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1 MATHEMATICAL BACKGROUND

The general context of this work is the study of systems of form

d
d;u+ Y 0rFFw) =0
k=1

u(X)O) = uO(X)v

for
wX, 0 :RxR— R™ and F¥:R™ — R™,

but we will stick to the case d =1 to introduce the theory.

1.1 Linear hyperbolic systems

Let Ae R"™ " be a constant matrix. The system

O;u+ Ad,u=0
u(X,0) = up(X),

(1)

is said to be hyperbolic (resp. strictly hyperbolic) if A is diagonalizable with (resp. dis-
tincts) real-valued eigenvalues. From now, we’ll assume the strict hyperbolicity of all

systems.

Writing A= RAR™', A= diag(Ay,--+,Am), and R=(r1|---|rmy) gives us
Arp=Aprp, p=1,---,m. (2)

We start multiplying (1) by R™! to obtain an equation on v:= R 'u
R'0,u+R Y (RAR MO u=0< 0,0+ A0 v =0, (3)

which is a set of m independents scalar transport equations

0;vP+21,0,0° =0
t p X (4]
p=1--,m.



We find the solution using the method of characteristics
vP(x,5) = vP (x—A,1,0) (5)

and thus, as u=Rv =%, vPry,, we get

ulx,t)= ) vP(x—2A,t,0)r,
p=1 (6]

Uup(x) = Rvg(x).
We'll call any curve satisfying
x(f)=xo+Apt

x'(0)=2p

a p-characteristic, along which v”(x, t) will remain constant.

A very important property holding here is that any singularity in the initial data can
propagate along characteristics only, and that smooth initial data leads to smooth solu-

tions. This won’t necessarily be the case for nonlinear equations.

1.2 Linearization of Nonlinear system

We now consider a nonlinear system
0ru+0,F(u) =0, (8)

and we ask ourselves to what extent could we recover the results of the linear case.
Witing A(u) = F'(u), (8) can be written as

0ru+ A(u)o,u=0. 9

Unlike the linear case, the hyperobolicity condition depends on the solution u. The pth
characteristic now writes
x'(1) = Ap(u(x(1), 1)
b (10)

x(0) = xo,



and the method we used in the linear case doesn’t work anymore. But the expansion
u(x,t) = a+euV(x, 1) + O(e?) (with € >0 and 7@ a constant state) gives us, as € — 0, a

linear behavior of the first order term of the solution
0,u (x, ) + A(@d,u® (x,1) = 0. (11)
We are now able to integrate x'(f) and we obtain a result similar to previously
Xp(6) =xo+Ap(t0)t (12)

We lost the property of the shock to propagate only along characteristics, but it re-
mains (approximately) true for small disturbance of the solution. We could use higher

order correction with the same process and so on, but we’ll instead use the following :

Theorem 1 (Rankine-Hugoniot jump condition). The speed s of a discontinuity
and the states ug and uj are related by the Rankine-Hugoniot jump condition :

F(ug) — F(ur) = s(ug — ur), (13)

which can be written
[F] = s[ul, (14)

Where [.] indicates the jump across the discontinuity.

In the case where ||ur —ur|| =€ << 1 we are close to the linear theory. The expansion
F(ur) = F(ug) + F'(up) (ur, — ug) + O(€®), (15)
with the RH conditions gives
F'(ug)(ug — ur) = s(ug — u) + O(%), (16)

such as

A(up)z = sz
(17)
z:=1lim (ur—uy)le,
e—0

and the speed of propagation remains an eigenvalue of the jacobian.



1.3 Linear Riemann problem

A Riemann problem is simply a hyperbolic system as (1) with a piece-wise constant

initial data

O;u+ Ad,u=0

ur,x<0 (18)
u(x,0) =

ug, x>0.

We will assume a strict hyperbolicity such that Sp(A) ={1; < <A;}.

We decompose uy and up in the diagonalization basis

m m
up = Z Aplp, UR= Z BpTp, (19)
p=1 p=1
then
ap,x<0
vP(x,0) = (20)
Bp, x>0,
and so
Ay, X—Apt<0
P, =4 " P (21

Writing P(x, t) the maximal value of p for which x -2, >0, the solution can be broken

down into the following form

m P(x,1) m
ux, =Y vPx,n= > Bprp+ D aprp. (22)
Pl p=1 p=P(x,0)+1

When crossing the pth characteristic the solution jumps with the jump given by
Using the fact that F(u) = Au, the Rankine-Hugoniot condition is here written

[F] = Alu]
=(Bp—ap)Ary (24)
= Aplul.



NB : We notice that in this case, from the RH condition results the fact that the pth

jumps propagates at speed A,, which allows us to write the solution in terms of these

jumps as
ux,D=ur+ Y Bp—aprp (25)
Ap<xlt
=UR— Z (ﬁp_ap)rp; (26]
Apzwlt
from which we have .
up—ur= ) (Bp—aprp. 27)
p=1

Finding a way to split a jump into a sum of m jumps propagating at constant speed
Ap is what one could call "solving the Riemann problem". The next part is about the

generalization to the nonlinear case.

1.4 Nonlinear Riemann problem

Let’s get back to the nonlinear system
0,u+0,F(u)=0, u(x,t) e R™. (28)

We place ourselves in a normalized diagonalization basis : {rp(u)}?:1 Hlrp(w)ll = 1. Let
a discontinuity propagating at the speed s, between the values u; and ug. Given the
point ur, we look for the set of all points ugp which can be connected to uy by a discon-
tinuity satisfying the RH condition (13).

As up € R™ and s € R are m+ 1 unknowns, and RH condition gives m condition, we’ll
find one parameter families of solutions. The linear case told us that the pth family ’s
jump was co-linear to rp, i.e. [u], =¢rp, { € R. Parameterization of these families using

this scalar gives us the following solution curves

,Uur) = up+
ur(§,ur) =up+<¢ry b=l 29)

Sp(ér ur) = /lp

The RH condition now gives

Fug,p(8) — Fur) = sp(8) (ug p(&) — ur), (30)



which becomes, after beeing derived with respect to ¢ at the origin :
flunug ,0) = s,0)up ,(0), (31)

meaning that the curve ug ,(¢) is tangent to r,(uy) at the point ur. If ug j lies through
u; on the pth curve, called the pth Hugoniot curve, then we say that u; and ug ), are

connected by a p-shock.

2 VECTORIAL KINETIC RELAXATION METHOD

2.1 Jin-Xin relaxation method

We want to solve the following non-linear transport equation
(PP): 0:p+04F(p) =0,

with p =p(t,x) €R and F:R — R non-linear in the general case.
We relax the equation with a system of two coupled linear transport equations, which is

much easier to solve (¢ >0 is the relaxation parameter and v € R the speed) [JIN-XIN]

o

2. - 0ip+0,v=0
0,V +a’0xp = L(F(p)—v)

Near equilibrium, i.e. € <<1, we write
V¢ = F(p°) +evt + O(e%),

which implies
F(p®) = v° — eVt + O(?).

The system becomes

Re —

e—0

0:pf +0,F(p%) = O(e)
0,:F(p%) + a®0xp° = 1(F(p®) — v)



We multiply the first line by F'(p) so it becomes

)

0:F(p%) +|F' (0%)120,p¢ = O(¢)
0:F(p%) + a®0xp® = —v5 + O(e)

and finally, (L1) — (L) gives us
v = (IF' (09 - a®) 0p° + Ole),
which leads us to
0:p° + 050" = 0,p° + 0y [F(p°) + €] + O(e) =0 = 0,p° + 0, F(p°) = —e0, V¢ + O(e).

This gives us the following result

Proposition : Under the hypothesis above, %, is consistent with the equation
Py arPE + 6xF(Pe) = €0y ([az - |F/(p€)|2] axpg) + 0(52)-
which converge to the initial transport equation under the stability condition

a® = |F'(p)° >0« |al > |F (p°)|.

2.2 Vectorial kinetic relaxation in 1D

We slightly generalize the former method for a set of M € N velocities and N € N macro-
scopic variables (such as density, speed, pressure, ...).
We will use f, f¢19eRM, w=w(t,x) eRN, Pe MnuR),
M @)
and A = eMyR), A;eR
@) Am
We introduce the Lattice TOO DOO : definition of a lattice + picture

6;f+A6xf:é(f“’(w)—f) (%)
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with two constraints on the moments of f and f¢7

Pf=Pfe(w)=w
PAf®I = F(w)

the constraints gives us the following relations

Px(#): {atPf+6xPAf:l(Pfeq(w)—Pf): w—w=0

€
PAx(%): | 8,PAf+0:PA*f=1(PAfe9(w)-PAf)

Writing v:= PAf, the system reads

o;w+0,v=0
0¢v+0x(PA*f) = ¢ (F(w) ~ )

We recognize the relaxation system from the Jin-Xin method.

We continue using the Chapman-Enskog expansion [CHA-ENS], which relies on writing

the first order Taylor expansion for each variables
w=wo+ew, + 0D, v=vy+ev +0E>), f=fo+efi +0(e?),
plugging them into both relaxation and Lattice equations

0w+ €0,w; + 0,V + €0, v; = O(e?)
0, Vo +€0,V1 +0x(PA? fy) + £0x(PA? fi) = 1 (F(wp) + €Dy Fwy — vo—ev1) + O(e?)
a[fo +80tf1 + Aaxf() + Adxfl = % (feq(LUo) + EDwOfeq w1 — f() — €f1) + 0(82)

and writing the system at each order of €.

Keeping only the O(1/€) terms leads to

)

vo = F(wp)
fo= 1% (wy)
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O(1) terms give us

)

0:wWo+0xv9=0;wy+0:F(wy) =0 (*x)
0,V +0x(PA?fo) = 0, F(wp) + 0x(PA?fo) = Dy, Fwy — 1y

which implies that
v1 = Dy Fwy — 8, F(wp) — 05 (PA? £9(wy)),

and, considering the O(g) terms, we get
0wy +0x(Dy, Fwi) = 0%,F(wp) + 0°xx(PA? £ (wp)) (* * *),
We recombine the system using (s ) + &(s * %) :
0 (wo + ewr) + 0, (F(wy) + €Dy, Fw) = € [0, F(wy) + 0%, (PA* £ (wy))]
ie.
0:w+ 0, F(w) = €[0%,F(wp) + 0%, (PA* %9 (wy)) | + O(e?) : (P;)

We want the error term to be written to the form €0,[D¢]dwy, with Dy the so-called

diffusion tensor, associated to the Lattice f.

Dy, F x (%) leads to

Dy, Fd;wo + Dy, FO F(wg) =0
= 0,F(wp) + [Dy, F]’ 05wy =0
= 0,F(wy) = — [ Dy, F]* 0 wo

Also note that
02, [PA% £ (wp)] = 0, [PA%0, £ (wy)] = 05 [PA* Dy, f€10, wp)

We thus obtain
Dy = PA* Dy, f*I(wo) - [Du, F]°,

and the approximated system is then written as :

(Pe): 0,w+0,F(w) =¢e0y

P2 D057

0y wo] +0(e?)
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which converge to the initial problem :
(%) s (P): 0,w+0,F(w)=0
with a stability condition relating to the eigenvalues of A:= D, F :
[Amax(A)l > max |l
NB : Note that, the system being hyperbolic, A is diagonalizable with reals eigenvalues.

2.3 Vectorial kinetic method in 2D

This paragraph tells the exact same thing as the previous one. Its aim is to generalize

all the notations and concepts in order to write them for any dimension.

With respect to the previous notations, we write

A% 0]
Ffe9eRM w=w(tx,y) eRN, Ay = € MyR), Va e {x,y},
0 2%,

Ay O
€ Moy, P MnyuR)
0 A,

The lattice is then written as follows :

Ouf + A0y f+ M0, f =1 (f(w) - f)
Pf=Pfw)=w
PAf9=F%w)

With a very similar method than the one dimensional case (see Appendix), we show

that for € — 0, this kinetic model is consistent with the following equation

0w+ F(w) = £V || PAD y, f*7 = Doy F| Vi | + O(e?)

We call Dy = P/z\Dwo f¢1—-D,,F the diffusion tensor, which has the same structure than

before and must verify a similar stability condition.
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2.4 Example: D2Q4 for the barotropic Euler system

We’ll now study the particular case of the approximation of the barotropic Euler sys-
tem with a D2Q4 scheme for each macroscopic variable.!
Barotropic Euler system reads :

{ 0p +0x(pu™) +0,(pu?)=0

0;p0+0,(pu*)+0,(pu?)=0
PP e < pu* pu*u*+P pu*uY
0; +0, +0 =0
P

O/(pw)+V-(puou+pld)=0
' puu* uu’+P

pu¥
Writing
w = (p,pu”, pu)’)T, F*(w) = (pu*u*+Pp, puxuy)T and FY(w) = (puu”, puyuy+P)T,
we recognize the non-linear tranport equation : d,w+V-F(w) =0

As we calculate the equilibrium for each macroscopic variable separately, we’ll use the

following notations :

P:(l 11 1),Ax: LAy =  AER

0 A
Using the relations from the previous section, we already got 3 equations per variable.
We add the constraint PA2 5,7 = w;A?/2, in order to close the system on f¢9.

Equation on p All constraints writes :

A b
e % N e N
Pfy"=p Lifip=p 1111 0
<PAxfpeq:Pux @{Mffq—fgeq):pux o 0 A O e | o
PAyf, " = pu? A= 59 = pu? 0 -2 0 Al’ pu’
2 2 2
PAZfyT = pA%/2 A2(FE7 4 £27) = A2p)2 A= 0 AT 0 A°pl2
which gives us :
0 1/A 0 1/A% 1 pu~
11 0 -1/4 -1/A? 1l 1 |-pw
=A== ho fpeqzﬁ L L|eu
2o -1/2 0o 12 401 24| -pu*
1 0 /A -1/2? 1 pu

IThis is called [D2Q4]3



We repeat the same operations for pu* and pu”

Equation on pu*

14

A b
-~ - ~ ——
eq _
Pf,x=pu* 1 1 1 1 ou*
PAxf:Zx:puxux+P N R 7o pu*u*+ P
_ p Xy
PAyfper:Puxuy 02 A 02 A pu th
X
PAif:Zx:puXAZ/Z A 0 A 0 pu /2
1 pu*u*+P 1 pu*u*+P
*1-1 1 [Apu*—pu*u? 11 1 —-pu*uY
- er:A—lb:& L= p p ©f63x=pu y— P
o 4 1 2A —pu*u*—P p 4 11 21 -pu*u*-P
-1 Apu* +pu*u? 1 pu*uY
Equation on pu’
A b
- % —t——
eq _
pruy =pu’ 1 1 1 1 ou
PAxfpeZy:puyux - A 0 -1 0 fo puu*
PA}/ :Zy:puyuy+P 0o -1 0 A p puyuy+P
22 0 22 0 u’A?/2
PA%fold, = pu?A2/2 P
1 ouru*
& 9 = A p o | £ _pu|ly 1| —pwu =P
put pur 4 1] 22| —pudu”
1 pu’u’ + P
We finally gather all those results and obtain f¢7 = (feq,f:Zx,f;Zy)T

Matrix diffusion error Since we know the equilibrium function, we are now able

to determine the error of our relaxation by writing the viscosity term D¢ of the continu-

ity equation.
A2

X

0

2
AJ’

As Axy=Ayx=0, we get A=
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From now on we’ll write g% = pu® and A:=D,,F.

The viscosity then reads :

Dy = PAD,, f* ~ Dy F = PAD,, f*1 - A.

And we now want to calculate the following term :

PAD,, f¢1 =

PA2D,, f¢1 0
0 PA2D,, f°1)’

which we are going to write in two steps, thanks to the diagonal structure of the tensor
PAZD, fud = (A2 0 A2 o) Dy fisf,
PAZD, fud =(0 A2 0 A2)Dyfi.

We start by calculating the partial derivatives of fpe 1.

1 q* 1
ea_o o|1]. 1 |-a"|| 1|1
Olo =% 4|1 | " 22| gt || T 3|1 |

1 q” 1
1 g~ 1 1 g~ 0
1| 1 |-¢ 1]o0 oltl 1[-¢ 1]-1

0ge =0, | 2| |+ = ——| | w0, |2 [+= =—
aJp” =00 | 1| 20| g~ 21| -1 afp” =00 | 1| 24| -g~ 21| 0
1 q” 0 1 q”

We then get the Jacobian of f; 7 which gives us the first part of the viscosity :

11 9
4 2]

1 -1
1 9 =1

e 2 e 2
Dufy "= (005" 0485 08 =1 2 = PALDL, ;" = 4 (172 0 o)

4 22

1 1
= 0 —
4 21
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Doing the same with g* and g? gives us :

PA%D,, ,f":?tz(l/z 0 0]
PAiDuOfefzﬂlz(O 1/2 0)
PA2D,fo! =A2(0 0 1/2)

N

and :
PAZD,, f3=2%(1/2 0 o)

{PAZD, f20 =2%(0 172 o)
PA2Dy, ol =22(0 0 172]

So we finally have the following result :

Az
Dp="rIs-A

which allows us to write the stability condition of the system
/12

Df:?IG—If‘ > 0©/\2>2 Amax(;‘)@M«|> \/E |Amax(A)|

2.5 Nondimensionalization of the barotropic Euler system

0;0+V-(pu)=0 0;p+u-Vo+pV-u=0
{6;pu+V-(pu®u+P):0 <>{6tu+(u-V)u+%:0
t=1pi=0,=10;

p = pop, U= uyll,P=PyP

R0;0+ =20 Vp+ 220V 0=0 (L)
2 R A A
0o+ P (a-Va+ 55 =0 (Lo)

%XLI: ath+tO_LuOu'V.‘hL%Pv'uzo g
;_%XLZ 0,;u+t°—L”°(u-V)u+l£)°TP(;)L¥:O
Otp+%(u-V)p+t°—£‘°pV-u:0 P2
= tolUo fng vP ( =¢ p)
Otu+T(u-V)u+m7:0
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0:p + 52 (w-V)p+2pV-u=0 (e L
UO'_I_O)

2
U (y. % vp _
Otu+yo(u V)u+u0v0 5 0

M := % (Mach number)

up =1y (we are interested in the overall speed of the fluid, i.e. the convection)

0o+ (u-V)p+pV-u=0

atu+(u-V)u+#V7P:0

P=PO+ M1
u=u+ My

o= p(O) +M2p(l)

O/M?): 15 Vp’?;)) =0=>PP=cte=p®=cre (continuity gives us the constancy over time)
9,09 + 1®.VpO® 4 pOY. 4O = HOY. 4O = g
o1):

0,u® +@w®-v)u© + % =0

We obtain Euler equations (incompressible case) :
0,u?+ @@ -v)u® +vii=0

(&):
V-u®=0
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3 APPENDIX

3.1 Equivalent equation for the vectorial kinetic method
in 2D

with P the moment matrix which gives us the following relations :

P x (%): 0w+0,v*+0,vY =0
PAyx(¥):  {0,0*+0,PA2f+0yPALAyf =1 [F*(w) - v*]
PAyx ()2 9,07 +0,PAyALf+0,PASf = L[FY (w) - vY]

We use once again the Taylor expansion :
w=wy+ew; +0(?)

V¥ = vl + v+ 0(e?)

f=fotefi+0(?

We also introduce the following notations :
DF%(wg) = JacF*(wp)

Agp=NgMp Va,Belx,y)

Plugging everything in our set of equations :

01wy + €0, w1 + 0, VY + €0,V + 0y 1) + €0,V = O(e?)
0, UX +€0,VF +0,(PA2 fy) + £0x(PA2 fi) + 0y (PAyy fo) + €0y (P Ay f1)
= 1 [F*(wp) + €Dy F*wy — v§ — evi] + O(e?)
20,0 +€0:0] +0x(PAyu fo) + €02 (PAyx fi) + 0y (PA% fo) + €0y (PA2 fi)
= 1 [FY(wo) + €Dy, FY wy — v} Y —ev]]+0(e?)
Otfo+€0:fi+ AxOxfo+ AxOxf1+ A0y fo+ A0y fi
= L[ %9 (wp) + €Dy, f(wo) w1 — fo — £ fi] + O(e?)
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As in the previous section, we write the system at each order of € :

vy = F*(wy)
O(l/e):
fo=f(wy)

0wy +0x U3 0, V) =| 0;wo +0xF* (wo) + 8, F” (wp) = 0 (x%)
0, U +0x(PAZfo) + 8y (PAyy fo) = 0:F*(wo) + 0 (PA2 fo) + 0y (P Ay fo)
om: A = Dy F*wy — vy

01V + 0 (PAyxfo) + 0y (PA2 fo) = 8¢ F¥ (wo) +0:(PAyx fo) + 0, (PA2 fy)

— y
=Dy FYwy — vy

= | vy = Dy Fn =0, F(wp) =V - (PAf*(wp) | (H)

0w +6xvf+6yvf:’6tw1+v- 2] :0‘ (% * *)
O(e): 0 vy +0x(PA%Zf1) +0y(PAyyfi) =0
0;v7 +0x(PAyxfi) +0,(PASf1) =0

In a conciseness concern, we introduce the tensorization and the application of the di-
vergence to matrices :

CAmAAAT . w. M| (V-(HH,HIZ))_(axHu+ayH12)
’ H, V- (Ha1, Hz2) 0y Ho +6yH22

AL Ay
2
Using these, (x x ) &(£") leads us to :

0wy + V- (DF(wo)wy) = V- (0, F(wp) +V-PAfy) | (FF%)

and then, we write (%) +&(* * *) :

0,w+V-F(w) = eV-(0,F(wp) + V- PAfy) + O(€%)

We now want to show the diffusion tensor in the error term :

DwoFx X (**) : DwOan[w()'l"DwOanxe(wo) +Dw0anny(w0) = 0

= [0, F*(wp) + [ Dy F¥)* 0 wo + D1y F* Dy FY3, w9 = 0

Dy Y0 wo + Doy FY 0, F* (1) + Dy FY 8 F*(w) = 0

y .
DLUOF X(**) = atFy(w0)+Dw0Fwa0anxw0+[DwOFy]Zaywozo




20

We then obtain |0;F(wg) = =Dy, F Vwy |, (recall ﬁ(wo) = [DWOF“DWOF'B]“,[}), and the

approximated system is now written as :

(@) |0:w+V-F(w) = eV | [ PADyy 7 = D F| Vit | + 0(e)

with Dy := PI:\DWO ¢ - Dy, F which must be positive for the stability. We also get the
convergence to the transport equation :

(Pe) — (P): [0,w+V-F(w) =0
6—»
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