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Introduction

This document present the work I have made during my internship, as part of my second year of
Masters. The internship took place at INRIA between 13 February and 11 August. I was under
the supervision of Emmanuel Franck, Emmanuel Opshtein and Laurent Navoret, researchers at
INRIA and TRMA.

INRIA (for Institut National de Recherche en Informatique et Automatique) is a public
establishment created in 1967 within the framework of the "plan calcul", a governmental plan
intended to develop French knowledge in the field of digital technology and to ensure the digital
sovereignty of the country. Today, it has 200 teams spread over 10 research centers, bringing
together a total of 3,900 researchers and engineers in mathematics and computer science [12].
The institute works by "équipes-projets", groups of about twenty people working on the same
project and for the most part in collaboration with companies [12]. The Nancy research centre
was founded in 1986 and today has 20 teams bringing together over 400 people. It has a branch
at the University of Strasbourg, where researchers from the TONUS team (for TOkamaks and
NUmerical Simulations) work, including one of my supervisor, Emmanuel Franck.

IRMA (for Institut de Recherche en Mathématique Avancée) is a research center in math-
ematics under the administrative supervision of the University of Strasbourg and the CNRS
(for Centre National de la Recherche Scientifique) [13]. It has been created in 1966 as the first
research centre associated to the CNRS, a public establishment itself created in 1939 in order
to structure and dynamize the French public research [7]. IRMA counts about 130 members
distributed in 7 research teams including the Geometry team, to which Emmanuel Opshtein
belongs, and the MoCo (for Modélisation et Contrdle) team, to which Laurent Navoret belongs.

This internship is in line with last year internship, where we studied linear reduction methods
for Hamiltonian systems. The aim of this year internship was to extend and improve those
methods in the non-linear case. Hamiltonian systems are systems of partial differential equations
whose flows have the particularity to preserve the energy of the underlying physical systems.
In geometry, those problems are studied in the field of symplectic geometry. Given a partial
differential equation, the objective of a reduced order model is to find a family of functions which
alone can explain a large part of the behaviour of the equation solutions. The interest of reduced
order modelling is that it allows a faster computation of solutions at any time and for any value
of the equation parameters in the interval considered during reduction. As we observed during
my last year internship, linear methods such as Proper Symplectic Decomposition (PSD) gives
good results for linear Hamiltonian equations but fail for non-linear one.

The main task of my internship was to think of ways to improve the reduction we obtain
with PSD. We have worked on two approaches of this problem. In the first one, we try to



correct the application that sends the solutions on the reduced space given by the PSD. Here,
we used quadratic corrections and mainly tried to adapt to the Hamiltonian case a method
proposed in [10]. This task then involved references readings, mathematical computations to
set the problem and programmation (in Python). After fruitless tests for several variations of
this idea, we put it aside and start working on the second approach. The second idea is to
directly build a Hamiltonian dynamic in the reduced space given by the PSD. Here, we used a
control-type method with an explicit computation of the gradient to achieve it. This involved
mathematical computations using the adjoint method to find an expression of the gradient we
were looking for, reflexion on the resolution of the associated optimization problem and coding.
The tests we have made so far have given promising results.

The second part of my internship was devoted to being familiar with some geometrical tools
that we expect to use in future works to build models for Hamiltonian problems. I fulfilled this
task in parallel with the first one. As the first task, it was divided into two parts that I carried
out one after another. In a first time, I was asked to being familiar with generating functions,
a kind a application very useful to build symplectic maps. As the central idea of Hamiltonian
reduction is to find a good symplectic reduction, this tool may prove to be useful in future
works on the subject. In the field of learning Hamiltonian dynamics with neural networks, this
idea has already been exploited in [5]. Then, the objective was to get familiar with techniques
based on what we call h-principle. Those techniques are used in symplectic geometry to prove
the existence of symplectic embeddings between two manifolds. In our case, we expect to use
them to prove results which would give geometrical guaranties to the reduction methods we
are interested to build. To complete this task, I read [15] and [1] to learn about generating
functions and [8] to learn about h-principle.

What follows is divided into two parts that correspond to the two main task I worked on,
starting by the numerical part and finishing by the geometrical one. We insist more on the
control approach and on the h-principle than on quadratic corrections and generating functions
since it is the parts that are expected to give the better results in short time after the internship.
You will find a summary of the main notations at the beginning of this report.



Notations

e 2n : the dimension of the high dimensional space,

o (M?" w?") or (M,w) : the high dimensional symplectic manifold on which lie the trajec-
tories of the PDE we are interested in (in fact R2"),

e x = (q,p): apoint of M (note that we use the order we see on theoretical papers and not
the one we see on those dealing with numerical applications),

e k : the dimension of the low dimensional space we are looking for in the reduction context
when we do not suppose that it is symplectic,

e 2k : the dimension of the low dimensional space we are looking for in the reduction context
when we suppose that it is symplectic,

o ¥k 32k or ¥ : the low dimensional submanifold of M on which lie the trajectories of the
PDE we are interested in,

e & : a point of the submanifold ¥, also denoted by (p,4) when ¥ is supposed to be
symplectic,

« D¥:U c RF - ¥¥ : a (global) parametrisation for ¥, called decoder in the context of
reduction of dimension,

¢ E:%%F - U cR": a(global) chart of the submanifold, also called encoder in the context
of reduction of dimension,

e N : the number of trajectories we consider to build the reduction D,
e m : the number of time intervals in each trajectories,

e Nm : the dimension of the sample,

e« H:R?™ — R : a Hamiltonian function,

« H:R?* 5 R : its reduction,

e d e N : when the Hamiltonian in high dimension is parametrized, the dimension of the
space where lives the parameter,

« ge R : the parameter itself (whenever it exists),



e K € N : dimension of the space where we look for an optimal reduced Hamiltonian
function when performing optimal control approach,

e e RX : parameter of the reduced Hamiltonian when build with hyperreduction based
on an optimal control approach,



Part 1

Numerical part



1 Context

1.1 Hamiltonian systems

In what follows, we consider a symplectic manifold (M, w) and we study Hamiltonian systems,
i.e. systems of the form
{5@ = Xy (),

x(0) = xo,
with Xz € I'(M) the Hamiltonian vector field defined by
w(Xg, ) =dH,

for H : M — R a Hamiltonian function.

If we also consider, in addition to the symplectic structure induced by w on M, a Riemannian
structure induced by a metric g on this same space, the 2-form w can be formulated in terms
of g, like any bilinear form: for all z € M, it exists A, such that for all u,v € T, M

wy(u,v) = g(Aw,u,v).

The matrix A must be skew-symmetric and non-degenerate. Note that g introduces another
structure on M that is not necessary for our purpose. Nevertheless, when we work on R?",
using the Euclidian stucture simplifies computations.

We first consider M = R?" with the standard symplectic form w = dqAdp and the Euclidean
structure induced by the standard scalar product {-,-). In this case, for all u,v € R?",

w(u,v) = <Jgnu, v),

0 -I,
s (2 Y.

The previous system is then rewritten as

where

i = Jon Vo H(2). (1.1)

If we write x(t) = (p(t), q(t)), this is equivalent to
oH

qt = %((Lp)?
oH
pr = —%(q,p)-

9



1.2 Hamiltonian reduction

1.2.1 Goals
We wish to build a reduced model for the equation
t = Xpg(x),

with = € M, which is also in a Hamiltonian form:

that is

with 2 in a 2k-dimensional manifold, for a certain Hamiltonian function H of =¥ and k < n.

For that, we start by computing some solutions of the original problem in high dimension.
From these data, we then look for a projection to a low dimensional space and a Hamiltonian
function in this space. In short, building a reduced order model consists in extracting a low
dimensional dynamic from a data set.

We in fact assume that it exists a low dimensional manifold ¥* on which lies the solutions
of the previous problem. The set of solutions can be given by the trajectories for a single
Hamiltonian function starting at different points or trajectories for a parametrized Hamiltonian
function starting at the same point or even a mix of this two cases. In all cases, the space of
solutions is parametrized by a certain parameter g, which takes its value in a certain space G.
In this section we omit the mention of this parameter and when, in the following sections, it
will be necessary to mention it, we will consider that it is the Hamiltonian function which is
parametrized. The case where it is the initial condition will only slighly differ in notations. Note
also that if G is of dimension k, we expect that the space of solutions is also of dimension k.
However, we still need to compute them in high dimension, which is the space where work our
numerical solvers. All the point with the reduction is to explicit the dependance of the solutions
in g in a way trajectories can easily been computed without mention of the high dimensional
space.

Remark 1.2.1. The reason why we look for another Hamiltonian system in low dimension is
that previous works in the field of reduction for Hamiltonian systems showed that the induced
reduction usually gives better results in term of stability and accuracy (see []). Here is a
completely informal discussion about why this could not be surprinsing. In fact, it seems
reasonable since we then compute trajectories in low dimension using the same kind of rules than
in high dimension. In particular, we know that the Hamiltonian is conserved along trajectories,
and this property is physically important since the Hamiltonian usually represents the energy.
If the Hamiltonian in low dimension is well chosen, its conservation along trajectories in low
dimension may be a guaranty that the energy actually does not vary in the high dimensional
space. By conserving the geometrical structure on the space of solutions, the tools available to
describe them are still at our disposal and then the numerical solvers specially created to be
stable while integrating the solutions in high dimension has good chances to work also in the
low dimensional space. However, we have to note that we may not catch the actual dimension
of the solution manifold, which can even be odd. We therefore look for a symplectic manifold
¥* of very low dimension on which the original problem has a Hamiltonian formulation.

10



For the reduction, we need a proper low dimensional symplectic manifold (3*,7). In the
methods we will present here, we always first start by building ¥*, before looking for a proper
H , and we always build it as a submanifold of (M,w). In particular, the symplectic form 7 will
be the restriction to ¥ of w. This implies that ©* is a symplectic submanifold and so that the
inclusion i : ¥¥ — M is symplectic.

From now on, we assume that ©* is symplectically parametrized by R?*. We call decoder
the map D : R?* — M which associates to the coordinates of a point 4 in ¥* the point i(x)
in M and encoder the map E which associates its coordinates to a point of £¥ as sbmanifold
embedded in M. In what follows, (M,w) will always be R?" endowed with the usual symplectic
form. In practice, we choose the submanifold ¥ by the mean of D, which is the object that we
actually build.

1.2.2 The reduced model

The assumptions we have made on ¥ implie that D is isosymplectic and so that D*ws,, = way,
which is equivalent to

wan (dz D(u),dzD(u)) = wop(u, v)
for all # € R?* and all u, v € R?*.

Using the expression of wa,, and way, in terms of the scalar products on R?” and R2?*, we
immediately find that a necessary and sufficient condition for d; D to preserve the Hamiltonian
structure is given by

tdeDInds D = Jop, Vi € R, (1.2)
Equation 1.1 can be rewritten as
VD(2)i = JVH(D(%)).

From the definition of the gradient in R??, we get V(H o D)(#) = 'VD(2)VH(D(z)) for all
# € R?* where VD(Z) represents the Jacobian matrix of D at # € R?*. Then, if we multiply
the previous equation by tJ9,'V D(%)J2y,, the condition on d; D gives

L3k V D(2)J2,V D(2)7 = T,V D(8)J 90 Ton V H(D(2)),
= T Jopd = Tox'VD(2)(—I2n) VH(D(2)),
— & = Jyu!'V(H o D)(2).
The original problem thus takes a Hamiltonian form in the low dimensional space :
& = Xuop(2).
When we have D, and the ¥*, we have not finished the reduction. If we want to compute the
solutions in the low dimensional space without coming back at each step to the high dimensional

one, we need to find an expression, or at least an approximation, of H o D. This last step is
called the hyperreduction.

1.2.3 Linear reduction

First, let us assume that the equation depends linearly on the parameters and on time. We
then look for a linear reduction, in other words, for a matrix A € My, 21(R) which preserves
the Hamiltonian structure. In this case, the symplecticity condition (1.2) becomes

LA, A = .

11



Symplecticity conditions for linear maps

A matrix A € My, 21 (R) is said to be symplectic if it satisfies the above condition. If we
decompose A into four submatrices Ay, Ag, Az, A4 in M,, ,(R) such that

(A Ay
A_<A3 A4>’

anas () (00 G 2) - () G )
_ tAgAl — tAlAg tAgAg — tA1A4
B (tAélAl —AyAs TA4Ay — tA2A4> '

we have

Then, A is symplectic if and only if A3 A; and A4 A5 are symmetric and P A, A1 —t Ay A3 = T,

Encoder and symplectic inverse

When a linear map links two spaces that do not have the same dimensions, it is hopeless to
try to inverse it. However, when it has full rank, it admits a left or right inverse which takes a
simple form in some cases. For example, it is the transposed for orthogonal matrices. It happens
that in the symplectic case, we also have a simple expression for the left or right inverse.

We define the symplectic inverse of a matrix A € Moy, o as

A+ = thktAJgn.

It is easy to check that if A is symplectic, then AT A = Iy, and ‘(A1) is symplectic: if A is
symplectic, then using the fact that Jo is orthogonal,

ATA =T, AT A = Ty Jop, = Loy
Similarly,

AT Jo, AT = (WToi AT 2,) T 20 (" T2 AJor) = "Top (P AT, A)Jop, = T JorJok, = Jog.

Since it is a left inverse of A and since it is symplectic if A is symplectic, then it is a
reasonnable choice for the encoder if A has been chosen to be the decoder.

Proper Symplectic Decomposition

To perform a linear reduction, the idea is to find a symplectic matrix A € Mgy, o1 (R) such that
Az is as close as possible to x, where % is the solution of the reduced problem induced by A
and zx is the solution of the initial problem.

To do this, we first compute the solution of the initial problem for some values of the
parameters and time and we evaluate the difference between these solutions and their images

after encoding and decoding, i.e.
IS — AATS|p. (1.3)

12



We would like to minimize this loss. However, as an examination of the symplecticity
conditions shows, the set of symplectic matrices is not bounded. Therefore, this optimization
problem does not admit an explicit solution. Several methods have been proposed to find an
optimal A under additional constraints. We present here the Proper Symplectic Decomposition,
also known as cotangent lift or complex SVD, which is an adaptation of the Proper Orthogonal
Decomposition in the symplectic case.

We restrict the space where we look for the minimum of (1.3). The idea is to look for an
operator A of the form
o 0
(6 o)

with ¢ € O(n). As shown in [17], this is in fact equivalent to choose the k columns of ¢ among
the {q1, ..., Gm, D1, ..., Pm} using classical POD.

1.3 Application to a piano vibrating string

In this work, we test the reduction on a set of equations modelling a piano string vibration,
proposed in [4].

1.3.1 The model

We consider the following problem:

U (2,1) = 0, [VV(&ZU(z,t))] V(z,t) € Q2 x Ry
U(z,0) = Up(z) Vz € Q,
0U(2,0) = Uy(z) Vz e Q,
U(z,t) =0 V(z,t) € 02 x Ry.

In what follows, U(z,t) = (v(z,t),u(z,t)) represents the longitudinal and transverse varia-
tions of the position of the point z in a piano string on the oscillation plane. The domain {2 is
the interval [0, 1].

Let ¢ = (u,v) and p = (dyu, 0,v). The previous equation is rewritten

Jq
E =D,
P _ ofvvie.)

It has a Hamiltonian formulation with the energy function
1
p.0t) = | 5o+ V(@i
Indeed, on the one hand

1 1
Hip+1f,0.0) = | S0P+ V@) + | pesidet | S0/Pdz = Hp,a.0) + ')+ ol

from which
VoH(p,q,t) = p.

13



On the other hand,
H(p,q+4,t) = JQ %Ipl2 +V(0:q)dz + L VV(0:q) - 0:q'dz + L 0(|024|)
~ Hip.a.t)+ | V(@) - 0ua/dz + o)
After an integration by parts, since by hypothesis ¢’ is zero on 02, we find
fQ VV(0.q) - 0.4 dz = — J;Z 0.VV(0,q) - ¢ dz,

from which
V H(p,q,t) = —0.VV(0.q).

The Hamiltonian is thus separated. The term in p represents the kinetic energy and the one
in ¢ the potential one. We study different expressions for V', all given in [4].

To solve this problem in high dimension, we use Stérmer-Verlet symplectic solver, given in
[11].

1.3.2 Application of the PSD

One of the potential energy proposed in [4] induces a linear model. As we have seen in a previous
work (see my M1 internship report), the PSD works well in this case. As we see on Figures 1.1
and 1.2, this is not the case for a choice of V' which leads to a non-linear model. This work
aims to find reduction methods that improves the results we get with the PSD. We therefore
not consider the linear model and focus on the non-linear one, that we present now.

We consider V(u,v) = 1_7"%2 + %’UQ + %(uzv + iu‘i), which yields the following system :
1
02y = az[u — a)u + a(dud + 5(azu)%],

2v =0, [azv + %(azu)z].

Numerically, we approach first and second derivatives with finite differences :

u(ziJrl) _ u(z’L)

Oz~ Az
e (=41 = 2u() + (=)
o _u(z) —2u(z') +u(z'”
(3Zu~ AZQ .

As we see on Figure 1.1, reduction using PSD gives inaccurate reduced models for ¥ = 5. The
"bumps" are too sharp on the solution computed with PSD and one can see some oscillations.
Looking at H' errors and energy, the model built with PSD produces an unstable solution.

Figure 1.1: ...

Figure 1.2: ...

14



When we take £ = 10, these problems are still visible. To obtain a satisfactoring solution
with the reduced model, one should increase the reduced space dimension and take k = 20.
This in fact means that the reduction failed because we did not succeed in capturing the low
dimensional structure of the problem. We can deduce that the problem we want to solve here
is too far from being linear to admit a linear reduction. If we still want to use PSD, we thus
have to look further to improve the reduction.

15



2 Hyperreduction with an optimal
control approach

In this chapter, we suppose that we have already performed a Proper Symplectic Decomposition
or any other linear reduction method that gives a decoding map D : R?** — R?" from the low
dimensional space, where we want to compute the solutions of the studied Hamiltonian system,
to the high dimensional space, where we originally compute them. We also suppose that the
same method gives us an encoding map E : R?® — R?* to compress solutions from the high
dimensional space to the low dimensional one.

In the original PSD approach, we then compute solutions in low dimension using the Hamil-
tonian obtained by composition of the Hamiltonian H of the original, and high-dimensional,
problem with the decoder. Of course, computing solutions this way is as costly as comput-
ing them in the classical high-dimensional way. This is why we usually add a hyperreduction
step to the reduction, which consists in finding a Hamiltonian function in low dimension which
interpolates H o D.

Here, we take another approach. Instead of interpolating H o D, we directly want to find
the Hamiltonian in the low dimensional space that gives the more accurate trajectories, that
is trajectories which, when decompressed in the high dimensional space, are the closest to the
those that are computed in high dimension. This is achieved using an optimal control approach.
In the field of learning Hamiltonian dynamics with neurol networks, this kind of methods have
been used in [6, 18, 14] for instance. Here, we use a method of type Sparse Identification of
Non-linear Dynamics (SINDy), proposed in [2]. It briefly consists in taking the target function
in the space spanned by a set of given non-linearities. Coefficients of the target in this space
are chosen such that the image of the source data, which here is the set of the decompressed
low dimensional trajectories, corresponds as much as possible to the target, which here is the
set of high-dimensional trajectories, while keeping a lot of coefficients exactly equal to zero. We
detail the application of this method to our problem in the following section.

2.1 Problem setting

Let F = {f; : R* — R}; € [1,K] with K € N a family of non-linear functions of class C?
and Vg the finite dimensional Hilbert subspace spanned by F. For § € R¥, denote by Hy the
element of Vp such that Hy = Zfi 1 0i fi. In the following, we are looking for the value of the
parameter 6 which minimizes the loss

c<e>=j f 1Dig (1) — g(t)|3udgdt.
geG Jte[0,1]

16



where #g , : [0,1] — R?* denotes the solution of the problem

a'(t) = Xpg, (z(t)  Vte0,1], 2.1)
z(0) = Exo, '
where X , is the Hamiltonian flow of ﬁg, thought of as the reduce version of H,. Recall
that G is the set of admissible parameter for the high dimensional Hamiltonian H, and z, :
[0,1] — R*" is the trajectory of z( along the flow of H,. We also denote by E and D the linear
encoder and decoder built at the previous reduction step using the PSD.

A classical method to find numerically a value close to an optimal value, is a gradient descent.
To implement it, however, one needs the gradient of the loss £ with respect to the variable 6.
The following computations aims to find it.

To simplify further computations, we introduce the loss function
N 2
£y(6)i= | [Daog(t) = y(0)Bdt.
te[0,1]

Remark 2.1.1. Note that if we have the gradient of £, for all g € G, then we simply obtain

the gradient of £ by integration over G. Indeed, for all § € R¥ we have £(0) = SQGG Ly(8)dg

so for all h € RX small enough, it comes

K
L0+ h) = - Ly(0) +VLy(O) - h+ ok x)dg = L(0) + LG Z 0iLg(0)hidg + o(||h] k)
p . i=1
= L(0) + )] hzf 0iLg(0)dg + o(|h|x) = L(0) + < VL,y(0)dg, h> + o([[A] x)-
i=1 geG geG K

We deduce that VL(0) = SgEG VLy(0)dg. In what follows, we will therefore restrict our study
to the case where G = {go} and skip mentions of g in our notations.

2.2 In-out application

Denote by F : RX — H'([0,1])?* the application which sends a value of the parameter 6 to the
trajectory Iy generated by Hy in low dimension. In the following, it will be called the in-out
application. Let also f : H([0,1])** — R be such that f(#) = |Dz — [ 120,172+~ We have
L = foF so, provided that both f and F are differentiable, the chain rule gives

dg[: = d]:(g)f o dg]r

If the variationnal method gives immediately the differential of f, it does not work with F,
which is implicitely defined. The strategy that we develop here is a classical method of optimal
control. Briefly, it consists in finding what we call an adjoint state, build to satisfy a well-chosen
ordinary differential equation. Inserted into the expression of dyL, it allows to neutralize the
problematic terms.

2.2.1 Regularity of F
In the first step, we find a differential equation followed by dyF. Before that, we have to prove

that F is at least differentiable. We use here the implicit function theorem to achieve this. By
translating F by the constant function xg, we can reduce the problem where zg = 0.

17



Consider the application

. {RK x V — L?([0,1])%*
0,7) — 2’ — Xy, (@)

where V := {f € H'([0,1])2* | f(0) = 0}. It is a closed subspace of H' so it is a Hilbert
space too for the H' scalar product.

It is of class C'. To prove it, we first need the following result concerning 6 — X -

Lemma 2.2.1. The application 6 — Xﬁe is linear and continuous. More precisely, we have
XHh = tXh with

X :=[Xp],_,  x€C(R* R~

i=1,..
Proof. Let us first see that § — X A, is linear. Clearly, this is the case of § — Hy. Thanks to

the properties of the symplectic form w, this is also the case of H->X ;: the bilinearity makes
that

WX g npyr ) = da(Hy + AHz) = doHy + Mo Hy = w(Xpy ) + dw(X g, ) = w(X g +AXp )

and the non-degeneracy then insures that X N = X T AX -

Then, since X f, = Zfi 1 0; X, if we introduce X as in the statement of the lemma, we have
X, = tX6.

Finally,
P doe= [ 1@ bl < ol [ Xt
zeR2k zeR2k
As X(z) lies in Mo, i (R), which is a finite dimensional space, the operator norm ||| - || and the
Froebenius norm are equivalent so
2% K
g, o < cst [l | IX(@)rdt = est [l Y. D 1Ko
zeR2k i=1j=1
All the coefficients of X are continuous functions so the double sum takes a finite value. O

Let us go back to G. Let 6 be a point in R¥ and z a function in V < H'([0,1])?*. Let h
and y be two small elements of the same spaces. For all ¢ € [0, 1], we have

GO+ hyw +y)(t) = GO,2)(8) = (4/(1) — daiy X g, (W(1)) = X, (2(1)))
— (a®)0) + doy X, WO + 2)D))

where €1(y) and ez(h) are respectively in o(||y| 1) and o(||h] k).

From the regularity assumption on the elements of Vr and from Lemma 2.2.1, we know
that the terms in the first parentheses are linear and continuous in (h,y). In the second one,
€1 and €2 are the remaining terms in the first oder Taylor’s expansion of X a, and X f, SO they
are in o(|[y|g1) and a fortiori in o(||(h,y)[rx xg1). The last term, d,y) X} (y), is bilinear and
continuous in h and y so is also in o(|(h,y)|gx < z1). This proves that G is differentiable ad
that it’s differential is given by

dooG(h,y) : t = y'(t) — doy Xy, (y(1)) — X, (2(2))-
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We now have to see that dG : RX x V' — L. (V, L*([0,1])?*) is continuous. The first term
does not depend on z nor # so it is continuous in this variables. The last one is continuous too
for the regularity we assumed on the functions in V.

Let ¢ and h be two small elements of H'([0,1]) and R. We have
lors X, | —daX gl < lldssgX g, — deX g | + lldess X
where || - || denotes the operator norm for linear continuous functions between H'([0,1])%* and
L*([0, 1])?*.

The second term in the last expression tends to zero as (h,y) — 0 since

K
llde+5X g I < 35 R lldasg X,
i=1

with [|dp+5X 4[| = ||deXy,[| from Lemma 2.2.1.

For the first term, we have that ¢ — d,;) X a, is continuous on the compact [0, 1] as com-
position of such functions so is uniformly continuous. Then,

ldet)+50)X 71, (2) — duiy X7, (2) 126 _
|12ll2% b

Ve>0, 30 | |y(t)|ex < de = sup

zeR2k
In particular,
|ty ra00) X g7, (1) — daiy X g, (W () 2 < €lly(t) ]2
for all y € V. Passing to the L? norm, we get
ldergX g, (y) — do X gy, (W) 12 < €yl 2 < €]yl m

for all y € V, which gives

sup

a9 X5, (V) = daX g, W2\ _
yeH([0,1])2k b

H?JHHl

provided that |§]e < de. As H'([0,1])?* is continuously injected in C°([0,1])%*, this condition
is satisfied when |[y| 71 is small enough. Since € can be chosen arbitrarily small, this proves that
dG is continuous and so that G is of class C!.

Now, the differential of G in the direction x at Zg, which is given by
y—y —dXpg (y)
is bijective. In fact, for all g € L?([0, 1])%*, the system
Y =d.Xpg (y) + 9,
{y(O) =0

has an unique solution by Cauchy-Lipschiz’s theorem. Then, applying the implicit function
theorem, it exists an open neighbourhood Q = Q; x Q5 of any (#,2) in RX x V and a C!
function ¢ : R® — V such that

((ha y) €A G(ha y) = O) A (9 € A Yy = (Z)(h))
But if G(h,y) = 0, it means that F(h) = y so F = ¢ on €. It means that F is C! around 6

and since # has been arbitrarily chosen, it also means that F is C' on RX.
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2.2.2 Caracterization of dpF

Now that we have seen that dygF is well defined and continuous, we characterize it with a
differential problem in [0, 1].

Proposition 2.2.1. The differential of F at 6 in the direction h is solution of the following

Cauchy’s system
2(t)
z(0)

Proof. Consider the equation

zf(f?)(t)Xﬁe(Z(t)) + X (FO)(1) Ytelo,1], 2.9

]:((9 + h) — ]:(9) = dg]:(h) + 61(h)
for some infinitesimal h in R¥ and derive it with respect to time. This leads to

(F(6 + h)(®) — Xp, (FO)E) = S dF () () + o1 (h)(1

Ho1n) T dt dt

= Xy (F(O+h)()+Xg (FO+h)(1) —Xg, (F(O))) = %d@f(h)(t) + %q(h)(t) (2.3)

for all ¢ in [0, 1].
Now, developing X Ay X a, and F at first order, the left hand side becomes

Xy, (FOID)) + droyn X, (6 F(M)D) + drioyn X, (1(R)(1)) + ea(doF(R)(1) + 1 () (1))
+ X, (FOO) + droyn Xz, (dFB)0) +ah)0)) + es(dFB)E) +ea()(1))
- X4, (FO)®)

for all t € [0,1].

Rearranging the terms, we get
[d]-"(a)(t)ng (def(h)(t)> +Xg, (H@(ﬂ)] + [df(a)(t)Xg9 (61(h)(t)>
+e (dg]-"(h)(t) + el(h)(t)) + droynXg, (dg}“(h)(t) + el(h)(t)> +e <d9]—“(h)(t) + el(h)(t))] .

The function
m:heRE o (t — droyn X, (dg]-'(h)(t)) +Xp (]-"(9)(75))) e L2([0, 1)
is linear and continuous as sum and compositions of such functions :
1 1
[m(h)[72 < L g ()X g1, (doF (R) (1)) 3plt + L |*X(F(6)(1)h]3rat

1 1
SL gty X g, II* NldoF (I N7t +L IX(F@) )17l %dt

= cst HhH%{
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Lemma 2.2.2. The other terms, that is
t oy X, (1 (D)D) + eara(daF(R)(E) + 1 (WD) + droy X, (d0F(R)(E) + ex(R)(1) ),

with €343 = €3 + €3, are in o(||h||x) for the L? norm.
Proof. By continuity of dz )X , for all t € [0,1]

| flex(h)(2)|3xdt.

de(e)(')Xgo (Gl(h)(')>

As Hy is supposed to be of class C?, x — dy X 7, is continuous. Since t — F(6)(t) is continuous,
we finally have that ¢ — ||dz(g) )Xy, || is continuous on [0,1] and therefore bounded. This
gives

2 1 1
= JO ldx@e) X g, <€1(h)(t)) |3rdt < L lldz@)wXg,

2 1
. < este | OBt = cste e () .
0

de(e)(-)ng <€(h)(‘))

As €1 is in o(|h||x) for the L? norm, so is t — dre)nXg, (el(h)(t)>.

In the second non-linear term, the fact that esy3(x) is in o(||z|2x) when z tends to zero can
be written as

Ve >0, 36, > 0| Yz e R ||z < 8 = |le2s3(@)]or < €]z]|2s- (2.4)

When h tends to zero in RE | dgF - h + €1 (h) tends to zero in H'([0,1]), which is continuously
injected in C°([0, 1]). Then,

V6 >0, Ins >0 | Yhe R, |h| <ns = (Vte[0,1], [|deF () - h+ er(h) ()] < 3). (2.5)

Now take € > 0, consider the d. given in (2.4) and the 7, := n; given in (2.5) for § = J.. If
|hlx < 7e, then by (2.5),
|doF(t) - h + €1(h)(t)|2r < de

so by (2.4),
le24s(doF () - b+ ex(h)(t)) |k < €l doF(t) - b+ € (h)(t) ]2k

for all ¢ € [0,1]. If we take the L? norm of the previous inequality, we get
1 1
| teara(@nF (@) bt @) Bt < & | 1o @) - b+ amO)lfic
0 0

Since dpF - h + €1(h) is in O(|h| k), we have
lea+s(doF(t) -+ er(h)(t)) |2 < cste €| h| k.
As € is arbitrarily chosen, we have proven that the second non-linear term is also in o(|h|x).

For the remaining non-linear term, we have
1
ldz o)) X g, (doF(R)() + ex (A)()) 32 = fo a7 )0 X, (doF(R)(E) + ex() (1)) Byt

1
< L lldr o)) X g, 117 | doF (R)(£) + e1(h) (t)]35dt

1 K
< jo este || hi drayn XpI? [t
i=1

1
< 4 2
<l | este ma lidzy Xl Pt

so this last term is also in o(|h| k). O
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To finish the proof of the proposition, see that the first term in (2.3) is linear and continuous
with respect to h while the second term is in o(||h[) in L?. Identifying the linear parts in both
sides of (2.3), we finally find that dypF () h is solution of the affine ordinary differential equation

() = dreymX g, (2(t) + Xp, (F(O)() vt e[0,1].
Moreover, as F(6)(0) = Exq for all 6, dpF(0) - h also satisfies

Z(O) = OR2k.

2.3 Gradient of L

We now express the differential of £ in terms of dgF. Fix g € G. Let # be any point of R and
h be an infinitesimal displacement in this same space. Consider F first order Taylor’s expansion

FO+h)=F()+deF(h)+er(h),
where ¢; : RE — H1([0,1])%" satisfies |e1(h)| g1 = o(||h| k).
The developpement of £ gives

L(O+h)=|DF@O+h)—z|2
= |DF(6) — x| 2 + 2{DdgF(h), DF(0) — )2
+ 2(Dey(h), DF(6) — )12 + |DdgF(h) + Der(h)]3e.

Since D is orthogonal, we have for each pair x,y in L?([0,1])?* that

1 1 1
(Dz,Dy)r2> =f0 Da:~Dy=JO a:-tDDy=L x-y={x,yye.

Thus,

L(0+ h) = L(0) + 2dgF(h), F(0) — ' Dxdre + 2er (h), F(0) — Dxdpe + |dgF(h) + 1 (h)] 2.

The second term of the previous sum is linear and continuous as composition of such appli-
cations. By Cauchy’s inequality in L2([0,1])?*, the third term is bounded by

lex(R) 2| (0) — "D 2

and since |€1(h)] g1, and a fortiori ||e1(h)| 72, are supposed to be in o || x), so is the third term.
Applying the triangular inequality to the last term and invoking the assymptotic behaviours of
the linear continuous dgF and the 1-order neglectible €;, we prove that the last term is also in
o(||h| k). Therefore,

doL = 2{dpF(h),F(0) — tD:U>L2 (2.6)

Remark 2.3.1. Unless what usally occurs in optimal control problem, where the parameter 6
depends on time, it is here a fixed point of RX. This allows to rewrite quite immediately the
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differential of dyL in the finite dimensional space :

1 K
(doF,F — Dx)p> = L D1 (doFi(t) - h) x (F'(0)(t) — D'a(t)) dt
=1

1 2k

K
=, > (Z 0;F (0)(t) x hj) x (F(0)(t) — D'x(t)) dt
i=1 \j=1

= > hy % ( f D10 F0)(t) x (FI(0)(t) — D'a(t)) dt)
j=1 i=1

0

1
=h- J (FH(0)(t) — D'z(t)) - VF(0)(t)dt.

0

Then, we also have VL(0) = Sé (FH(0)(t) — D'x(t)) - VF(0)(t)dt. Now that we have car-
acterized VF(0), we can compute VL(#). However, the computation of VF(6) involves K
differential systems in R?*, with K possibly very large.

In fact, it is possible to write VL£() in another way which only involves one differential
system in R?*. To show that, we use a classical method in optimal control, which makes use of
a well-chosen adjoint function a : [0, 1] — R2.

More precisely, we set a as the unique solution of the adjoint Cauchy’s problem

{d(t) = drioyn X, (a(t) + (F(O)(t) — 'Da(t) ), vt € [0,1], .
a(T) = 0.
Theorem 2.3.1. For all  in Rk,
1
VL) = 2f0 X(]—"(G)(t))a(t)dt, (2.8)

with a and X as previously defined.

Proof. We have
alt) ~ drio)n X g, (a()) = (FO)(1) ~ 'Da(t))
for all ¢ in [0,1]. Inserting this equality in (2.6), we get

1
dgL(h) = QL (a(t) — dr@ynyXg, - alt), doF (h)(t))gardt.
After an integration by part of the first term, we obtain

1 .
d@/.,‘(h) = QL —<a(t), d@]:(h) (t)>R2k - <d]:(9)(t)Xﬁ9 . a(t), d@]:(h) (t)>R2kdt
+a(T)dpF (h)(T) — a(0)dgF (h)(0).

Thanks to the initial and final condition on a and dyF(h), the last two terms vanish. Using
the equation satisfied by dgF(h), we have

1
doC(h) = 2J0 —a(t), droy Xy, - doF () (E)mer — Calt), X g (F(O)(E))mes
— o)1 Xp, - alt), dgF (h)(t))rzedt.
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Now, it suffices to notice that dz)u) Xy, is skew-symmetric (it is JHessy (F(0)(¢))) to
finally get

doL(h) = —2 L 1@(t),Xm (F(0)(t))dardt
_ L 1<a(t),tx(f(9)(t))h>2kdt
— 9 L 1<X(.F(9)(t))a(t), hY ket
— (-2 L 1 X(]—"(G)(t))a(t)dt, Wk

We conclude that

Vol = —2 f X(]—"(G)(t))a(t)dt.

0
Ul

To compute this gradient, we have to compute the solution of an ODE in dimension 2k,
where k is supposed to be small, evaluate 2k x K functions on the points of the trajectory Zy and
compute a matricial multiplication along the small dimension of X. This is far less expensive
than solving 2k x K ODE.

Remark 2.3.2. The equation satisfied by the adjoint can be recovered from a formal resolution
of the optimization problem
%f J(x)
under the constraint that zp € H'([0,1])?* is solution of the Hamiltonian problem associated
to Hy. with J(zg) = L(0).
The Lagrangian operator of this problem is given by

1

L(0,)\) = J(xg) + Jo A (zh — Xy, (zg))dt.

The point (8, \) € RE x H([0,1])%* is a critical point if
doL(6,)) =0,
ONL(0,\) = zpy — Xp,(xg) = 0.

As all the functions are at stake are at least L?, we can switch the integral and the derivative
in the first equation, which gives for all h € R small enough

0ud () (dg F () + fo By (jtdef(h) —dyy X, (def<h>)) dt = 0.

After an integration by parts, the first term in the integral becomes

- f N daF ()t + A1) - dpF(R)(1) — A(0) - dpF()(0),
0

where the last term vanishes thanks to the initial condition on dy.F.
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We get

fl [(xg D)~ N — - deXHG] - dgF(h)dt + A(1) - dgF(h)(1) = 0.
0

Note that the jacobian of X A, 18 skew-symmetric. The previous equality is then verified if

N(t) = duy X g, (A1) + (zo(t) = "Da(t)),  Vte[0,1]
A(1) =0,

which is exactly the adjoint problem.

2.4 Penalisation

In practice, the number K can be chosen very large. When this is the case, it slow down the
evaluation of X a, and then reduce the efficiency of the reduction. To remedy this problem, we
can add a penalization term at the loss function and minimize

(o) = f j 1D g(t) — 2g(t)|2ondgdt + 6],
geG Jte[0,1]

where « is a positive real number. The additional term forces a lot of coefficients of « to be
exactly set to zero.

As it is given, this penalisation term is not differentiable. This is why we replace it in
practice by 0 — /62 + € for an epsilon chosen very small, 1076 for example. Then, we just have
to add —2— at the gradient we have found at the previous section.

VO2+e

2.5 Algorithms

Now, that we have a satifying expression for VL(#), we can perform a numerical optimization
using Algorithm 2.5.

Recall that we suppose that we have computed a set of solution {xg, }i—1,...m for some values
{g:}i © G of the parameter g. It can be a parameter of the primal equation or the initial
condition. When g parameters the primal equation, a way to take this dependance into account
in the reduction is to take functions f; which involves this parameter. By doing this, the
optimization will give a family {Hg+ ,}4, where 6* is the optimal value of the parameter ¢ over
all the trajectories x4,. When g only appears in the inital condition, we are only looking for one
Hamiltonian function Hg+ so we have to take the f; independant of g.

Of course, this basic algorithm can be sophisticated by adding momentum or by using Adam
descent instead of the basic gradient descent. We will present comparisons for some cases in
the following section.

During tests, it happens that taking into account only a small portion of the studied interval
[0,1] at each step can highly improve the descent efficiency. Below are exposed two precise
algorithms which make use of this idea.

In algorithm 2.5, we in fact use a different gradient at each step, which is actually the
gradient of £, when the integration interval is [DA¢, cAt] instead of [0, 1]. This way, we introduce
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Algorithm 1 Simple gradient descent

Require: e RX a, 7 >0, p>0,G = {g1,.., gm}, TG := {Tgy, -+, Tg,, }, and X
0 — by .
while % >n do
V — ab
N
for all ge G do
compute the solution zy of (2.1) for g and current 6
compute ag of (2.7) for current 6, g, xg and z,.
compute VLy(0) from (2.8) with ay and xy
V — V4 VL)
end for
0 — 60— pV
end while

Algorithm 2 Progressive gradient descent 1

Require: e RE, a, >0, p>0, G = {g1,....,gn}, TG 1= {Tgy, oy Tgy }, w € [1,m], At, X
O 0 vey
. VL(O
while m > n do
V — ab

Vo7 +e
for i =0,...,|2| do

w

b «— tw
c—b+w
for all g € G do
compute the solution zp, of (2.1) starting at xg = x4(bAt) on the interval
[bAtL, cAt].
compute ag 4 of (2.7) from xy , ending at a(cAt) = 0 on the interval [bAZ, cAt].
compute VLy(0) from (2.8) with ap and xy on the interval [bAZ, cAt].
V — V4 VL)
end for
0 pV
end for
end while
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"stochastic-like" effect in the descent. A variation of this method can be to shift the considered
window of one time step At instead of w time steps. Another one would consist in taking
randomly the starting points b at each step. One can also imagine taking at each step several
intervals instead of one. We will discuss all these variations in the following section.

Algorithm 3 Progressive gradient descent 2

Require: 0y e RE o, n>0,p>0,G = {g1,...,gn}, TG := {4y, s Tgy }, w € [1,m], At and
X

0 — b6

He IVLO)|
while m > n do

ab
Vi T

for all g e G do
compute the solution zg 4 of (2.1) starting at g = 24(0) on the interval [0, 1].

end for

fori=0,..,|| do
b —iw
c—b+w

for all g € G do
compute ag 4 of (2.7) from xy , ending at a(cAt) = 0 on the interval [bAZ, cAt].
compute VLy(0) from (2.8) with ap and xy on the interval [bA¢, cAt].
V — V4 VL)
end for
0 — 60— pV
end for
end while

Algorithm 2.5 presents another way to optimize on subintervals which is less interpretable
but which gives in some cases better results than the previous one. There is a single change
in this new version : to compute the adjoint state, we use the solution of the primal problem
computed with an inital condition at ¢ = 0 whatever is b. Looking back to the proof of (2.8), we
see that doing this way, the inital term after the integration by parts does not vanish. Therefore,
the quantity we obtain is not longer the gradient of £, on any interval. We do not even know if
it is a gradient at all. We mentionned this method because in some cases, it gives better results
than the two previous ones. We will present and discuss these results in the following section.

2.6 Tests

2.6.1 First tests on known target Hamiltonians

2.6.2 Tests on the reduction problem
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3 Quadratic corrections for PSD

In this chapter, we present a different approach to learn the Hamiltonian in low dimension.
We worked on it at the beginning of the internship but it does not give satisfying results. We
present our work all the same because it is a lead that we could follow in future works.

As for the previous hyperreduction approach, we supposed that the PSD, or any other
linear reduction method, has already given us a decoder D : R* — R?" and an encoder
E : R?™ — R?¥ between the high and the low dimensional spaces. As we have seen for the
non-linear piano string model, the induced reduction give bad results when the equations are
too non-linear. This suggest that the submanifold ¥*, on which lie the solutions of the PDE
we are looking at, has too strong non-linearities to be embedded in a low dimensional vector
subspace of R?". Therefore, it seems that we have to look for non-linear decoders D if we want
to obtain better results.

Here, we do not care about hyperreduction, which is viewed as the following step in the
reduction process. We actually look if it is possible to improve the passage from the low
dimensional space to the high dimensional one by adding a non-linear part to the decoder.
More precisely, we want to adapt the method proposed in [10] in the symplectic case and add
to the decoder a quadratic term which reduces the compression-decompression error. By doing
so, we have to make sure that the new decoder remains symplectic. In the following, we present
different variations of this idea and the results we obtained.

3.1 Shears

Before presenting the methods we have explored, we introduce the notion of shear that will
turn out to be useful to build families of symplectic quadratic maps. We say that a map from
R™ to R" is quadratic if all of its r coordinate functions are polynomial of degree inferior or
equal to 2.

Definition 3.1.1 (Shear, [16]). A shear transformation is a map

' R2m_)R2m
v { (¢,p) — (Q, P)

such that Q; = q; and Py = p;+ 04,V (q) with V : R™ — R a cubic potential, that is a polynomial
function of degree 3.

Proposition 3.1.1. In the symplectic space R*™ endowed with the usual symplectic form, a
shear is a symplectic quadratic map.

Proof. To prove this assertion, it is sufficient to see that oy is the transformation induced by
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the generating function
S:(q,P)— Pq—V(q).

In fact, the transformation (q,p) — (@, P) induced by S verifies

Qi= 550, P)=a

for all < between 1 and m.

Moreover, as V is supposed to be cubic, oy is quadratic. ]

Note that the shears form an Abelian group for the composition and that the correspondance
V +— oy is a homomorphism between the additive group of the cubic functions and the shears.

Let us now see what is the physical meaning of a shear. Consider the Hamiltonian function
H : (g¢,p) — 3lp| + V(q). It represents an energy function which is obtained by the sum of a
kinetic energy and a potential one. The corresponding system is given by
{ p=-%=-V),

g==p

Denote by (¢!, p') the state of the system at a time t. When € comes close to zero, we have
phe=p' —eV'(g),
¢t = ¢t + ept

t-i-s7 t-‘re)

We can see the transformation (¢, p*) — (¢'*¢, p'™), induced by the flow of the equation, as the
composition of the transformation (¢¢, p') — (¢* + ep?, pt), induced by the Hamiltonian function
without potential energy, and the shear o¢y. Therefore, we can link a shear with the effect of a
potential on a system. With that point of view, it seems to be reasonable to try correct a bad
reduction which is particularly wrong on the speed, as it is our case, with a shear.

The following result, proved in [16], gives a normal form, involving shears, for any quadratic
symplectic map.

Theorem 3.1.1 (Normal form for symplectic quadratic maps, [16]). Any quadratic symplectic
map ¢ on R®>™ can be decomposed as the composition of a symplectic linear map l, a shear o
and a symplectic affine function a of R*™, that is

p=aoocol. (3.1)
Moreover, a and | are linked by the formula

a = dg(0) - 171 + ¢(0).

This results implies that any quadratic symplectomorphism is invertible and has another
quadratic symplectomorphism for inverse map.

Unfortunately, the proof of this result can not be adapted to the case of symplectic quadratic
maps between R?™ and R? with [ < m.

3.2 Quadratic correction with shears in low dimension

In this section, we look for a decoder D, of the form D o ¢), where ¢) : R2% — R% is a
quadratic symplectic map.

29



3.2.1 Expression of the optimization problem
Expression of the corrected decoder

We first take for the family (gb)\) , the group of the shears. The parameter A is then the
coefficients of V', which we write

Viy) = Z Aii + Z NijYiyi + Z Nij 1YY Yi-

1<i<k 1<igy<k 1<igj<i<k

In the following, R will represent the number of coefficients. We count k terms of order 1 and

@ terms of order 2 in the previous expression for V. In the same way, there are

k k k k—i+1 k . .
, (k—i+1)(k—i+2)
IHEDACSEDESUMIEEIE
i=1j=il=j i=1j=1 =1 m=1 =1
zk:((k+1)(k+2)_ 2k+3+f)
_zzl 2 2 2
_ B+ Dk +2) 2k +3k(k+1) | k(k+1)(2k+1)
N 2 2 2 12
B k(k+ 1)(k + 2)
B 6
terms of order 3 and Kk 4+ 1)k 4 5
o (k+1)(k+ )+k‘

6

According with the normal form of symplectic quadratic maps, if we would like to cover the
whole space of quadratic symplectomorphism of R?* in (¢y)y, we would have to compose the
shears with affines and linear symplectomorphism as in 3.1. This complicates a lot the problem
so we limit ourselves to taking a = [ = id.

Objective function
We are looking for the A € R such that
|X = DA X [T o,

is minimal, where | - |p 2, v denotes the Froebenius norm in Mg, v(R), X the matrix of the
N sample in R?" and X the matrix of their PSD reduction in R?*. It happens that

%,QH,N = H(Q7 P) - D(Qa P + vv(@))”%,?n,N
=1Q — 4psaQlFn + 1P — P = VV(Q) 70N

| X — Dér X

where Apq is the submatrix of D such that D = (Affd A;(y)sd). The previous problem is then

equivalent to solving
argmin |P — P — VV(Q))
VeP;(RK)

%“,n,Na (3'2)

where P3(R¥) denotes the ring of polynomial functions of degree at most 3 on RF.
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3.2.2 Least-square formulation

Clearly, A — ¢, is a linear map. We can therefore rewrite the problem in a way such that it
becomes a least-square one. Set

Azt()\l )\k )\11 )\12 )\kk /\111 )\kkk)ERR.

In what follows, we use the lexico-graphic order when we work with the elements {1, j, 1} of
[1, k]3, starting by the smallest indice of the set and finishing by the largest. To simplify further
notations, we introduce the function P : [1, k] — [1, R] which associates to the set {i,j,1} its
position in the ordered list of all the 3-uplets (i1, i2,13) verifying i1 < i3 < i3. Fori < j <[, we
have that

i—1 1

k k
P(i,i,i) = ZZ

= _1 k(k:+3)+i(k:+3+(2i_1))>+i,

i

k—r+1)( k:—r+2)

r=1

. 3

2 2 6

Jj— . . . .
— V(2% — i —

s=1i t=s

P(Zajal) = P(Zvjvj) +1—7.

Forl<Il<klet S=1+k+ UHI). Let also F € Mg 1(R) be the matrix of the map
y € RF — 0,V (y), verifying 0,V (y) = FlY with Y = (1 Y1 e Yk YIYL ... ykyk) For all
1 <1 < k, we have that

k k
alV(y) = /\l + Z )\ilxi + 2>\ll$l + Z )\ijlmimj + Z 2)\ill$i$l + 3)\”15612
i=1lij 1<i<j<ki,j#l i=1li#l

so Fj = G'A with G! in Mg r(R) such that

Ghy = Girpinek = Grig) skt Py kk = b
Glorpainyik = Grain kit PaLD K1k = 2

l _
GP(l,l,l)JrkH,P(l,l,l)+K+k =3

for all i, in [1,k] different from [ with K = 2.

If we set

Gl

=
Il

G=1 .. and

Gk

we then have that VV (y) = YGA. Now, if we want to apply this to the matrix Q of the
snapshots and if we take

(e o
o= - |
0 tQ
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we have to multiply the result by the permutation matrix P with sends the (ik + j)-th line of
GGA on the (jN + i)-th one, where N is the number of solutions recorded in X.
This finally gives the least-sqare formulation of the problem 3.2 :

argmin | X — PQGAHFn N
VePs(RF)

whose solution is given by

D
~
©>H
8
)
il
)

N—

L
~
@M\
8
S

3.2.3 Corrected reduced model

The new decoder is written Dey = D o oy. We have

D(Qap) = (Dgorr(%p)? ch)orr(qap)) = (ApsdQ7 Apsdp + vv(q)

and therefore

VD p) =0, VDb (4,p) = Apsa-

CO’I"T‘(

{V Dcorr( ) Apsd7 {v Dcorr( ) = VZV(q)7

Then, the components of the new reduced Hamiltonian are given by

VoH(q,p) = 'VDl,0 (¢,0) - VoH (Deorr(4,0)) + 'V Dyr (4, D) - Vi H (Deorr (4, 1))
= "Apsd - VH (Deorr(q: 1)) + V2V (q) - VyH (Deorr (4, 1))

V,H(q,p) = tV 2D (4, 0) - VoH (Deorr(4,0)) + 'Vp D2y (4,0) - VpH (Deorr (4, )
= "Apsa - VpH (Deorr(q,p)).

3.2.4 Results

We have implemented this correction and we obtained the results presented Figures 77 and ?7?.
We see that the correction do not improve the solution in low dimension.

This can be explained by the fact that we do not change the image of the decoder in R?".
More precisely, the PSD gives a linear subspace of R?® but the manifold on which lies the
soltuions may not be linear at all. The best that we can obtain with the PSD is therefore a
linear subspace in which this target manifold is included. In the cases where this manifold is
highly non-linear, this subspace can be of high dimension and this is why the linear reduction
fails.

Now, when we correct the decoder produced by the PSD, we change the reduced Hamiltonian
but we do not change the space in which it takes its values. If the dimension of the linear
subspace obtained with the PSD is too high or if it does not include the true manifold, then
the quadratic correction has few chance to really improve the resolution in low dimension.

3.3 Additive quadratic correction
Following an idea found in [10], we now look for a decoder of the form Do = D + .
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3.3.1 Tentative 1
Symplecticity condition

We look for ¢y of the form y — AY where Y = (y191, y2y2, ... Yoryor) and A is in Mo, 2k(R).
In this case, the jacobian of the new decoder at point y € R% is given by D + 2A4Y, with

Y = (18‘1 }9}7), where Y, and Y, are the n x k diagonal matrices with diagonal coefficients
Y15 oo, Yk and Yy, -, Yok

Decompose A into four submatrices a, b, ¢ and d of Moy 2k (R) -

= A B
i-(e )
This gives

_ (Apa +24Y,  2BY,
J Deorr () = ( 2CY,  Apea +2DY,

According to previous computations, Dgy.- is symplectic if and only if

2V C(Apsa + 2AYy) = 2'(Apsa + 2AY,)CYy,
2!(Apsa + 2DY,)BY,, = 2Y B(Apea + 2DY,),
(Apsa + 2DY,)(Apsa + 2AY,) — AV BCY, = I

for all Y, and Y; diagonal matrices in M, 1(R).

Rearranging the terms and taking into account that tApsdApsd = [I; by construction, we
obtain
21@(’540 — tCA)Yq + tApstYq - thC’Ade =0,
2Y,(!DB —'BD)Y, + tApsdBY}D — thBAde =0, (3.3)
2Yp(tBC — tDA)Y;] — tApsdAYq — thDAde = 0.
for all Y, and Y.

When we set (Yy,Y),) = (I;,0) and (Y5, Y},) = (0, I}) in the third equation, we respectively get
tApsqA = 0 and tApsdD = 0. Inserting these results in the third equation with (Y,,Y,) = (Ix, Ix),
we have {BC —t*DA = 0. Conversely, if we have ApsdA ApsdD =0and 'BC —'DA = 0, the

third equation is true for all Yy, Y.

On the other hand, when we take Y, = I and —Ij in the first equation, we obtain 2(*AC —
LCA) +'4)qC — 'CApsq = 0 and —2(*AC — 'CA) + 'ApsaC — 'CApsq = 0. Adding the two
equation gives *A,,;C — *CA,sq = 0, substrating them *AC —*CA = 0. Now, if we introduce
the last expression in the third equation of 3.3, we get tAdeCYq — thC'Ade = 0 for all Yj,. Let
us see that the symmetry of “A,;4C that we have just shown implies then that A,,,C = 0. In
fact, if for all indices 4, j in [1,n],

n

Z psd lzCl] = [tApst] CApsd Z psd lelza

=1 =1
then
Z(Apsd)liclj(yq)jj = [tApstYq] [Y CApsd Z psd lel'L Z psd l'LCl] )
=1 =1 =1
SO

((Ya)js — (Y)ia) ["ApsaCl,; = (Ya)is — (Yo)ir) ) (Apsa)iiCij = 0

1

n
1=
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for all indices 4,7 and for all values of (Yg);; and (Yy);. This implies that *A,,qC = 0. Con-
versely, if we have ?A,,;C = 0 and "AC —'C'A = 0, then the first equation of 3.3 in true for all
value of Yj. Exactly in the same way, we find that the second equation of 3.3 is equivalent to
tApsqB =0 and '"DB —'BD = 0.

Optimization problem

Consider the loss function

o[ MuRi—R
. (A,B,C, D) — HX _AXH%',Qn,N’
where X (}enotes the compression-decompression error made by the PSD on the samples, that
is X — DX.

According to the preceeding section, Dy is symplectic if and only if A is a zero of the
functions

A, B,C,D) — HtApsdA”%“,k,kv
A,B,C, D)~ |'ApuB

g1 ( )
g2 ( ) |%kk7
93 : (A, B,C, D) — [ ApaC|F 1 s
g1: (A, B,C,D) — HtApsdD“%,k,kv
( )
( )
( )

A> B7 C? D) — HtAC - tCAH%’,k,k?
A,B,C,D) — |'DB = "BD| 3.1
A,B,C,D) — |'BC —"'DA|3, 1-

g5 -
g6 -
g7 -

Whatever the dimension of the matrices we are looking at, the Froebenius norm is Euclidian
for the scalar product (-,-) : (A4, B) — Tr(*AB). On M, (R)*, we use the scalar product
induced by the Cartesian product

{((A,B,C,D);(E,F,G,H)y=(A,E)+ (B,F)+ (C,G)+ (D,H)

and the associated norm || - ||.

Note
K; = {(A,B,C,D) e M, x,(R)* | g;(A, B,C, D) = 0}

and K = (7_, K;. We want to solve

min  L(A,B,C, D).
(A,B,C,D)eK

Consider Taylor’s expansion of £ at (A4, B, C, D) in the direction of (h1, ha, hs, hq):
L(A+ h1,B+ ho,C + hg, D + hy)
= 1Q = (A+h)Q = (B+ ho) Pl + [P = (C+ hs)Q = (D + ha) Pl
—|Q - AQ - BP|% -2 <Q — AQ — BP0 + h215> + O + haP|%

+|P - Cé — D1§||% -2 (15 - Cé - DP, h3é + h415) + Hh3é + h415|\2F-
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Thanks to the properties of the trace, we have
(@-4Q - BA.mQ) = Tr (1@ - AQ - BP)nQ) = Tr (Q'(Q — AQ — BP))
— ((@-4Q-BP'Q.1).
Equivalent expressions holds for the other terms involving one of the h;, which gives
L(A+ hi,B + he,C + h3, D + hy)
— £(A,B,C,D) =2 ((Q— AQ - BP)'Q, ) —2 ((Q — AQ - BP)'P,hy)
~2((P=CQ - DP)Q.hg) ~2 (P~ CQ~ DP)"P.ha) + Ol hn b, b, )

so the gradient of L for our scalar product is

2 ((Q — A0 — BP)O, (O — AO — BP)'P,(P — CO — DP)O, (P — CO — Dﬁ)tﬁ) .

n

Using the same arguments, we find that
Vg1(A, B,C, D) = (24" Aps44, 0,0,0)
and that Vgo, Vg3 and Vg4 have similar expressions. Unfortunately, we also find that
Vgs(A, B,C,D) = 4(C'CA — C'AC,0, A'AC — A'CA,0)

which equals to zero when g5(A, B,C, D) = 0. Similar results hold for g¢ and g7 so we can’t use
usual theoretical tools to caracterize local minima.

Numerically, we will use a gradient descent to find a value of A which achieve a small value
of the loss.

Results
3.3.2 Tentative 2

We now want to add crossed terms y;y; for ¢ # j in the quadratic map. We then look for ¢\
of the form y — AY where Y = (y1y1,y1¥2, ..., Y2ryoxr) and A is in My, s(R). Recall from a

(k+1)

previous section that S =1+ k + is the dimension of Y.

Optimization problem

Decompose A in (g) with A and B in M,, g.

Let G the matrix in Mg 4,2(R) whose coefficients are 0 except for : the G p( ; ;):2ki+; Which
are 2 for i € [[1,2k] and for the G'p(1; ) 2ki+; and the Gp(i; ;) opjti, Which are 1 for all i < j

between 1 and 2k. The Jacobian matrix of f : y — Y at y is given by J f (y) = GY, where

Y 0 .. O

> 0o Y .

Y=1. . € Mypz2 o1 (R).
. .. .. 0
0 0 Y
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Then, for Deorr @ @ = (q,p) = (Apsaq + Af(x), Apsap + B f(x)), we have
VDl (#) = Apa + AGQ, VDL, () = AGP.
v, D, (3) = BGQ, VD, (2) = Ay + BGP,

corr corr

where é and P in Myj2 ,(R) are such that X = (¢ P)

v

Therefore, the symplecticity conditions for D, are, for all Q and ]5
'ApuaBGP +'Q'G(AB ' BA)GP +'Q'G' Adyug = 0,
HApsd + AGQ)BGQ — 'Q'G' B(Apsa + AGQ)
LPIGYA(Apsq + BGP) — (Ayeq + BGP)AGP

v
A

0,
0.

If we take Q = 0 in the first equation, we have tApsdBGif’ = 0 for all P. We can choose
P with all but one coefficient equal to zero. This leads to tApsdBGi = 0 for all column G; of
G, which means that *A,,;BG = 0. The same argument with P = 0 shows that tApsdAG = 0.

Now, taking P and Q with all but one coefficients equal to zero, we see that all the coefficients
of 'G(*AB —'BA)G are zero. Conversely, if *A,,qAG ="A, BG ='G(*AB—"BA)G = 0, then

the three equation above are satisfied for all Q and P and D¢ orr is symplectic.

The optimization problem that we want to solve is therefore

min L(A,B,C,D).
(A,B)eK

with the loss function

o Mus(R)* >R
‘ (Aa B) — ”X - AX”%‘,%L,N?

where X (}enotes the compression-decompression error made by the PSD on the samples, that
is X —DX and K = {(A,B) € /\/ln,S(R)2 | tA,aAG ='A,54BG ='G(*AB —'BA)G = 0}.

Results
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Part 11

Geometric part
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4 Homotopy principle

4.1 Goals

The aim of the geometrical part of this work is to give theoretical justifications to the methods
we develop in the numerical part. In particular, we would like to know if there is no geometrical
obstacle to learning the manifold X¥. More precisely, we would like to prove the following
conjecture :

Conjecture 4.1.1. Let n, k € N such that k « n. Consider two manifolds ¥* and Yk embedded
in R?" endowed with its usual symplectic structure. Denote by i : ¢ — R?*® and i : ¥¥ — R?"
the corresponding inclusions.

If k is sufficiently small in front of n, then it exists a symplectic homeomorphism h : R?" —
R?" such that h(XF) = XF.

Moreover, if i and i are C°-close, then h is C°-close from the identity.

If this result is true, then for all Hamiltonian function H : R?® — R whose flow preserves ¥,
the flow of the composition H = Hoh ™! preserves ©¥. This is immediate since quq = ho (;Sﬁqoh_l.
In the case 3¥ and ©* are C-close, then H and H are also C°-close and the restriction of their
flows on borned intervals of R too.

In other words, if we make a small error when learning the solution manifold, which is highly
probable since we interpolate it with a finite number of points, then the part of the errors on
solutions induced by errors we made on ¥* remains small. If this result is true, then we can
hope to learn the dynamic on the interpolated manifold as we try to do.

This result has already been proved in the particular case of isotropic submanifolds in
[3] using methods based on the Gromov’s h-principle. The h-principle, an abbreviation for
homotopy principle, is a principle or a caracteristic of some spaces which, if it holds, guaranty
the existence of solutions for differential problems. It involves a new point of view on differential
equalities and inequalities, involving for example notions of jets and differential relations. When
working with the A-principle, one usually want to establish it and there is some particular
techniques to achieve this.

During this internship, we worked to understand the methods that were used to prove the
results in [3]. Eventually, we will use them to extend the proof of 4.1.1 to the general case. To
become familiar with the h-principle, we read the parts of [8] devoted to the h-principle and its
proofs using holonomic approximation theorem. In this chapter, we present the main notions
that one needs to understand what is the h-principle and some of its applications. We present
all this notions in a way that the chapter leads to the proof of the following theorem :

Theorem 4.1.1. Let (V,wy) and (W, ww) be two symplectic manifolds of respective dimensions
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n =2l and ¢ = 2m. Let fo: V — W be an embedding such that f§[ww] = [wv]. Suppose also
that Fy = dfy is homotopic to an isosymplectic homomorphism Fy via Fy € Rimm such that
bsEy = fo for all t € [0,1].

Then, if V is open and m < l, then it exists an isotopy fr : V. — W such that fi is
isosymplectic and df1 is homotopic to Iy in the isosymplectic homomorphisms.

Moreover, if K is a core of V, we can choose f; arbitrarily C°-close to fy near K.

All the definitions and the results we present here are taken from [8]. The proofs are taken
from the same reference but we had details in most of them.

In what follows we are sometimes required to consider a metric on some manifolds. Every-
time we talk about C°-closeness of applications, we imply the existence of a distance on the space
where those functions take their values. We also need it to build normal neighbourhoods in
some proofs. A simple way to define a distance on manifolds is to consider a Riemannian metric
on this manifold and we know that this is always possible (see [9] for a proof of this assertion).
When needed, we therefore consider a Riemannian structure on the considered manifold. This
additionnal structure is only useful to properly define normal neighbourhoods or C%-closeness,
it does not change anything to the geometry of the problems we consider.

4.2 Definitions

4.2.1 Jets

Jet spaces

For our purpose, we are interested on derivatives of functions. The notion of jets allows us to
designate and manipulate the functions along with their derivatives. Let us first see how we
define jets in the simple case of functions of R.

Definition 4.2.1 (Space of r-jets on Euclidian spaces [8]). Let r € N*. The space of r-jets of
functions R™ — RY is the space of all a priori possible values of a function f : R™ — R and
its derivatives of order at most r at a point of R™, that is

R™ x RY x R4 o x Radnr)

where d(m,l) is the number of partial derivatives of order | for a function f: R™ — R. We
note this space J"(R™,RY).

The space of all possible values that can take a function and its derivative at a point v € R"
is really the product we have mentionned : for any point P in this product space such that
m1(P) = v, it exists a polynom of degree r in R™ whose r-order derivatives at v agree with P.

Remark 4.2.1. We have d(n,r) = (tr=D! " This can be proved by induction on n. The

(n—1)!r!
formula is clearly true for n = 1. Suppose now that the formula is true for all ¢ < n. We have

sod(n+1,r) =d(n,r) +d(n+1,r—1). An immediate induction on r gives then d(n + 1,r) =
di_od(n,t) +d(n+ 1,1). Since d(n,1) = n and d(n,0) = 1 for any n, this can be rewritten
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as d(n+1,r) = >_,d(n,i). By assumption, this is equivalent to d(n + 1,7) = >},_, (";ii”)
Using the "hockey cross" formula,

£ (7)),

which is true for all m,k € N such that k < m, we get d(n + 1,r) = (LJ”") = ' We then

r nlr!
have proved that the formula is also true for n + 1. By the induction principle, we deduce that

the formula is true for all n > 1.

We define now jets on manifolds. For this purpose, we use the definition we have given on
Fuclidian spaces. We simply need to adapt it to make it invariant by change of coordinates.

Definition 4.2.2 (Space of r-jets in the general case [8]). Let V' and W two manifolds of
respective dimensions n and q. Let v eV and U < 'V be an open neighbourhood of v in V on
which is defined a coordinate system ¢ : U — R™. We say that two functions f and g from U
to W are r-tangent at v if they agree at v and if the r-order derivatives of ¢ f and ¢.g agree

at ¢(v).

Tangency at v gives rise to an equivalence relation : two functions are in the same class
if and only if they are r-tangent. The space of r-jets J"(V,W) is defined as the space of all
r-tangency classes at any point of V.

When V = R"” and W = RY, the previous definition is equivalent to the first one.

With the chain rule, we verify that this definition is indeed invariant under a change of
coordinates. Let ¢ : U — R™. We have

)P f = ) (F 0 371) = dgoyrop) (F oy 0thod™") = dyy(fo ™) odyp (o d™).

Since dy) (1 0 ¢71) is invertible,

dy)Psf = dp)Pxg == dy)¥sf = dy)¥xg-

If we replace f and g by partial derivatives of order inferior to r, we obtain the invariance of
the notion of r-tangency for r > 1.

Note that for I < m, the projection p/* : J™(V,W) — JI(V,W) which sends a class of
m-tangency to a class of [-tangency by 'forgetting" the derivatives of order superior to [ is
invariantly defined. In fact, if two functions are m-tangent at a point v, they are also I-tangent
at the same point for all [ < m.

On the contrary, the inclusions J'(V, W) < J™(V, W) are not invariant under a change of
coordinates : if we want to set an inclusion function i : JY(V,W) — J™(V,W), we can not
simply "complete" the [-jets with zeros. To see that, take for example n = 1, ¢ = 2 and the
function whose expresison in polar coordinates is f :  — (z,2), . In cartesian coordinates, we
have f : x — (xzcos(x), zsin(z)),». Thus, f/(z) = fy(x) = 0 while f/(z) = —2sin(z) — cos(z)
and f}/(z) = 2cos(z) — zsin(z) for all  in R. This illustrates the fact that prolongating a jet
by 0 does not give the same thing depending on the coordinates we have chosen on W. This
is also true for any choice that we could make to prolongate the I-jets into m-jets. Therefore,
those inclusions are not invariant by a change of coordinates on W.
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Jet extensions of functions

In the following, we will consider functions f : V — W as sections of the trivial fibration
p:V xW — V. We will always suppose that it is C* sections.

The notion of r-jets at points v of V' gives rise to an another fibration, p" : V. — J"(V, W),
where p" := p o p{) associates to a r-jet the point of V' in which it is defined. This fibration is
endowed with a structure of smooth fibration thanks to the extensions of an atlas on the product
manifold V' x W. In fact, as V and W are both endowed with a smooth atlas, so is the cartesian
product V' x W. Then, we define an atlas on J"(V,W) by extending each coordinate chart
¢ : U — R"RY on a coordinate chart ¢ : (pf)~ 1 (U) — J'(R™ RY) ~ RrFa(+d(nD+..+dnr)
where ¢" associate a r-jet, or class of r-tangency, to its image by ¢ in J"(R",RY). As we have
defined a class of -tangency as the inverse image of classes in J"(R™, R?) by a coordinate chart,
it is clear that we build this way a smooth structure on the jets space.

This allows us to consider regular sections of the jet fibration and from now on, all the ones
we consider are supposed to be C*. We note bsF' the image by pj of F, in other words the
section of V x W — V induced by a section F' of the jet fibration. Conversely, any section
f:V =V x W gives rise to a section J} : V. — J"(V, W), which associates each point v in V'
to the r-class of tangency of f at v. It is called the r-jet extension of f.

All the jet sections are not r-jet extensions. Those which has this property, that is F: V —
J"(V,W) such that it exists f: V — V x W with F' = Jy are called holonomic sections.

Example

Let us illustrate all these notions with an example. Take n = 1, ¢ = 2, V = R and W = R2.
The space of 7-jets is J" (R, R?) = R xR2xR"™*?*!, For any element d = (v, a1, az, b, ba, c1,¢2)
of J(R,R?), the polynom P : x — (a1 + bi(z —v) + 3c1(z — v)%, az + ba(x — v) + Sea(z —v)?)
around v represents the 2-tangency class of d.

For a function f : R — R?, we have F := Ji(v) = (v, f(v), f'(v), ooy f) (). The section
F' is then a holonomic function, such that bsF = f. For other functions g, h, the map v —
(v, f(v), g(v), h(v)) is also a section of J2(R,R?) but is a priori not holonomic.

4.2.2 Differential relations

A lot of categories of functions that we use to manipulate in geometry are defined using differ-
ential equations, that is conditions on the derivatives of order 1 or more. This is for example the
case of immersions, submersions, diffeomorphisms or symplectomorphisms. Using the notion of
jets, we can give another view on these categories.

Definition 4.2.3 (Differential relation [8]). A differential relation of order r between V' and W
is a subset of the r-jets space J"(V,W).

Let us illustrate this notion with some example.

Example 4.2.1.
e Immersions : the differential relation R;,m, associated to the notion of immersion is a

subset of J(V, W) since it only involves derivatives of order 1. It is exactly the set of
monomorphisms T,V — T,,W above each pair (v,w) e V x W.
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e Submersions : the differential relation R, associated to the notion of submersion is
also a subset of J!(V,W). It is exactly the set of epimorphisms 7,V — T,,W above each
pair (v,w) eV x W.

e Isoymplectomorphism : isosymplectomorphisms between two symplectic manifolds
(V,wy) and (W,wy ) are functions f : V. — W verifying f*wy = wy. This equation
involves the first order derivatives of f so it defines a subset of J'(V,W). We note the
differential relation defined this way Risosymp-

With V = W = R?" endowed with the canonical symplectic structure, a section f:V —
V x W is a symplectomorphism if and only if ', f,0, f, and 0, f,0,f, are symmetric and
Y04 fqOpfp — 104 fpOpfq = Ir. Therefore,

Risosymp = {(v,w, A) € R"xR"xR"™ | TA3Ay,TAgAg € Sp(R) A PAL AL =" Ag Ay = T},
where A = <’2; ﬁi) with Ay, Az, A3, Ay € M (R).

o Symplectomorphisms : symplectomorphisms from V' to a symplectic manifold (W, wy)
are maps f such that f*wy defines a symplectic form on V. Since wy is a symplectic
form, it is closed and we have d(f*ww) = f*dww = f*0 = 0. The condition on f is then
reduced to the fact that f*wyy is non-degenerate.

In V = W = R?" endowed with the canonical symplectic structure is symplectic if and
only if 'V f(v)J2,V f(v) is non-degenerate for all v € V so

n, @n . @n’ PA3A1 —TA A3 PA3Ay —TAL A
Reymp = {(’U,w,A)eR xR" xR | det <tA4A1—tA2A3 A Ay — P AgA, #0p.

e More generally, any differential equation of order r induce a differnatial relation of order
r.

Together with this definition comes the notion of open and close relations, which correspond
to open and close subsets of the jet space. Immersion and submersions relations are open since
they are defined as the complement of the close set composed of morphisms with at least a
minor equal to zero. The relation associated with isosymplectomorphisms is closed since it is
defined with an equality. On the contrary, the relation associated to symplectomorphisms is
open as it is the complement of a closed subset. As usual, relations defined with equalities or
large inequalities are closed while relations defined as complement of singularities or with strict
inequalities are open.

Of course, smooth solutions of a differential equation, or inequality, of order r are such that
their r-jet extension sends V' in the induced differential relation. We now extend the notion of
solution to all sections of the jet space.

Definition 4.2.4 (Formal and genuine solutions [8]). A formal solution of a given differential
relation R of order r is a section of the r-jet space which takes its values in R, thatis F': V. — R.
We denote by Sec R the subset of sections of the r-jet space composed of formal solutions of R.

A genuine solution of R is a section f : V — V x W whose r-jet extension is a formal
solution. We denote by Hol R the subset of Sec R composed of holonomic formal solutions of
R.
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Example 4.2.2. For V = R"™ and W = R? with n = ¢ = 2] and endow these two spaces
with the canonical symplectic structure. Consider the relation R;sosymp defined in the previous
example and take any section f : V — V x W. The 1-jet section F' : v — (v, f(v),id) €
R" x R" x R is a formal solution of Risosymp- Since it is not holonomic, f = bsF is a priori
not a genuine solution.

When we study differential equations, we look for genuine solutions. In some cases, it can be
useful to first see if it exists formal solutions to the considered problem. If this is not the case,
it is useless to search for genuine solutions. In the following section, we intoduce the homotopy-
principle, which, if it holds, insure the existence of genuine solution from the existence of formal
solutions.

4.2.3 Homotopy-principle

Definition 4.2.5 (Homotopy-principle [8]). A differential relation R satisfies the homotopy-
principle (or h-principle) if all formal solutions of R are homotopic in R to a holonomic formal
solution.

In other words, the h-principle holds for a relation R if any formal solution of the relation
can be deformed in Sec R to the jet extension of a section f: V — V x W, which is therefore
a genuine solution of R.

There is different variations of this principle. Below is a list of some of them.

e one parameter h-principle : a differential relation R satisfies the one parameter h-
principle if all homotopy F; in Sec R joining two holonomic sections can be smoothly
deformed in a homotopy in Hol R keeping Fy and F; fixed.

o multi-parameter h-principle : a differential relation R satisfies the multi-parameter
h-principle if all smooth family Fr < Sec R such that Fp € HolR for T € 0IF can be
smoothly deformed in a family in Hol R keeping Fr fixed for all T € dI*. Here we have
noted I* = [0,1]".

o local h-principle : let A < V and Opy(A) an open neighbourhood of A in V. A
differential relation R satisfies the local h-principle around A if all formal solutions of R
defined above Opy (A) in V' are homotopic in the sections of R defined above Opy (A) to a
holonomic formal solution. In other words, the deformation should not change too much
the space of definition of the original section but the holonomic section that we obtain are
only defined above Opy (A).

o relative h-principle : let B ¢ V and Opy(B) an open neighbourhood of B in V. A
differential relation R satisfies the relative h-principle around B if all formal solutions of
R holonomic above Opy (B) in V' are homotopic in the sections of R fixed on Opy (B)
to a holonomic formal solution. In other words, we start from a formal solution which is
already holonomic above an open set and we deforme it to obtain a holonomic solution
on the whole V' without changing the part which is already holonomic.

« CY-dense h-principle : a differential relation R satisfies the C°-dense h-principle if any
formal solution Fj of R is homotopic in R to a holonomic formal solution Fj such that
bsFy and bsF; are CO-close.
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It is also possible to work with combinations of this versions such as the C°-close one param-
eter h-principle, where we ask that the deformation of the homotopy is C-small, or the relative
one parameter h-principle, where we ask that the deformation of the homotopy is fixed on B.

Proving that the h-principle holds for a given relation R can be sometimes difficult. In the
following section, we present some tools that we can use to achieve it.

4.3 Proving the h-principle : tools and examples

4.3.1 Holonomic approximation

Below is the theorem on which is based all the results we will present in the following. The
proof of this result can be found in [8].

Theorem 4.3.1 (Holonomic approximation [8]). Let A € V' a polyedron of codimension > 0
and F : Opy(A) — J"(V,W) a section of the jet space.

For all 6,¢ > 0, it exists a diffeotopy (h7)ref0,1) * V. — V &-small in the CO sense and
a holonomic section F : Opy(h'(A)) — J'(V,W) such that d(F(v), F(v)) < € for all v €
Opy (h'(A)).

This result also holds in its parametric and relative forms :

Theorem 4.3.2 (Parametric holonomic approximation [8]). Let A€V a polyedron of codimen-
sion > 0 and F, : Opy(A) — J(V,W) a family of sections parametrized by z € I¥ := [0,1]"
with F, holonomic for z € oI*.

For all 6,e > 0, it exists a family of diffeotopies (h7),ef0,1): V — V d-small in the C sense
and a family of holonomic sections F, : Opy (hL(A)) — J"(V, W) such that d(F,(v), F,(v)) < €
for all v e Opy(hL(1)) and all z € I* and such that hT = idy and F, = F, for z € oI*.

Theorem 4.3.3 (Relative holonomic approximation [8]). Let A € V a polyedron of codimension
> 0 and F : Opy(A) — J"(V,W) a section of the jet space holonomic in a neighbourhood
Opy0A.

For all §,¢ > 0, it exists a §-small diffeotopy (h7)ref01) : V. — V fized on OpydA and
a holonomic section F : Opy(h'(A)) — J(V,W) such that d(F(v), F(v)) < € for all v €
Opy (h'(A)) and F(v) = F(v) on Opy(h'(0A)) = Opy(0A4).

The relative form of the theorem is particularly useful when one wants to prove the existence
of a holonomic section on a whole space divided into pieces that are treated one after another.
If it is possible to prove the existence on a piece and to build the section on neighbouring pieces
while sticking to what has already being done, then we can prove the existence on the whole
space.

Here is a first interesting result which can be prove using holonomic approxiation.
Corollary 4.3.1 (Approximation of differential forms by closed forms). Let V' be an open

manifold, A a polyedron of positive codimension, a € HP(V) a cohomology class. Near A, we
can approach in the C° sense any p-form w by a closed p-form & in a.

Moreover, given 2 € a and a (p — 1)-form «, we can chose & of the form da + Q for &
CO-close to a.
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Proof. (from [8])

Consider X = APV. Tt exists a map D : (AP~'V)() — APV which sends the formal
derivatives of the coordinate functions of a (p — 1)-form to a p-form. Consider its extension
D : Sec(AP~'V)(D) — SecAPV. Since we can choose what we want on Sec(A?~'V)(D) | this map
is surjective. Let w be a p-form. It exists a section F, of (AP~'V)() such that D o F,, = w.
Since D only cares about derivatives, we can choose F,, such that bsF,, = a for any (p—1)-form
a.

For A a polyedron of positive codimension, we can apply Theorem 4.3.1 which gives us the
existence of a diffeotopy h™ : V — V as small as we want and a holonomic section F,, = JL
Opy (RY(A)) — (AP71V)D) COclose to F,,. In particular, & is C%-close to o and, since D is
continuous, w := D o F, is C%close to w. We also have d& = D(JL) = & so & is exact.

Let now a be an arbitrarily cohomology class and €2 € a. Apply previous argument to
0 = w—Q and take @ = 6 + Q. It is CO-close to w and can be written as d& + . This shows
that we can approach any p-form by a closed form of any cohomology class on Opy (h'(A)). O

Note that the parametric version of this proposition is also true : we just have to apply
Theorem 4.3.2 instead of 4.3.1.

4.3.2 Open Diffy-invariant relations

We are now interested to a special category of differential relation, that we call Diffi -invariant.
Let p: X — V a fibration. All what we have done for X =V x W can immediately be extend
to any X. In particular, we will be required to use X = APV in some following propositions.

Denote by Diffyy X the group of diffeomorphisms of X which preserve the fibers, that is
hx : X — X such that it exists hy : V — V satisfying pohx = hy op. If such a hy exists, then
it is obviously unique : for h%/ and h%/ satisfying the previous equation, we have h‘l/ op = h%/ op
in X. Since p is surjective, this means that hi, = h%,. Note that all of this can be extended to
any fibration p: E — F.

Definition 4.3.1 (Natural fibration [8]). Letp : E — F a fibration and 7 : DiffpE — Diffr the
homomorphism which associate a diffeomorphism hg € Diffp E to the unique diffeomorphism
hr € Diffp such that pohg = hpop. If ™ can be inverted, that is if it exists j : Diffp — Diffp &
such that o j = idpyy,, then we say that the fibration p : E — F is natural.

Note that j is not necessarily unique.

Example 4.3.1. The fibrations we are working with in this chapter are natural.
o the trivial fibration p: V x W — V with j : h — (h,idw),
e The tangent bundle p: TV — V with j : h — dh,

o and the fibration of p-forms p : APV — V with j : h — dPh, where dPh : (v,w) €
V x APV (h(v),wp : (a1, ..., ap) — w(dyh ™ (ay), ..., dyh ™ (ap))).

The naturality of those fibrations can be extend to the jet fibration. In fact, we also have
that pp : X () X is natural. Let g : X — X be a diffeomorphism and take

g ise X Jgos(P 0 g0 pp(s)),
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where § is a local section of p : X — V whose r-jet coincide with s at p"(s). We immediately
have that popjog"(s) =pogopy(s) sopyog”(s) and gopy(s) are in the same fiber of X — V/
for all s € X("). Tt is also obvious that g"(s) and g o pjj(s) are in the same class of 0-tangency
since s and py(s), and so g o 5 and g o pj(s), are O-tangent by construction of s.

Then, if p : X — V is natural, we also have that p” : X(") — V is natural. Under the
assumption on p, for any diffeomorphism h : V' — Vit exists a fiber preserving diffeomorphism
j(h) = hx : X — X. Thanks to the previous argument, we know that it exists A" : X(") — X ()
which preserves the fibers of pj : X (") — X. Therefore,

hop" =hopopy=pohxop;=popyoh” =p"oh”.
Finally, let us see that j"(h) = (j(h))" so

3" (h)(s) = Jjmyes(p 0 j(h) o po(s)) = Tjnyes(h o p"(s)).
In particular, j"(h) preserves holonomy : j"(h)(J}) = T hyofon—1-

Definition 4.3.2 (Diffy-invariant differential relation [8]). A differential relation is said to be
Diffy -invariant if it is invariant under the action s € X") — hys := j7(h)(s) for all h € Diff,/.

In other terms, a differential relation is Diffy -invariant if it is invariant under coordinate
changes. A lot of the relations that we will use in the following have this property.

Example 4.3.2.

e The relations Rimm and Rgupm are Diffy-invariant. More generally, any relation in
JY(V,W) which imposes a condition on the rank of the differential is Diff -invariant.
In fact, for a diffeomorphism h:V — V,

hy(z,y, A) = J(lhxid)(x,g,A)(h(x)) = (h(z),y, Aod;h).

Since h is a diffeomorphism, its differential at any point is invertible so its composition
with the homomorphism A has the same rank as A.

e The same formula shows that all differential relation which would impose conditions on
the image of the differential is also Diffy-invariant. This will be useful when we will talk
about Grassmanians.

The notion of Diffy-invariance is particularly interesting thanks to the following theorem.

Theorem 4.3.4. Let V,W be two manifolds and R = JY(V,W) an open Diff,, -invariant dif-
ferential relation. All the local forms of the h-principle holds for R.

Proof. (from [8])

We first prove the theorem in the 1-parameter case. Let Fy and F} two holonomic solutions
of R and F; a homotopy between them in R.

Let A < V be a polyedron of positive codimension. For all §,¢ > 0, Theorem 4.3.2 insures
the existence of a family of §-small diffeotopies h] : V' — V and a family of holonomic sections
Fy : Opy(h}(A)) — J"(V,W) such that F; and F; are C%-close for all t € [0,1], Fy = Fy, [} = Fy
on Opy (h}(A)) and k] = hT = hY = idy for all 7,t € [0, 1].
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Since F} is a homotopy in the open set R, we can choose € such that F;, which is e-close to
F,, is also in R for all t € [0,1] on Opy (h}(A)) and the linear homotopy ¥ = vF; + (1 — v)F,
as well. Now, since R is Diffy-invariant, F,"" := (h{);lﬁty also has its image on R. Its satisfies
EM = (W)AE, B = R, FyT = Fy and F{"" = F for all t,7,v € [0,1]. Then, the family
of homotopies given by Gf = F/"" on n e [0,1] and G} = F*""" on 7 € [4,1] goes from F;
to G} = (h}); ' F; while staying fixed at t = 0,1. Tt is defined on Opy (A) and takes its values
in R. Since the action of (h})™! preserves the holonomy, G is holonomic. Morevover, since h]
can be chosen arbitrarily small and F; arbitrarily close to F;, we have that bsG} is arbitrarily

CY-close to bsFj.

Therefore, we have established the local C’-dense 1-parameter h-principle. Note that the
above argument also works when ¢ is multivalued, one just has to change the notations. Applying
Theorem 4.3.1 instead of 4.3.2 and skiping mentions of £, we also get the result for the simple
local A-principle. In the same way, all what we have done is still true in the relative case, after
the application of Theorem 4.3.3 instead of 4.3.2 : if the diffeotopies h] fixes Op(dA) and the
homotopy F} coincides with F; on Op(dA), then G} also coincides with F; on Op(dA). O

We now extend this result to the global h-principle. For that, we compress the whole space
V to the open set on which are defined the objects we are interested in after application of the
previous theorem. To make that this compression is possible, we have to assume that V is an
open manifold.

Theorem 4.3.5. Let V be an open manifold and R < JY(V,W) an open Diff,,-invariant
differential relation. All the global forms of the h-principle holds for R, except the C°-dense and
the relative one.

Nevertheless, if V' can be retracted into a polyedron of positive codimension K, then the
CY-closeness is still true in a neighbourhood of K and the relative version of the h-principle
holds by respect to K.

Proof. (from [8])

As V is open, it exists a polyedron K of positive codimension such that V' can be retracted
in an arbitrarily small neighbourhood Opy (K) via a diffeotopy h” such that h° = idy, h' (V) <
Opy(K) and h™ = idy on K. The polyedron K is then called a core of V. For a proof of this
result, see for instance [8].

We start by the 1-parameter version of the h-principle. Let Fy and F} two holonomic section
of R and F; a homotopy joining them in R. From Theorem 4.3.4, it exists a family of homotopy
F7 : Opy(K) — R such that F} is holonomic, F) = Fy, Fj = Fy and F] = Fy for all 7,t € [0,1]
on Opy (K). Moreover, we can choose it in such a way that EJ is e-close to F} for all 7.t € [0, 1].

Define the family of homotopies G such that Gi = (W) 1F, for 7 € [0,4] and G] =
(RO LER for 7 € [0, 3]. It is defined on V and since R is Diffy-invariant, it takes its values

in R.

As in Theorem 4.3.4, changing t € [0, 1] for a multi-valued parameter only changes notations.
For the simple h-principle, one just has to use the simple version of Theorem 4.3.4 and forget
the indice t in the passage from local to global.

For the relative version, if B is a core of V', then the retraction A™ can be chosen fixed
on Opy(B). Since the use of the relative version of Theorem 4.3.4 gives homotopies fixed on
Opy (B), the resulting homotopies are fixed on Opy (B) too.
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The decompression of Opy (K) into V makes that the C%-closeness does not hold anymore
in the global case. However, since this decompression is fixed on K, we still have that G} is
C'-close to F} in a small neighbourhood of K. O

Here is a basic example where having proved the h-principle gives the existence of homotopies
which are really difficult to visualize.

Example 4.3.3. Let V be the annulus {(z,y) €e R?> | e<2?+y? <a}and W = R. The
1-jet space is JLY(V,W) = V x R x R%. Let fo : (z,y) — 22 + y? and fi = —fo. The two
functions fy and f; are isotopic.

Since V is open and the relation R;n.m, is open Diffy-invariant, by Theorem 4.3.5 it is
sufficient to find a formal solution of Ry, linking fo and fi. Identifying R? with C, we can

take Fy : (z,y) — (z,y,tf1(z,y) + (1 — ) folz,y), ™V fo).

Using the same proof as for Theorem 4.3.4 followed by 4.3.5 but replacing the invocation of
holonomic approximation theorem by Corollary 4.3.1, we obtain :

Proposition 4.3.1. Let V' be an open manifold, a € HP(V') a cohomology class and R < APV
an open Diffy -invariant differential relation.

Any p-form w : V — R is homotopic in R to a closed p-form in a.

Any homotopy of p-forms w; : V. — R between two closed forms wy and wi in a can be
deformed in R to a homotopy of closed forms in a between wqy and w1 without changing the ends
wo and w1 .

Proof. (from [8])

The proof is exactly the same as the one of the Theorem 4.3.4 followed by the one of 4.3.5,
excepting that we replace the invocation of the holonomic approximation theorem by Corollary
4.3.1 and that we also use the fact that the cohomology class of h7w is constant for any isotopy
h™ and any p-form w. O

We present below an application of the h-principle for open Diffy -invariant relations.

4.3.3 Application of the h-principle to the Grassmanian bundle

Let W be a g-dimensional manifold and V' a n-dimensional submanifold embedded in W. For
I < q, we note GriW the Grassmanian of W, which is defined as the set of all the vectorial
spaces of dimension [ tangent at W. Denotes by 7 : GriW — W the Grassmanian bundle of
the manifold W. The projection 7 associates an element of Gr;W to the point w € W at which
this element is tangent to W.

At each point v € V, the differential of the embedding dp : TV — TW sends the tangent
spaces of v to a vectorial subspace of dimension n tangent to W. We denote Gdf : V — Gr, W
the map which associates v € V' to df (T,V) < Tp,,)W. More generally, if F': TV — TW is a
monomorphism, we can define in the same way the map GF : V — Gr,W.

For A ¢ Gr,W, a homomorphism F : TV — TW is said to be A-directed if GF(V') c A.

Theorem 4.3.6. Let A be an open subset of Gr,W, V an open manifold, fo : V. — W an
immersion such that Fy := dfy is homotopic in the space of monomorphisms from TV to TW
to a certain A-directed Fy with bsFy = fy.
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Then, fo is isotopic to fi such that Gdfi(V') € A and dfy is homotopic to Fy in the space of
A-directed monomorphisms.

Moreover, the isotopy can be chosen as CO-small as we want on an open neighbourhood of a
core K.

Proof. (from [8])

To the open subset A in Gr,W, we associate an open differential relation,
Ra:={FeJ'(V,W) | F monomorphism and GF(V)c A}.

From a previous example, it is open and Diffy -invariant. Theorem 4.3.5 in its simple version
gives the existence of a homotopy Ft : V. — R4 between F; and a holonomic A-directed
monomorphism F» that we can choose such that bsFy = fo and f; := bsFy are C%-close on a
small neighbourhood of K in V.

Taking the homotopy between Fy and Fj followed by Fy, we obtain a homotopy F; of
monomorphisms between two holonomic sections. Then, Theorem 4.3.5 in its parametric version
gives the existence of a holonomic homotopy Ft :V — Rimm between Fy and Fy with bsFt cO-
close to bsF} near K.

In particular, fy = bsFj is isotopic to fi = bsFs, where fi is A-directed and the isotopy small
around K, and F} is homotopic to df; = F5 via a homotopy of A-directed monomorphism. [

4.4 Application to the symplectic relation

In this section, we present an application of what we have presented in the symplectic case.
More precisely, we have the following theorem, whose proof is a detailed version of the one
proposed in [8].

Theorem 4.4.1. Let (V,wy) and (W,ww) be two symplectic manifolds of respective dimensions
n =2l and ¢ = 2m. Let fo: V — W be an embedding such that fi[ww] = [wy]. Suppose also
that Fy = dfy is homotopic to an isosymplectic homomorphism Fy via Fy € Rimm such that
bsFy = fo for all t € [0,1].

Then, if V is open and m < l, then it exists an isotopy fr : V. — W such that fi is
isosymplectic and dfi is homotopic to Iy in the isosymplectic homomorphisms.

Moreover, if K is a core of V, we can choose f; arbitrarily C°-close to fy near K.

Proof. (from [8])
The proof is made in three steps.

Step 1 : as the relation associated to the fact of being isosymplectic is not open, we first
consider the relation associated to the fact of being symplectic, which is open. Let Ay, the
associated subset of Gr, W.

By the Theorem 4.3.6, it exists an isotopy fi:V— W such that fo = fo, f1 is symplectic
and f; is C%-close to fo on K for all t € [0,1]. Moreover, df; and F; are homotopic via ®; such
that G®(V') < Agymp-

Since the cohomology class is invariant by homotopy, the assumption that f§|ww]| = [wy]
implies that f{lww] = [wy]. Then, by Theorem 4.3.1 it exists a homotopy of symplectic
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forms w; between fifww and wy such that [w;] is constant on [0,1]. This allows us to write
wr = wo + day for t € [0, 1].

The proof of the theorem is now reduced to the proof of the following proposition :

Proposition 4.4.1. Let V' a symplectic manifold of dimension n = 2m, (W,ww) a symplectic
manifold of dimension ¢ = 21 > n, hg : V. — W a symplectic embedding, wo = hiww and
wy = wo + day a homotopy of symplectic forms.

It exists a symplectic isotopy hy : V — W as C°-small as we want such that hiwy = w;.

If we apply this proposition to hg = fi, we can take the homotopy f; given by fa; on [0, %]
and hot_1 on [%, 1]. It is an isotopy as its two parts are isotopies and it verifies that fi = hy
is isosymplectic. As f; is C%-small on K and h; C%-small on the whole V, f; is C°-small on
K. Finally, since the space of isosymplectic homomorphisms is convex, the linear homotopy
Fy = tdf1 + (1 — t)F} realizes the desired homotopy between Fj and df;.

Step 2 : we prove the proposition in the case where w; = wg + tdr A ds for r,s : V. — W
borned.

From the symplectic neighbourhood theorem, it exists ¢ > 0 such that hg : V — W can be
extended in an isosymplectic embedding ho : (B,wg) — (W,ww), where E := V x D? x DI—"2
and wg = wo ® N2 D 17g—n—2, for (Df7 Nk ) the ball of radius € in R* endowed with the restriction
to Df of the standard symplectic form of RF.

Consider ¢ = (r,5) : V — R2. As r and s are supposed to be borned, it exists R > 0 such
that ¢(V) = D%. Let Tr : D% — D? be an area preserving map and set 1) = Tg o ¢. We then
have that

(t) n2 = (to)*7h 2 = (t¢) n2 = t3dr A ds.

Consider now ®; : V — E such that ®;(v) = (v, v/t (v),0). We have

Pfwp = F (wo B N2 B 1g—n—2) = id*wo + VI e + 0*ng_n_2 = wo + tdr A ds.

Now, if we take hy : v — ho(®;(v)), we have
hfww = @Zﬁa"ww = dlwp = wy

and ho(®o(v)) = ho(v,0,0) = ho(v) with (hs); e-small in the C° sense.

Step 3 : We now reduce the general case, where w; = wg + doy to the case where w; =
wo + tdr A ds, that is, the case where ay = trds. For that, note that we can consider any
homotopy «; provided that it agrees with the original one at t = 0,1 and that the resulting wy
remains symplectic.

We first consider &; linear by parts, build this way :

&y, = oy, for some points t; € [0,1],

R T

ati-‘rT = ati + 7(0%1'_'.1 - Oéti) for TE [07tl+1 - tl]?
tiv1 —ti

where the finite set {¢;}; contains 0 and 1 and is chosen such that &; = wy + dé; is symplectic
for all ¢ € [0,1].

We can restrict our analysis to an interval of the form [¢;, ¢;+1], where w is of the form wg+ta.
In fact, applying the proposition on each interval, we obtain a finite number of isotopies h; that
we have to take one after another to obtain an isotopy on the whole [0, 1].
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Suppose now that we have a decomposition of this kind : o = 8! + ... + ¢ with L € N and
the B? of the form r;ds;, where the r; and s; are borned. Consider §; linear by parts such that

Bo =0,

By, = B + ..+ B for s; = %,j e [1, L],

. 1
Bs;+r = Bs; + LB for T € [0, Z]
and &; such that

~ i S
ap, =t for t; = N,] € [[O>N]]>

1 1
dti+r =t + NBNT for 7 e [07 N]v

where N € N can be chosen arbitrarily large. On each subinterval [ ] , 0 = wo+dda

7 1
is of the form (wti + %ﬁsj) + 747! so is linear by parts. With the same argument than
previously, we can restrict the problem to the case where w; is of the form wy + td(rds) =
wo + tdr A ds with r and s borned, which is the case where the proposition is already proved.

It now remains to show how we obtain the decomposition of the 1-form a. We suppose that
V' is compact : if it not the case, we consider a compact extension. Let (p;)ie;r be a partition
of the unity subordinate to an atlas (Uj, ¢;)icr of V, that is such that >, _; p; = 1 and suppp; is
compact and included in U; for every i. For every i € I, we also consider x; such that y; = 1
on suppp; and suppy; < Us;.

Choose a coordinate system {x1,...,z,} on ¢;(U;) = R™ and write (¢;)«|y, = aidxi + ... +
al dxt. Then,
ay, = ¢F(abdal + ... + aldzl) = (a} o ;) pFdat + ... = (ab o ¢;)d(z} o b;) +
Now, see that
n
a= (Y pa=Ypalu, =Y p: Y (ako gt o ) Zpl @i o 65)d (xi(h © 61)).
el el el =1

If we set r™+7 = pi(aé o ¢;) and " = Xz(a:; o ¢;), which are compactly supported, we obtain
= Y, rlds!, which is the desired form. This achieves at the same time the proofs of the
proposition and the theorem. O

Remark 4.4.1. In the proof, we have used the fact that the cohomology class remains constant
when we pull back a form by a homotopy. Let us show this. Let w a closed p-form on W and
fi + V. — W a homotopy. Saying that the cohomology class of fiw is constant in H*(V) =
(Hy(V))~! is equivalent to say that fw takes fixed values on a base of Hy(V). Let 0 : A, — V

be a cycle. We have that
| o= eorw.
Ap A

Let ¢ : A x [0,1] — V be such that ¢(z,t) = (froo)(x). Then, using Stokes theorem, we have

J d(¢*w) = J oFw — J *w.
Ay x[0,1] Ax{1} Ax{0}

Since w is closed, the left hand side of the equation is equal to zero and fiw and fjw takes
the same value on the cycle o. As this cycle can be arbitrarily chosen, we have proved that the
cohomology class of ffw and f{w is the same.
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5 (enerating functions

In this chapter, we present a summary of what we learned about generating functions in [1] and
[15]. We expect to use these notions in futur reduction methods for Hamiltonian systems. In
fact, as we will see, generating functions are useful tools to build symplectomorphisms f : V' — V
on a given symplectic manifold (V,w). With a generating function S : V. — R, we can caracterize
f- When one wants to learn a Hamiltonian dynamic, this caracterization may be interesting.
Here, we take V = R?" and we use coordinates (g, p), with ¢,p € R”. We endow R?" with the
usual smyplectic structure, given by w = d\ with A = pdg.

We are here interested in isosymplectic maps, that is f : R?* — R?" such that f*w = w.

In particular, Hamiltonian flows are isosymplectic transformations :

(6)*w = w.

To show it, first note that this equation is equivalent to Lx,w = 0. Then, use Cartan’s formula

L.a =ta+d(L,a),

which is true for all p-form « and all vector field z in R?*. In this formula, L,o represents the
Lie derivative of the form « in the direction z and ¢, the interior product between z and «.
This immediately gives

txpdw + d(ix,w) = d(dH) = 0.

It is obvious that if f is isosymplectic, then the form A — f*\ is closed. In fact, it it even
exact: it exists S : R?” — R such that

pdq(p, q) + P(p,q)dQ(p, q) = dS(p, q). (5.1)

If we assume that the coordinates (¢, Q) are independent, we can express S in this coordinate
system. Note

We have o8 09
1 1
= — d P=— . 5.2
Conversely, if a function S; : RY x RN — R verifies det gz;%; # 0, then the implicite function
theorem applied to % tells that we can express @ in terms of p := % and ¢. If we set

Pi(q,Q) = %(q,Q) and P(p,q) = Pi(q,Q(p,q)), we obtain an isosymplectic transformation
g:(p,q) — (P,Q). In fact, it verifies equation (5.1) so if we apply the exterior derivative and
use the fact that ddS = 0, we have g*w = w. The map f is such that p and P satisfy (5.2). We
then say that Sy is the generating function of f.
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Note that we obtained a cananical transformation from a single map from R?" to R. More-
over, every isosymplectic transformation which verify the independence condition between ¢
and @) can be obtained from a generating function.

It can happen that ¢ and ) are not independent : this is for example the case in the identity
function. This do not mean that previous computations can not be done anymore. We can
apply the same argument with the coordinates ¢ and P instead of ¢ and (). We then have

651 aSl
L 4 Q=22 P).
P= "2 (¢,P) and Q= —=5(¢,P)
For example, a generating function for the identity function is given by S : (¢, P) — Pgq.
Actually, we can choose any partition (i1, ..., i), (J1, ..., jm) de (1, ..., V) such that

025,
det——— # 0.
o(P;,Q:)0q

For isosymplectic transformations close to the identity, we can choose generating functions
of the form )
S(P.q) = Pq+eS(P,q,e).

We then have

oS oS
sz—ea—q and Q=q+ea—P
so if we set H : (p,q) — S(p,q,0), we have
ar| oM o) _en
de le=0 g de le=0 g
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Conclusion

The internship was in line with last year internship, where we explored different linear reduction
methods for Hamiltonian problems, among which the PSD. The aim was to explore different
methods to improve the reduction given by the PSD in non-linear cases and established theoret-
ical justifications for the new methods. Two approaches have been taken : quadratic corrections
of the decoder and hyperreduction via optimal control. The different variations of the first one
which have been tested have given mediocre results, the trajectories computed in low dimension
with the corrected decoder did not differ significantly from the trajectories induced by the PSD
decoder. On the contrary, tests conducted within hyperreduction via control approach have
given promising results. In particular, we have presented a variation of the gradient descent
which appeared to be very efficient on simple cases. We are still carrying out additional tests in
order to explain it and adapat the method to more complex cases. In the geometrical part of the
internship, we have continued to read in order to being familiar with some geometrical tools.
We have learned about generating functions, which we hope to use to build new symplectic
decoders, and h-principle, which we want to use to justify the symplectic reduction approach.

To conclude, I think that the numerical objectives of internship were partially reached.
We have explored the quadratic correction approach but we put it aside due to non-satisfying
results. The hyperreduction approach gived results but we still are working on it and testing
the methods we presented. On the other hand, the geometrical objectives were reached since
we are now ready to start working on the conjecture that we want to prove. I could surely have
been expected to code more quickly, especially the quadratic corrections, and this is certainly
the reason why the numerical part is less developed than originally planed.

During this internship, I worked on some skills I acquired during the two years of Masters.
From the programming point of view, I used Python to implement methods I learned and this
gave me the opportunity to practise this language. From the numerical analysis point of view,
I enriched my knowledge about reduced order models, that we have seen in class in the case of
finite elements and that I have already seen in last year internship. I also used the theoretical
tool we learned in the optimal control lesson, namely the adjoint method, that I had to detail
in a case a little more difficult than the ones we have seen in class. I also worked on my English
skills as almost all the references I had to read were in English. I also developed new skills during
this internship : I discovered the h-principle and some techniques of proof very interesting. In
the field of "soft" skills, I often had to take a step back and think about the global mechanisms
rather than the technical details, but without losing sight of the geometric rigour. Because I
had a geometrician and two numerical analysts for supervisors, I sometimes had to switch from
a point of view to another to understand what there were saying about the same subject. 1
found these exercises difficult and I know that I have a lot of room for improvement.
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