred to as the Dark Ages, during which the gas was neutral and transparent, but
no luminous sources had yet formed. The Universe continued to expand passively until
the onset of the reionization epoch.

Around a redshift of z ≈ 20, overdensities in the neutral gas led to the formation of
the first stars. Notably, the James Webb Space Telescope (JWST) has detected galaxies
at redshift as high as 16 (Atek et al. 2022; Helton et al. 2025; Adams et al. 2022). An
illustration of this epoch of reionization is given in Figure 2. The radiation emitted
by these stars began to ionize the surrounding medium, creating bubbles of ionized gas
that eventually percolated and overlapped, leading to the complete reionization of the
intergalactic medium by z ≈ 6 (Barkana & Loeb 2001; Aghanim et al. 2020; Bosman
et al. 2022). This period also corresponds to the formation of the first galaxies and
quasars.

Several methods are available to probe the epoch of reionization. One of the most
prominent is the Gunn-Peterson trough, which involves studying the spectra of distant
quasars (Becker et al. 2001). These objects are extremely luminous, making them ob-
servable at very large distances, even during the epoch of reionization. Moreover, their
intrinsic spectra consists of the spectral features of intervening neutral hydrogen clouds.
Neutral hydrogen efficiently absorbs Lyman-alpha photons, and due to cosmic redshift,
this absorption produces a characteristic trough in the observed spectra. This structure,
known as the Lyman-alpha forest, can also be observed in the spectra of other bright
sources, such as Gamma-Ray Burst (GRB) afterglows (Lamb & Haiman 2003).

However, analyzing these spectra is challenging due to significant noise resulting from
the extreme distances of the sources. Furthermore, such observations are rare—especially
for GRBs, which fade within just a few days. Therefore, developing efficient and accurate
simulations is essential for advancing our understanding of the formation of the first stars
and galaxies.

In astrophysics, it is essential to confront theoretical models with observational data.
However, in some cases, such comparisons are not possible due to the lack of observations,
often caused by the limitations of current technology in detecting extremely distant ob-
jects. This is particularly true for the study of the epoch of reionization, which remains
extremely challenging to observe.

Furthermore, as previously mentioned, indirect analyses based on features such as the
Gunn-Peterson trough or the Lyman-alpha forest are difficult to interpret due to their
complexity and the low signal-to-noise ratio. As a result, simulations play a crucial role
not only in advancing our theoretical understanding, but also in helping us interpret the
complex data, such as the spectra of objects originating from the reionization epoch.
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Another promising probe of the epoch of reionization is the 21 cm line of neutral
hydrogen, as described in Shimabukuro et al. (2022). This spectral line corresponds to
the hyperfine transition between the parallel and antiparallel states of the hydrogen atom
in its fundamental level. Although this transition is rare, it provides a valuable tool to
study this epoch. The SKA shown in Figure 1.

Figure 1: https://www.skao.int/en/explore/telescopes: SKA telescope in South
Africa

In this context, simulations play a crucial role, with radiative transfer lying at the heart
of modeling the epoch of reionization. Indeed, simulating this epoch involves modeling
the formation of the first stars and the subsequent ionization of the surrounding neutral
intergalactic medium. Therefore, the key physical process to solve is the radiative transfer
equation, which can be written as follows:

∂tI(t, x, v) + v · ∇xI = −κ(t, x, v)I + S(t, x, v), (1)
where I(t, x, v) represents the specific intensity of radiation, κ is the absorption coefficient,
and S denotes the source function.

4
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Figure 2: Ocvirk et al. (2020): Illustration of the epoch of reionization resulting of the
CoDa II simulation.

Several methods already exists to solve this equation, among which the M1 method
(Aubert & Teyssier 2008) is the most widely used in cosmological simulations with codes
such as RAMSES or DYABLO. For instance, Ocvirk et al. (2020) employed RAMSES
in the CoDa II simulation to model reionization and galaxy formation, the result of this
simulation is shown Figure 2. The M1 method involves computing the first two moments
of the radiative transfer equation, yielding the conservation equations for radiation energy
and flux.

∂tE + ∇xF = −κcE + S, (2)

∂tF + c2∇xP = −κcF. (3)
To fully solve the system of equations and compute the radiation energy density E

and flux F, the M1 method requires a closure relation, originally proposed by Levermore
(1984), which provides the Eddington tensor necessary to determine the radiation pressure
tensor P. This closure is straightforward to implement and computationally inexpensive,
making it particularly suitable for cosmological simulations. However, it relies on crude
approximations that can lead to inaccuracies. For example, when two photon beams cross,
the M1 closure averages them, resulting in an incorrect photon flux direction.

This limitation is illustrated in the left panel of Figure 3, taken from the paper
Palanque et al. (2025) which is still in prep, where the two crossing beams are smoothed
into a single diagonal beam, in contrast to the distinct crossing beams shown in the right
panel. Another artifact induced by the M1 closure is the appearance of pseudo-sources
between two isotropic sources. This effect can be seen in Figure 4, where the overdensity
between the two isotropic sources in the left panel represents a spurious source absent in
the right panel.
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Figure 3: Palanque et al. (2025): Simulation of two crossing beams with M1 (left panel)
and P9 (right panel)

Figure 4: Palanque et al. (2025): Simulation of two isotropic sources with M1 (left panel)
and P9 (right panel)

Alternative methods, such as the Pn method, can avoid the artifacts introduced by the
M1 closure. This approach solves a higher number of moments of the radiative transfer
equation (1), allowing for a more accurate description of the angular distribution of the
radiation field. As shown in the right panels of Figures 3 and 4, the Pn method produces
results that match the expected physical behavior, correctly capturing the crossing beams
and avoiding the formation of pseudo-sources. However, the main drawback of the Pn
method is its high computational cost which makes it difficult to apply in large-scale
cosmological simulations.

To address the issue of computational cost, neural networks offer a promising alter-
native. As demonstrated in Franck et al. (2025), neural networks are capable of per-
forming simulations within a realistic computational time, even in high-dimensional set-
tings—something that is often challenging for traditional numerical methods (see also for
applications in different physical contexts Raissi et al. (2019); Beltran-Pulido et al. (2022);
Zhang et al. (2023)). This makes it particularly interesting to explore the use of neural
networks for solving the radiative transfer equation, aiming to avoid the artifacts intro-
duced by the low number of moments computed by M1 while maintaining computational
efficiency.

6



M2 internship report Maxime Gressier

The objective of this internship is to simulate the radiative transfer equation without
the absorption term, focusing on the transport component of the equation:

∂tI(t, x, v) + v · ∇xI = S(t, x, v). (4)
We will reproduce the two benchmark tests—beam crossing and isotropic sources—using

discrete Physically Informed Neural Networks (PINNs). The goal is to evaluate the
method’s applicability, accuracy, performance, and memory footprint.

We begin by introducing the concept of neural networks through the simple case of the
Multilayer Perceptron, which is the architecture used in this work. Section 3 is dedicated
to a detailed description of the methodology employed to simulate the radiative transfer
equation using neural networks. This includes a presentation of the projection method
in Section 3.1, as well as an introduction to Physically Informed Neural Networks. The
section concludes with a description of the computational framework and hardware used
in this study, presented in Section 3.6.

The results are presented in Section 4, where we show the evolution of test systems
using the PINN approach, as well as the outcomes of the benchmark tests designed to
highlight the known limitations of the M1 method. Finally, we discuss the performance
of the PINN method relative to M1 in Section 5.

2 Basics on Neural Networks
There are many types of neural networks designed for various applications, such as object
classification from images (e.g., galaxy classification), image generation, or large language
models (LLMs) for text generation. In our case, we aim to use a neural network for solving
partial differential equations (PDEs). To this end, we employ a simple and widely used
architecture: the Multilayer Perceptron (MLP).

As illustrated in Figure 5, an MLP consists of at least three layers: an input layer,
an output layer, and one or more hidden layers. Hidden layers are composed of units
called neurons. The number of hidden layers and the number of neurons per layer are
hyperparameters that can be chosen by the user. Each element (input, neuron, or output)
is fully connected to all elements in the adjacent layers. These connections are associated
with weights w, and each neuron in a hidden layer also has an associated bias b.

Figure 5: Diagram of a multilayer perceptron
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To compute the value of each neuron in the next layer (or in the output layer), the
following formula is applied:

yi = σ

 N∑
j=0

wijxj + bi

 , (5)

where σ is the activation function, a non-linear function that determines whether a
neuron is activated. For example a widely used activation function in neural networks
method is the ReLu function (Rectified Linear Unit) given by:

ReLu(x) = max(0, x), ∀x ∈ R.

Other classical function used in machine learning are the sigmoid function given by:

sigmoid(x) = 1
1 + e−x

, ∀x ∈ R.

The use of non-linearity through the activation function enables neural networks to
approximate and solve non-linear problems, which is essential for many physical applica-
tions. As we will discuss in Section 3.3, activation functions can also be used to enforce
positivity on the network outputs.

By propagating information from the inputs to the outputs using this mechanism,
the neural network produces a result aligned with the intended task-for instance, class
probabilities in a classification problem, or, in our case, values corresponding to physical
quantities at given coordinates.

Classically, to obtain the correct set of parameters that produce accurate outputs, the
network must undergo a training phase. This training involves comparing the predicted
outputs to a set of reference data. The discrepancy between the prediction and the target
is quantified using a loss function, denoted L(θ), where θ represents the current set of
parameters (weights and biases). PINNs, on the other hand, do not require a training
dataset. Instead, they are guided by the PDEs of the problem. It compare directly
the approximated solution with a solution of those PDEs and adjust the parameters to
minimize the differences.

We determine iteratively the value of the parameters θ by optimizing the loss function.
This can be done using classical gradient descent methods, but the optimization can have
a strong impact on the solution. The specific implementation of this minimization strategy
in the context of our problem will be detailed in Section 3.2.1.

In Section 3.2, we will see how discrete PINNs circumvent the need for training datasets
by using the PDE of the system at hand.

3 Methodology
As previously mentioned, the objective of this internship is to approximate the solution
of the radiative transfer equation (1) using a neural network.

A neural network consists of neurons arranged in one or more layers, where each
neuron is connected to the next layer through weighted links. Each connection carries a
weight, and each layer includes a bias. The entire set of weights and biases is denoted
by θ, which defines the neural network. The network output, in our case the predicted
intensity Iθ(t, x, v), depends on this set of parameters.

Our goal is to find the optimal set of parameters θ such that: Iθ(t, x, v) ≈ I(t, x, v)

8
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In this section, we will explain how to optimize this set of parameters when we don’t
know the solution I(t, x, v).

3.1 Projection Method
The task of approximating the solution Iθ(t, x, v) with a neural network I(t, x, v) can
be interpreted as a projection problem. Indeed, our goal is to minimize the discrepancy
between the neural network’s output and the true solution, which amounts to projecting
the function represented by the neural network onto the solution space.

To find the optimal set of parameters θ that minimizes this difference, we seek to solve
the following optimization problem:

θ = argmin
θ

∫
Ω,S1

|Iθ(t, x, v) − I(t, x, v)|2 dxdv. (6)

This expression corresponds to the minimization of the L2 norm of the error over the
spatial domain Ω and the angular domain S1, which is a standard approach in projection-
based approximation methods.

In practice, we choose to evaluate and minimize the residual only at a finite number
n of points, referred to as collocation points. The minimization problem can thus be
reformulated as:

θ = argmin
θ

n∑
j=1

|Iθ(t, xj, vj) − I(t, xj, vj)|2 , (7)

where the (xj, vj) are the collocation points. They can be chosen randomly within the
computational domain (as in our case) or on a grid.

3.2 Physically Informed Neural Networks
In our case, we do not have access to the solution I(t, x, v) (Allaire et al. 2018), which
prevents us from directly comparing our neural network approximation with an exact
solution as described in Section 3.1. However, we do know the PDE governing the sys-
tem, which in our case is Equation (4). Moreover, we set the initial state of the system
by imposing I(t = 0, x, v) = I0(x, v) and we will optimize the parameters of the set
corresponding to the first time step to reproduce this condition in the initialization step.

The system can thus be formulated as:∂tI + v · ∇xI = f(t, x, v)
I(t = 0, x, v) = I0(x, v).

(8)

This formulation allows us to adopt a physics-informed approach, where the neural
network is optimized not by fitting to data, but by enforcing the satisfaction of the PDE
and the initial condition.

In this section, we explain how to formulate this problem using a neural network and
how to optimize its parameters to approximate the desired solution.

We have several solutions to this problem. There are several strategies to tackle
this task. One option is to treat time as a continuous variable, just like the spatial
coordinates, and to directly approximate a global function Iθ(t, x, v) that satisfies the
partial differential equation throughout the entire spatio-temporal domain. This approach
is known as a continuous-time PINN.

9
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Another possibility is to discretize the time domain and optimize the neural network
iteratively at each time step. In this case, the network predicts the solution at time ti+1
based on the output from time ti. This approach, which we adopt in this work, is referred
to as a discrete PINN.

3.2.1 Continuous-Time PINNs

As previously mentioned, in the continuous-time PINN approach, the time domain is
treated in the same way as the spatial and velocity domains. The neural network is opti-
mized to reproduce the solution over the entire time domain within a single optimization
process. To achieve this, we define a loss function that consists of two components:

1. A term that enforces the initial condition by measuring the discrepancy between the
network’s output at t = 0, denoted Iθ(0, x, v), and the prescribed initial condition
I0(x, v).

2. A term that enforces the PDE by comparing the left-hand side of the equation,
evaluated using automatic differentiation on the neural network, to the right-hand
side f(t, x, v).

The optimal set of network parameters θ is obtained by minimizing this loss function.
By definition, the condition for optimality is given by:

∇θL(θ) = 0. (9)
The optimized set of parameters is the θ such that:

θ = argmin
θ

 n∑
j=1

|∂tIθ(t, xj, vj) + vj · ∇xIθ(t, xj, vj) − f(t, xj, vj)|2

+ λ0

n∑
j=1

|Iθ(0, xj, vj) − I0(xj, vj)|2
 = argmin

θ
L(θ), (10)

where λ0 is the learning rate we assign to the optimization of the initial condition.
During the minimization, we randomly initialize the weights and biases, which together

form the first set of parameters θ0. At each minimization iteration, the loss function is
evaluated for the current set of parameters, and the next set is obtained via a gradient
descent step:

θk+1 = θk − ηA−1∇θL(θ), (11)
where η is the learning rate — a tunable hyperparameter that controls how much

the network updates its parameters in response to the computed loss. This value must
be large enough to ensure fast convergence, but small enough to avoid overshooting the
minimum.

The matrix A−1 represents a preconditioning of the parameter space and encodes
information about the geometry of the loss landscape. In our case, A corresponds to
the Fisher metric, and the descent is performed using the natural gradient method. For
more details about this approach and the structure of matrix A, we refer the reader to
Nurbekyan et al. (2023).

10



M2 internship report Maxime Gressier

According to Chen et al. (2023), this approach may lead to issues related to time
causality. Indeed, by optimize over all time steps simultaneously — including the initial
condition — the neural network might not sufficiently focus on the early stages of the
evolution. As a result, it may fail to accurately capture the initial dynamics of the system,
which are crucial for the correct propagation of the solution over time.

Figure 6: Chen et al. (2023): Comparison of the continuous-time PINN and discrete PINN
methods for the simulation of the Allen-Cahn equation.

We can see in Figure 6 the solution of the Allen–Cahn equation, a reaction–diffusion
equation that describes phase separation processes in multi-component alloy systems.
It is clear that the solution approximated by the continuous-time PINN method is less
accurate than the one obtained with the discrete PINN method. Moreover, as shown
in the evolution of the loss functions in the right-hand plots, the continuous-time PINN
appears to be less effectively optimized during the first time steps, which negatively affects
the subsequent time steps as well.

3.2.2 Discrete PINNs

A possible solution to address this issue is to discretize the time domain and optimize
a separate neural network for each time step. In other words, we aim to find a set of
parameters θt for each time t, so that we can evaluate each time step with a specific
neural network optimized for this specific time step, ensuring a faithful reproduction of
the temporal evolution. This approach is known as the discrete PINN method, and it is
the one we adopt for our tests.

To facilitate the optimization at each time step, we do not reinitialize the weights and
biases randomly. Instead, for a given time step ti+1, we initialize the neural network with
the parameters θti

which have already been optimized to approximate the solution at time
ti ti. We then optimize the new set of parameters θti+1 by minimizing the following loss
function:

11
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θti+1 = argmin
θ

 n∑
j=1

∣∣∣(Iθ(xj, vj) − Iθti
(xj, vj) + ∆tvj · ∇xIθti

(xj, vj)
)

− ∆tf(ti, xj, vj)
∣∣∣2

 ,

Li+1(θ) =
n∑

j=1

∣∣∣(Iθ(xj, vj) − Iθti
(xj, vj) + ∆tvj · ∇xIθti

(xj, vj)
)

− ∆tf(ti, xj, vj)
∣∣∣2 (12)

which can be noted:

θti+1 = argmin
θ

Li+1(θ). (13)

This loss function measures the discrepancy between the evolution predicted by the
neural network — computed using the PDE, the parameters from the previous time step,
and the current parameters — and the expected evolution of the system, given by the
source term f(ti, xk, vk). Using the same gradient descent approach as for continuous
PINNs, we can update the parameter values to minimize the loss function:

θk+1
ti+1

= θk
ti+1

− ηA−1∇θLi+1(θ). (14)
As the minimization of the parameters θt at each time step depends on the parameters

obtained at the previous step, it is crucial to ensure that the initial condition is accurately
approximated. A well-approximated initial condition guarantees that the subsequent
optimization steps are based on a reliable approximation of the solution.

To achieve this, the initialization step consists in minimizing a dedicated loss function
that measures the discrepancy between the imposed initial condition I0(x, v) and the
approximation provided by the neural network with parameters θ0.

θ0 = argmin
θ

n∑
j=1

|Iθ(xj, vj) − I0(xj, vj)|2 = argmin
θ

L0(θ). (15)

As before, the parameters are updated using a gradient descent method:

θk+1
0 = θk

0 − ηA−1∇θL0(θ). (16)
Algorithm 1 summarizes the basic principle of the discrete PINN. In our implemen-

tation, the stopping criterion for the minimization loop at each time step is based on a
fixed number of iterations rather than on a convergence threshold for the error.

12
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Algorithm 1 Discrete PINN’s principle
Input: Initial source I0 and target equation to solve (8), number of time step for the
evolution Nt.
PINN’s Parameters: Number of iterations for the initialization minimization N0,
number of iterations for the optimization of each time step N , learning rate η, number
of layer and number of neurons per layer and the threshold error ϵ.
Initialization step:
for k = 1 to N0 do

Compute the loss function L0(θ) (15);
Update the parameters using gradient descent (16);

end for
Evolution step:
for i = 0 to Nt − 1 do

for k = 1 to N do
Compute the loss function Li+1(θ);
Update the parameters using gradient descent (14);
if |Li+1(θ) − Li+1(θ)| < ϵ or k ≤ N then

Break;
end if

end for
end for
Output: Set of optimized θt for t ∈ [0, Nt] to represent the evolution at each time step
t.
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Figure 7: Schematic algorithm of the discrete PINN method.
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3.3 Positivity
Naturally, neural networks do not inherently enforce constraints on the range of the
output values. As a result, the predicted photon intensity can take negative values, which
is not physically meaningful. To address this issue and ensure that the predicted intensity
remains positive, we introduce suitable activation functions.

Activation functions in machine learning provide non-linearity and flexibility to neural
networks. They are applied after each hidden layer to transform the weighted sum of
inputs (including biases) into an output that allows the network to approximate complex
non-linear functions. In our implementation, we use a sine activation function for the
hidden layers, which was selected after testing several alternatives.

To enforce positivity of the final output, we apply a second activation function at
the output layer. This function ensures that the predicted intensity values are strictly
positive, leading to physically consistent results. The chosen output activation function
is the softplus function, defined by:

softplus(x) = log(1 + ex). (17)
This function behaves like the identity function for large x, while ensuring strictly

positive outputs, thus providing a smooth alternative to the ReLU function.
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Figure 8: Simulation of crossing beams for the case where we impose the softplus ac-
tivation function at the output to impose the positivity (right panel) and without this
constraint (left panel).

In Figure 8, the left panel shows the result of the optimization when the neural network
was not constrained to produce only positive values. Since we plotted the logarithm of the
predicted intensity, regions where the network predicted negative values appear as white
areas, as the logarithm is not defined for negative arguments. When we enforce positivity
using the output activation function, the entire domain becomes visible, allowing us to
interpret and evaluate the solution more reliably. We can then compare it with the semi-
analytical solution described in Section 3.4, which is shown for the case of crossing beams
in the top-right panel of Figure 13.
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3.4 Analytical Solution
To compare the results obtained with the discrete PINN and to evaluate the accuracy
of our method, we use a semi-analytical solution derived from the reference book Allaire
et al. (2018). This solution is given by:

I(t, x, v) = I0(x − tv, v) +
∫ t

0
S(s, x + (s − t)v, v)ds, (18)

where I0(t, x, v) is the initial condition provided to the neural network, and S(t, x, v)
is the source term.

The integral term is computed using a piecewise constant approximation over time,
which provides a simple and efficient way to evaluate the solution.

3.5 Periodic Boundary Conditions
As in cosmological simulations, tests are often performed with periodic boundary condi-
tions, we need to implement such conditions in our neural network. To achieve this, we
use a periodic embedding.

During optimization, at each iteration, the neural network evaluates the intensity
using its current weights and biases, before updating these parameters according to the
following equation:

Iθk(t, x, v) = σ

Nlayer∑
l=1

Nneurons∑
m=1

wk
lmX(t, x, v) + bk

l

 , (19)

with X representing the inputs tensor, σ is the activation function, wk
lm is the mth

neurons of the lth layer at the kth iteration and bk
l is the bias of the lth layer at the kth

iteration.
The periodic embedding consists in modifying the positions to ensure they remain

within the spatial domain before computing the intensity at each step:

Iθk(t, x, v) = σ

Nlayer∑
l=1

Nneurons∑
m=1

wk
lmX(t, cos(2π ∗ x + ϕk

lm), v) + bk
l

 , (20)

where the phase ϕk
lm is introduced as an additional parameter to be trained.

3.6 Framework and Mesocenter
In this section, we describe the software and hardware environments used to carry out
this work.

3.6.1 SCIMBA Framework

Concerning the software used in this work, we relied on SCIMBA, a framework developed
at the Advanced Mathematics Research Institute (IRMA) in Strasbourg by a team of
researchers including Emmanuel Franck, Matthieu Boileau, and Victor Michel-Dansac.
SCIMBA is an open-source project publicly available on GitLab at the following address:
https://gitlab.inria.fr/scimba/scimba.
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SCIMBA offers a collection of tools and examples dedicated to machine learning
and neural networks methods for solving PDEs. The framework is built using the Py-
Torch library and provides implementations of various approaches such as continuous-time
and sequential-time solvers, including PINNs, discrete PINNs, and the Neural Galerkin
method, among others.

In this work, GIT was used to create a new branch of the code and provide modifica-
tions to adapt the existing neural network class and discrete PINN method to our case
where we consider the phasespace and to implement the radiative transfer equation to
test the discrete PINN in our context.

3.6.2 High Performance Computing Environment

Regarding the hardware, all computations were performed on the High Performance Com-
puting (HPC) infrastructure of the University of Strasbourg. In particular, we made use
of the GPUs available within the HPC cluster to accelerate the optimization of our neural
networks. The cluster provides access to a variety of GPU models, including NVIDIA
GTX 1080 Ti (11.1 GB), Quadro RTX 5000 (16.1 GB), Quadro RTX 6000 (22.7 GB), as
well as several Tesla-class GPUs designed for large-scale computations.

To access these shared resources, we used the Slurm workload manager, a queue-based
system that manages job submissions among multiple users. Each job must be submitted
via the sbatch command, which requires specifying the computational resources needed
(such as the number of nodes, GPUs, memory, and wall-time) in a dedicated job script.
A typical submission command would be:

sbatch launch_RT_croise.txt

Here, launch RT croise.txt is a Slurm batch script that defines the execution pa-
rameters, including the script or Python code to run, the number of GPUs requested,
the expected computation time, and the relevant resource partition. The script of the file
launch RT croise.txt can be found in the appendix A.

4 Results

4.1 Crossing Gaussian Pulses
In this first test, we aim to analyze how the neural network reacts to a pulse in time. To
this end, we define the initial source as two Gaussian distributions: one located on the
left side of the domain and the other at the bottom. The left Gaussian is associated with
a velocity distribution whose mean is oriented to the right, while the bottom Gaussian
has a mean velocity directed upward.

The neural network used for this test consists of three hidden layers of forty neurons
each. The activation function is a sine function, and to ensure positivity of the predicted
intensity, we apply a softplus activation function at the output, as described in Section 3.3.

The optimization procedure is divided into two phases:

• An initialization step of 500 iterations using 30,000 collocation points randomly
sampled within the domain.

• An evolution step composed of 100 iterations per time step, using 15,000 collocation
points each.
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The simulation is run up to a final time of T = 0.95, with a time step ∆t = 0.02.
Figure 9 illustrates the evolution of the two pulses. The top row shows the prediction

given by the discrete PINN at six regularly spaced time steps, while the bottom row
displays the corresponding reference solution.

In this case, since the source is not continuous in time, we do not need to compute the
integral term described in Section 3.4. The analytical solution is derived directly from
the propagation of the initial condition. Because both position and velocity distributions
are Gaussian, the solution at a given time t can be expressed as the product of a spatial
Gaussian centered at x − vt and a velocity Gaussian.

This allows for a simple computation of the analytical solution by updating the spatial
Gaussian with time. During the evolution, we observe that the two pulses propagate in
their respective directions, meet in the center of the domain, and then continue moving
apart.

The formula for the left gaussian is as follows:

f1(t, x, v) = e−(xx−vxt+0.5)2×10 × e−(xy−vyt)2×10 × e−(vx−1)2×20 × e−v2
y×20, (21)

and for the bottom gaussian we have:

f2(t, x, v) = e−(xx−vxt)2×10 × e−(xy−vyt+0.5)2×10 × e−v2
x×20 × e−(vy−1)2×20, (22)

where in both functions, the factor 10 corresponds to the inverse of the squared dis-
persion in space and 20 is the inverse of the dispersion in velocity.

We expect to observe two photon packets propagating along their respective axes and
crossing each other at the center of the box without interacting.
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Figure 9: Evolution of two gaussian pulses approximated by the discrete PINN in first
row and the solution is shown in the second row.

The discrete PINN appears to produce results in good agreement with the analytical
solution. To verify this, we compute the relative L2 norm of the error at each displayed
time step. This evolution is shown in Figure 10. We observe that, throughout the evolu-
tion, the relative error remains on the order of magnitude of 1.5–2.5 × 10−2.
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There is, however, a noticeable gap between the error at the initial time (corresponding
to the initialization step) and the error at the first time step of the evolution. This
discontinuity can be explained by the difference in how these two steps are optimized.

Indeed, the initialization step is approximated using more iterations and a higher
number of collocation points than a single evolution step. Moreover, the loss functions
used in these two stages are different. For the initialization, the loss function simply
measures the difference between the initial source term and the prediction of the neural
network—it only needs to reproduce the initial condition I0. On the other hand, the loss
function used during the evolution step corresponds to the residual of the PDE, i.e., the
difference between the PDE approximation given by the neural network and the expected
evolution governed by the equation.

Because these two optimization steps are inherently different, a gap in accuracy may
naturally appear. This highlights the importance of a well-converged initialization: since
each time step depends on the previous one, it is crucial that the initial condition is
strongly optimized to ensure accurate results throughout the entire simulation.
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Figure 10: Evolution of the relative L2 norm at each time step

In Figures 11 and 12, we present the histograms of the differences between the pre-
dictions given by the neural network and the reference values from the exact solution,
respectively after the initialization step and after one evolution step.

In Figure 11, corresponding to the initialization step, we observe a clear peak centered
near zero. Most values lie within the range of approximately −2 × 10−3 to 3 × 10−3 and
the peak is between −5 × 10−4 and 5 × 10−4, indicating a relatively low error and a good
fit to the initial condition.

In Figure 12, which corresponds to the evolution step, we also see a peak around zero.
However, this peak is slightly more spread out, particularly towards negative values, with
a tail extending between 0 and approximately −3 × 10−3. This indicates that, although
the predictions remain close to the exact solution, the evolution step introduces a slightly
larger dispersion in the prediction errors compared to the initialization.
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Figure 11: Histogram of the difference between the predictions by the discrete PINN and
the solution at the initialization.
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Figure 12: Histogram of the difference between the predictions by the discrete PINN and
the solution at the end of the evolution T = 0.95.

4.2 Time Continuous Sources
Now that we have demonstrated that the neural network is able to reproduce the simple
behavior of a pulse, we can move on to the simulation of time continuous sources in order
to evaluate whether the discrete PINN method can reproduce the results of the M1 scheme
without its associated artifacts.

We will begin with the test of crossing beams in Section 4.2.1, to verify whether the
expected cross pattern is correctly retrieved. Then, in Section 4.2.2, we will reproduce
the test with two isotropic sources, in order to confirm that no spurious sources appear
between them — a known limitation of the M1 model.
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In both tests, the method used to model a time continuous source is the same: at each
time step, we add the initial condition again to simulate a source that continuously emits
photons.

Finally, in Section 4.2.3, we will investigate the method’s sensitivity to hyperparame-
ters, by highlighting the appearance of an artifact in a particular configuration.

4.2.1 Crossing Sources

This section focuses on the test of crossing beams. The system consists of two Gaussian
sources with a small angular dispersion. As shown in Figure 13, the first source is located
at the bottom of the domain and emits photons upward, while the second source is placed
on the left side of the domain and emits photons toward the right. As a result, the two
beams cross in the center of the domain. In this case, the equation of the sources is the
same as the ones for the gaussians pulses but with an inverse squared spatial dispersion
of 70 and a inverse squared velocity dispersion of 30.
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Figure 13: Crossing beams simulated with the discrete PINNs (top left panel) and the
semi-analytical solution (top right panel). The bottom panel correspond to the absolute
difference of the two images. The L2 norm and the relative L2 norm are showed in the
title of the figure.

We present in Figure 13 the results of the two sources described above, following the
transport equation (4), as predicted by a discrete PINN. The neural network used in this
simulation consists of three layers with 40 neurons each. As explained in Section 3.3, a
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sine activation function is used for the hidden layers, and a softplus activation function is
applied at the output to ensure positivity, as defined in Equation (17).

The initialization phase consists of 500 iterations with 30,000 randomly sampled col-
location points. For the time evolution, we used 100 iterations per time step with 20,000
collocation points and a time step size of 0.05, up to a final time of T = 1.2.

The predictions from the discrete PINN are shown in the top left panel of Figure 13.
We observe that the crossing of the beams is clearly visible, suggesting that the network
qualitatively captures the expected behavior. For comparison, the semi-analytical solution
described in Section 3.4 is shown in the top right panel.

The bottom panel displays the absolute difference between the two solutions. We note
that the largest discrepancies are on the order of 10−3. The relative L2 norm between the
predicted and reference solutions is 1.07 × 10−1. Although some artifacts appear next to
the crossing zone—where the expected values are very small—their magnitude remains
low (approximately 4×10−5) compared to the values inside the main beam structure. We
can also observe that the largest discrepancies occur near the regions where the photons
are initially generated—namely at the left and bottom boundaries of the domain—and
at the terminal regions where the photons reach after propagating along their respective
beams, i.e., at the top and right boundaries.

The relative L2 norm is computed as follows:

L2 =

√√√√√√√√√
Npoints∑

j=1
(Iθ − Ianalytical)2

Npoints∑
j=1

I2
analytical

(23)
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Figure 14: Histogram of the differences between the predictions of the neural network and
the semi-analytical solution for the crossing sources.

The histogram shown in figure 14 illustrates the distribution of the prediction errors.
We can observe a tail of negative errors and a clump of errors at the right of the main
peak. However, the order of magnitude of the differences remains small, with most errors
lying between −1 × 10−3 and 1 × 10−3.
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Figure 15 presents the evolution of the relative L2 error at each time step. The error
increases slightly at the beginning of the simulation and eventually converges to a value
just below 1.25 × 10−1. Despite this increase, the L2 norm remains on the order of
1-3 × 10−1 throughout the simulation, indicating that the discrete PINN remains stable
across all time steps.
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Figure 15: Evolution of the relative L2 norm relative to the time step of the simulation.

4.2.2 Isotropic Sources

The second test involves two isotropic sources, and the objective is to determine whether
pseudo-sources appear, as observed in the left panel of figure 4 representing the solution
given by the M1 method. The results of this simulation are presented in figure 16. In
this case, we use the same neural network architecture and parameters as in the previous
test. However, the final simulation time is set to 0.5 to ensure that the two photon fronts
have had time to reach and interact with each other and the time step is set to 0.02.

23



M2 internship report Maxime Gressier

1.0 0.5 0.0 0.5 1.0
Box Length

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Bo

x 
Le

ng
th

Discrete PINN

1.0 0.5 0.0 0.5 1.0
Box Length

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Bo
x 

Le
ng

th

Semi-analytical solution

10 6

10 5

10 4

10 3

10 2

10 1

In
te

ns
ity

1.0 0.5 0.0 0.5 1.0
Box Length

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Bo
x 

Le
ng

th

Absolute difference

10 8

10 6

10 4

10 2

In
te

ns
ity

Relative L2 norm of 1.00e-01

Figure 16: Isotropic Sources simulated with the discrete PINNs (top left panel) and the
semi-analytical solution (top right panel). The bottom panel correspond to the absolute
difference of the two images. The L2 norm and the relative L2 norm are showed in the
title of the figure.

As in the previous test, we observe that the prediction provided by the discrete PINN
agrees well with the semi-analytical solution, both in terms of the general shape and the
order of magnitude of the results. The relative L2 norm for this test is 1.0 × 10−1, which
is consistent with the value obtained in the crossing beam case.

As before, we provide a map of the absolute difference between the neural network
prediction and the expected solution. We can see that the order of magnitude of this
difference is around 10−2 near the centers of the sources, and decreases to approximately
10−3 in the region between the source centers and the photon fronts.

Moreover, we can observe concentric circular patterns around the two source centers.
These structures suggest that the PINN tends to produce smoother gradients within
the source regions, compared to the sharper profiles obtained with the semi-analytical
solution.

In Figure 17, we present the histogram of errors for this test. As in the previous cases,
we observe that the predictions are generally underestimated compared to the expected
values. However, the errors remain within the same order of magnitude, mostly ranging
between −5 × 10−3 and 5 × 10−3. This confirms that, despite the slight bias toward
underestimation and a second peak at the right of the main peak, the neural network
remains quantitatively consistent across the entire domain. The interpretation of the
mentionned secondary peak is still unclear.
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Figure 17: Histogram of the differences between the predictions of the neural network and
the semi-analytical solution for the isotropic sources.

As in the previous test, we observe an increase in the relative L2 norm, as shown in
Figure 18. However, since the total simulation time is shorter than in the case of the
crossing sources, we do not observe the same convergence behavior. In this case, the
relative L2 norm increase until the convergence to a value of approximately 1 × 10−1, and
the final value is comparable to that obtained in the crossing beams test. This allows us
to conclude that the discrete PINN remains stable throughout the entire simulation.
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Figure 18: Evolution of the relative L2 norm relative to the time step of the simulation.

4.2.3 Sensitivity to the parameters

Time step size During the optimization of the hyperparameters, we encountered cer-
tain configurations that led to unexpected results. For instance, in the case of the crossing
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beams described in Section 4.2.1, we initially identified a set of hyperparameters that min-
imized the final relative L2 error. In an attempt to further improve the performance, we
tested the effect of reducing the time step, expecting a more accurate solution due to the
finer temporal resolution.

However, instead of the expected improvement, the result obtained is shown in Fig-
ure 19, and it clearly deviates from the expected physical behavior.
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Figure 19: Evolution of the cross beams with a time step equal to 0.02.

We can observe in Figure 19 that the beam originating from the bottom of the domain
is unexpectedly stopped during the evolution and does not reach the top of the box,
contrary to what is expected. This behavior is not the result of the typical artifacts
observed with the M1 method, but rather an unexpected limitation of the neural network
in this specific configuration. The cause of this behavior remains unclear. Interestingly,
this issue appears only in the crossing beams test case, and was not observed in the other
configurations tested.

Figure 20 shows the evolution of the relative L2 norm over time. We can see that the
error is significantly higher from the beginning of the simulation, compared to the standard
case discussed in Section 4.2.1, indicating that the discrepancy arises early during the
evolution and persists throughout.
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Figure 20: Evolution of the relative L2 norm for the case of the crossing beams with a
time step of 0.02.

Neural Network size Still in the context of the crossing beams, we also tested a
simulation using fewer neurons. In this test, the network is composed of three layers with
twenty neurons each, and only twenty iterations are used for the evolution optimization
step. The simulation runs in approximately ten minutes and yields a final relative L2 norm
of 2.13×10−1. However, when analyzing the error distribution, we observed an unexpected
secondary peak. This histogram is shown in Figure 21. We can see a noticeable peak
around −0.002, the origin of which remains unclear.

Figure 21: Histogram of the differences between the predictions of the neural network
and the semi-analytical solution for the crossing sources with a neural network composed
of three layer of twenty neurons.
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5 Discussion
We have tested the discrete PINN method on simple cases where the M1 scheme—one of
the most widely used methods for solving the radiative transfer equation—exhibits well-
known artifacts. The first test case, involving crossing beams, highlights how M1 tends to
merge the two beams into a single flux, representing the sum of the two initial fluxes. In
the second case, involving two isotropic sources, M1 produces a spurious pseudo-source at
the location where the two I-fronts collide. In both scenarios, the discrete PINN method
produces qualitatively correct results and avoids the artifacts observed with M1, while
maintaining reasonable accuracy.

Additionally, in Section 4.1, we evaluated the method’s ability to reproduce the be-
havior of time-dependent Gaussian pulses. The results demonstrated that the discrete
PINN approach achieves stable and consistent accuracy throughout the simulation.

It is important to note that the computational time for the simulations done in Section
4.2 can be important. For instance, the isotropic source simulation takes approximately
15 minutes, while the crossing beams case requires around 30 minutes on a GPU NVIDIA
H100 NVL from the HPC. This large runtime mainly results from the choice of a relatively
large neural network architecture, composed of three layers with forty neurons each, which
increases the number of parameters to optimize. In addition, the number of iterations
during each evolution step was set to 100 in our configuration, further contributing to the
total computation time.

To investigate this, we tested a lighter configuration using three layers of 20 neurons
while keeping 100 iterations per evolution step. In this case, the runtime dropped sig-
nificantly—around 5 minutes for the isotropic sources and 10 minutes for the crossing
beams—while the final relative L2 error remained around 2 × 10−1. These results suggest
that further optimization of the architecture could lead to better compromises between
computational cost and accuracy.

A quantitative study of the memory footprint of the method would also be valuable
in future work, especially in comparison with traditional radiative transfer solvers.

In future developments, the discrete PINN method could be hybridized with classical
methods such as M1. For example, the radiative transfer equation solution can be ana-
lytically written as the M1 solution plus a correction g. We can then compute the M1
solution using classical numerical explicit methods such as Aubert & Teyssier (2008) while
the correction g could be obtained via a discrete PINN as we do here. Eventually, we
can obtain accurate results within a reasonable computational time, unlike higher-order
methods such as Pn. It would also be interesting to benchmark the performance of this
hybrid approach using standard radiative transfer test problems, such as those proposed
for reionization simulations in Shapiro et al. (2012), but this requires coupling our ra-
diative transfer solver with a chemistry solver accounting for the interaction between the
ionizing photons and the HI gas.

6 Conclusion
To conclude, the discrete PINN method provides qualitatively accurate results while suc-
cessfully avoiding the artifacts typically introduced by low order schemes such as M1.
Although the computational time remains a limiting factor, it could be mitigated through
better tuning of the network architecture. It is also worth noting that, as highlighted in
the introduction, neural networks are inherently well-suited for higher-dimensional prob-
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lems, suggesting that the computational cost may not scale prohibitively when extending
the method to three spatial dimensions.

Looking ahead, a promising direction would be to combine the discrete PINN with the
M1 method, using the latter to provide a fast but approximate solution, and the former to
correct its deficiencies. This hybrid approach could improve both accuracy and efficiency,
making discrete PINNs a valuable tool for future radiative transfer simulations. Recent
exascale astrophysical numerical simulation codes such as Dyablo would be a relevant
target for implementation of this method.

A Slurm job script
Here is the script in the file launch RT croise.txt:

#!/bin/sh

#SBATCH -p publicgpu
#SBATCH -N 1
#SBATCH --gres=gpu:4
#SBATCH --exclusive
#SBATCH -t 01:00:00
#SBATCH --constraint=gpudp
#SBATCH --constraint=gputc
#SBATCH --mail-type=END
#SBATCH --mail-user=maxime.gressier@etu.unistra.fr

python ./scimba/examples/time_discrete/radiativetransfert_sources_croisees.
py

B Additional plots from the end of the internship

B.1 Tests for the Crossed Sources with 0.02 time step
Solution: Remove the predefined seed.
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Figure 22: Three layers of 40 neurons and 0.02 time step.
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B.2 Tests on the size (spatial and angle dispersion) of the source
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Figure 23: spatial dispersion (1/σ2) = 150; angle dispersion (1/σ2) = 30
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Figure 24: spat disp = 150; angle disp = 30
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Figure 25: spat disp = 150; angle disp = 100
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Figure 26: spat disp = 150; angle disp = 70
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Figure 27: spat disp = 150; angle disp = 50
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Figure 28: spat disp = 150; angle disp = 40
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Figure 29: spat disp = 500; angle disp = 30
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Figure 30: spat disp = 700; angle disp = 40
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Figure 31: spat disp = 100; angle disp = 30
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Figure 32: spat disp = 100; angle disp = 100
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Figure 33: spat disp = 100
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Figure 34: spat disp = 200
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Figure 35: spat disp = 300
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Figure 36: spat disp = 400
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Figure 37: spat disp = 500
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Figure 38: spat disp = 1000
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Figure 39: spat disp = 2000
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B.3 Test in 3D for isotropic sources
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