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Introduction

This document present the work I have made during my internship, as part of my second year of
Masters. The internship took place at INRIA between 13 February and 11 August. I was under
the supervision of Emmanuel Franck, Emmanuel Opshtein and Laurent Navoret, researchers at
INRIA and IRMA.

INRIA (for Institut National de Recherche en Informatique et Automatique) is a public
establishment created in 1967 within the framework of the "plan calcul", a governmental plan
intended to develop French knowledge in the field of digital technology and to ensure the digital
sovereignty of the country. Today, it has 200 teams spread over 10 research centers, bringing
together a total of 3,900 researchers and engineers in mathematics and computer science [12].
The institute works by "équipes-projets", groups of about twenty people working on the same
project and for the most part in collaboration with companies [12]. The Nancy research centre
was founded in 1986 and today has 20 teams bringing together over 400 people. It has a branch
at the University of Strasbourg, where researchers from the TONUS team (for TOkamaks and
NUmerical Simulations) work, including one of my supervisor, Emmanuel Franck.

IRMA (for Institut de Recherche en Mathématique Avancée) is a research center in math-
ematics under the administrative supervision of the University of Strasbourg and the CNRS
(for Centre National de la Recherche Scientifique) [13]. It has been created in 1966 as the first
research centre associated to the CNRS, a public establishment itself created in 1939 in order
to structure and dynamize the French public research [7]. IRMA counts about 130 members
distributed in 7 research teams including the Geometry team, to which Emmanuel Opshtein
belongs, and the MoCo (for Modélisation et Contrôle) team, to which Laurent Navoret belongs.

This internship is in line with last year internship, where we studied linear reduction methods
for Hamiltonian systems. The aim of this year internship was to extend and improve those
methods in the non-linear case. Hamiltonian systems are systems of partial differential equations
whose flows have the particularity to preserve the energy of the underlying physical systems.
In geometry, those problems are studied in the field of symplectic geometry. Given a partial
differential equation, the objective of a reduced order model is to find a family of functions which
alone can explain a large part of the behaviour of the equation solutions. The interest of reduced
order modelling is that it allows a faster computation of solutions at any time and for any value
of the equation parameters in the interval considered during reduction. As we observed during
my last year internship, linear methods such as Proper Symplectic Decomposition (PSD) gives
good results for linear Hamiltonian equations but fail for non-linear one.

The main task of my internship was to think of ways to improve the reduction we obtain
with PSD. We have worked on two approaches of this problem. In the first one, we try to
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correct the application that sends the solutions on the reduced space given by the PSD. Here,
we used quadratic corrections and mainly tried to adapt to the Hamiltonian case a method
proposed in [10]. This task then involved references readings, mathematical computations to
set the problem and programmation (in Python). After fruitless tests for several variations of
this idea, we put it aside and start working on the second approach. The second idea is to
directly build a Hamiltonian dynamic in the reduced space given by the PSD. Here, we used a
control-type method with an explicit computation of the gradient to achieve it. This involved
mathematical computations using the adjoint method to find an expression of the gradient we
were looking for, reflexion on the resolution of the associated optimization problem and coding.
The tests we have made so far have given promising results.

The second part of my internship was devoted to being familiar with some geometrical tools
that we expect to use in future works to build models for Hamiltonian problems. I fulfilled this
task in parallel with the first one. As the first task, it was divided into two parts that I carried
out one after another. In a first time, I was asked to being familiar with generating functions,
a kind a application very useful to build symplectic maps. As the central idea of Hamiltonian
reduction is to find a good symplectic reduction, this tool may prove to be useful in future
works on the subject. In the field of learning Hamiltonian dynamics with neural networks, this
idea has already been exploited in [5]. Then, the objective was to get familiar with techniques
based on what we call h-principle. Those techniques are used in symplectic geometry to prove
the existence of symplectic embeddings between two manifolds. In our case, we expect to use
them to prove results which would give geometrical guaranties to the reduction methods we
are interested to build. To complete this task, I read [15] and [1] to learn about generating
functions and [8] to learn about h-principle.

What follows is divided into two parts that correspond to the two main task I worked on,
starting by the numerical part and finishing by the geometrical one. We insist more on the
control approach and on the h-principle than on quadratic corrections and generating functions
since it is the parts that are expected to give the better results in short time after the internship.
You will find a summary of the main notations at the beginning of this report.
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Notations

• 2n : the dimension of the high dimensional space,

• pM2n, ω2nq or pM,ωq : the high dimensional symplectic manifold on which lie the trajec-
tories of the PDE we are interested in (in fact R2n),

• x “ pq, pq : a point of M (note that we use the order we see on theoretical papers and not
the one we see on those dealing with numerical applications),

• k : the dimension of the low dimensional space we are looking for in the reduction context
when we do not suppose that it is symplectic,

• 2k : the dimension of the low dimensional space we are looking for in the reduction context
when we suppose that it is symplectic,

• Σk, Σ2k or Σ : the low dimensional submanifold of M on which lie the trajectories of the
PDE we are interested in,

• x̂ : a point of the submanifold Σk, also denoted by pp̂, q̂q when Σ is supposed to be
symplectic,

• Dk : U Ă Rk Ñ Σk : a (global) parametrisation for Σk, called decoder in the context of
reduction of dimension,

• E : Σk Ñ U Ă Rk : a (global) chart of the submanifold, also called encoder in the context
of reduction of dimension,

• N : the number of trajectories we consider to build the reduction D,

• m : the number of time intervals in each trajectories,

• Nm : the dimension of the sample,

• H : R2n Ñ R : a Hamiltonian function,

• Ĥ : R2k Ñ R : its reduction,

• d P N : when the Hamiltonian in high dimension is parametrized, the dimension of the
space where lives the parameter,

• g P Rd : the parameter itself (whenever it exists),
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• K P N : dimension of the space where we look for an optimal reduced Hamiltonian
function when performing optimal control approach,

• θ P RK : parameter of the reduced Hamiltonian when build with hyperreduction based
on an optimal control approach,
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Part I

Numerical part
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1 Context

1.1 Hamiltonian systems

In what follows, we consider a symplectic manifold pM,ωq and we study Hamiltonian systems,
i.e. systems of the form

#

9x “ XHpxq,

xp0q “ x0,

with XH P ΓpMq the Hamiltonian vector field defined by

ωpXH , ¨q “ dH,

for H : M Ñ R a Hamiltonian function.
If we also consider, in addition to the symplectic structure induced by ω onM , a Riemannian

structure induced by a metric g on this same space, the 2-form ω can be formulated in terms
of g, like any bilinear form: for all x PM , it exists Aωx such that for all u, v P TxM

ωxpu, vq “ gpAωxu, vq.

The matrix A must be skew-symmetric and non-degenerate. Note that g introduces another
structure on M that is not necessary for our purpose. Nevertheless, when we work on R2n,
using the Euclidian stucture simplifies computations.

We first considerM “ R2n with the standard symplectic form ω “ dq^dp and the Euclidean
structure induced by the standard scalar product x¨, ¨y. In this case, for all u, v P R2n,

ωpu, vq “ xJT2nu, vy,

where
J2n “

ˆ

0 ´In
In 0

˙

.

The previous system is then rewritten as

9x “ J2n∇xHpxq. (1.1)

If we write xptq “ ppptq, qptqq, this is equivalent to
$

’

’

&

’

’

%

qt “
BH

Bp
pq, pq,

pt “ ´
BH

Bq
pq, pq.
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1.2 Hamiltonian reduction

1.2.1 Goals

We wish to build a reduced model for the equation

9x “ XHpxq,

with x PM , which is also in a Hamiltonian form:

9̂x “ XH̃px̂q,

that is
9̂x “ J2k∇x̂Ĥpx̂q,

with x̂ in a 2k-dimensional manifold, for a certain Hamiltonian function Ĥ of Σk and k ! n.
For that, we start by computing some solutions of the original problem in high dimension.

From these data, we then look for a projection to a low dimensional space and a Hamiltonian
function in this space. In short, building a reduced order model consists in extracting a low
dimensional dynamic from a data set.

We in fact assume that it exists a low dimensional manifold Σk on which lies the solutions
of the previous problem. The set of solutions can be given by the trajectories for a single
Hamiltonian function starting at different points or trajectories for a parametrized Hamiltonian
function starting at the same point or even a mix of this two cases. In all cases, the space of
solutions is parametrized by a certain parameter g, which takes its value in a certain space G.
In this section we omit the mention of this parameter and when, in the following sections, it
will be necessary to mention it, we will consider that it is the Hamiltonian function which is
parametrized. The case where it is the initial condition will only slighly differ in notations. Note
also that if G is of dimension k, we expect that the space of solutions is also of dimension k.
However, we still need to compute them in high dimension, which is the space where work our
numerical solvers. All the point with the reduction is to explicit the dependance of the solutions
in g in a way trajectories can easily been computed without mention of the high dimensional
space.

Remark 1.2.1. The reason why we look for another Hamiltonian system in low dimension is
that previous works in the field of reduction for Hamiltonian systems showed that the induced
reduction usually gives better results in term of stability and accuracy (see []). Here is a
completely informal discussion about why this could not be surprinsing. In fact, it seems
reasonable since we then compute trajectories in low dimension using the same kind of rules than
in high dimension. In particular, we know that the Hamiltonian is conserved along trajectories,
and this property is physically important since the Hamiltonian usually represents the energy.
If the Hamiltonian in low dimension is well chosen, its conservation along trajectories in low
dimension may be a guaranty that the energy actually does not vary in the high dimensional
space. By conserving the geometrical structure on the space of solutions, the tools available to
describe them are still at our disposal and then the numerical solvers specially created to be
stable while integrating the solutions in high dimension has good chances to work also in the
low dimensional space. However, we have to note that we may not catch the actual dimension
of the solution manifold, which can even be odd. We therefore look for a symplectic manifold
Σk of very low dimension on which the original problem has a Hamiltonian formulation.
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For the reduction, we need a proper low dimensional symplectic manifold pΣk, ηq. In the
methods we will present here, we always first start by building Σk, before looking for a proper
Ĥ, and we always build it as a submanifold of pM,ωq. In particular, the symplectic form η will
be the restriction to Σk of ω. This implies that Σk is a symplectic submanifold and so that the
inclusion i : Σk ÑM is symplectic.

From now on, we assume that Σk is symplectically parametrized by R2k. We call decoder
the map D : R2k Ñ M which associates to the coordinates of a point x̂ in Σk the point ipxq
in M and encoder the map E which associates its coordinates to a point of Σk as sbmanifold
embedded inM . In what follows, pM,ωq will always be R2n endowed with the usual symplectic
form. In practice, we choose the submanifold Σk by the mean of D, which is the object that we
actually build.

1.2.2 The reduced model

The assumptions we have made on Σk implie that D is isosymplectic and so that D˚ω2n “ ω2k,
which is equivalent to

ω2npdx̂Dpuq, dx̂Dpuqq “ ω2kpu, vq

for all x̂ P R2k and all u, v P R2k.
Using the expression of ω2n and ω2k in terms of the scalar products on R2n and R2k, we

immediately find that a necessary and sufficient condition for dx̂D to preserve the Hamiltonian
structure is given by

tdx̂DJ2ndx̂D “ J2k @x̂ P R2k. (1.2)

Equation 1.1 can be rewritten as
∇Dpx̂q 9̂x “ J ∇HpDpx̂qq.

From the definition of the gradient in R2n, we get ∇pH ˝ Dqpx̂q “ t∇Dpx̂q∇HpDpx̂qq for all
x̂ P R2k, where ∇Dpx̂q represents the Jacobian matrix of D at x̂ P R2k. Then, if we multiply
the previous equation by tJ2k

t∇Dpx̂qJ2n, the condition on dx̂D gives
tJ2k

t∇Dpx̂qJ2n∇Dpx̂q 9̂x “ tJ2k
t∇Dpx̂qJ2nJ2n∇HpDpx̂qq,

ðñ tJ2kJ2k 9̂x “ tJ2k
t∇Dpx̂qp´I2nq∇HpDpx̂qq,

ðñ 9̂x “ J2k
t∇pH ˝Dqpx̂q.

The original problem thus takes a Hamiltonian form in the low dimensional space :
9̂x “ XH˝Dpx̂q.

When we have D, and the Σk, we have not finished the reduction. If we want to compute the
solutions in the low dimensional space without coming back at each step to the high dimensional
one, we need to find an expression, or at least an approximation, of H ˝ D. This last step is
called the hyperreduction.

1.2.3 Linear reduction

First, let us assume that the equation depends linearly on the parameters and on time. We
then look for a linear reduction, in other words, for a matrix A P M2n,2kpRq which preserves
the Hamiltonian structure. In this case, the symplecticity condition (1.2) becomes

tAJ2nA “ J2k.
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Symplecticity conditions for linear maps

A matrix A P M2n,2kpRq is said to be symplectic if it satisfies the above condition. If we
decompose A into four submatrices A1, A2, A3, A4 in Mn,kpRq such that

A “

ˆ

A1 A2
A3 A4

˙

,

we have

tAJ2nA “

ˆ

tA1
tA3

tA2
tA4

˙ˆ

0 ´In
In 0

˙ˆ

A1 A2
A3 A4

˙

“

ˆ

tA1
tA3

tA2
tA4

˙ˆ

´A3 ´A4
A1 A2

˙

“

ˆ

tA3A1 ´
tA1A3

tA3A2 ´
tA1A4

tA4A1 ´
tA2A3

tA4A2 ´
tA2A4

˙

.

Then, A is symplectic if and only if tA3A1 and tA4A2 are symmetric and tA4A1´
tA2A3 “ Ik.

Encoder and symplectic inverse

When a linear map links two spaces that do not have the same dimensions, it is hopeless to
try to inverse it. However, when it has full rank, it admits a left or right inverse which takes a
simple form in some cases. For example, it is the transposed for orthogonal matrices. It happens
that in the symplectic case, we also have a simple expression for the left or right inverse.

We define the symplectic inverse of a matrix A P M2n,2k as

A` :“ tJ2k
tAJ2n.

It is easy to check that if A is symplectic, then A`A “ I2k and tpA`q is symplectic: if A is
symplectic, then using the fact that J2k is orthogonal,

A`A “ tJ2k
tAJ2nA “

tJ2kJ2k “ I2k.

Similarly,

A`J2n
tA` “ ptJ2k

tAJ2nqJ2np
tJ2nAJ2kq “

tJ2kp
tAJ2nAqJ2k “

tJ2kJ2kJ2k “ J2k.

Since it is a left inverse of A and since it is symplectic if A is symplectic, then it is a
reasonnable choice for the encoder if A has been chosen to be the decoder.

Proper Symplectic Decomposition

To perform a linear reduction, the idea is to find a symplectic matrix A P M2n,2kpRq such that
Ax̂ is as close as possible to x, where x̂ is the solution of the reduced problem induced by A
and x is the solution of the initial problem.

To do this, we first compute the solution of the initial problem for some values of the
parameters and time and we evaluate the difference between these solutions and their images
after encoding and decoding, i.e.

}S ´AA`S}F . (1.3)
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We would like to minimize this loss. However, as an examination of the symplecticity
conditions shows, the set of symplectic matrices is not bounded. Therefore, this optimization
problem does not admit an explicit solution. Several methods have been proposed to find an
optimal A under additional constraints. We present here the Proper Symplectic Decomposition,
also known as cotangent lift or complex SVD, which is an adaptation of the Proper Orthogonal
Decomposition in the symplectic case.

We restrict the space where we look for the minimum of (1.3). The idea is to look for an
operator A of the form

ˆ

φ 0
0 φ

˙

,

with φ P Opnq. As shown in [17], this is in fact equivalent to choose the k columns of φ among
the tq1, ..., qm, p1, ..., pmu using classical POD.

1.3 Application to a piano vibrating string

In this work, we test the reduction on a set of equations modelling a piano string vibration,
proposed in [4].

1.3.1 The model

We consider the following problem:
$

’

’

’

’

&

’

’

’

’

%

B2
ttUpz, tq “ Bz

”

∇V pBzUpz, tqq
ı

@pz, tq P ΩˆR`

Upz, 0q “ U0pzq @z P Ω,
BtUpz, 0q “ U1pzq @z P Ω,
Upz, tq “ 0 @pz, tq P BΩˆR`.

In what follows, Upz, tq “ pvpz, tq, upz, tqq represents the longitudinal and transverse varia-
tions of the position of the point z in a piano string on the oscillation plane. The domain Ω is
the interval r0, 1s.

Let q “ pu, vq and p “ pBtu, Btvq. The previous equation is rewritten
$

’

&

’

%

Bq

Bt
“ p,

Bp

Bt
“ Bz

”

∇V pBzqq
ı

.

It has a Hamiltonian formulation with the energy function

Hpp, q, tq “

ż

Ω

1
2 |p|

2 ` V pBzqqdz.

Indeed, on the one hand

Hpp` p1, q, tq “

ż

Ω

1
2 |p|

2 ` V pBzqqdz `

ż

Ω
p ¨ p1dz `

ż

Ω

1
2 |p

1|2dz “ Hpp, q, tq ` xp, p1y ` op|p1|q,

from which
∇pHpp, q, tq “ p.
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On the other hand,

Hpp, q ` q1, tq “

ż

Ω

1
2 |p|

2 ` V pBzqqdz `

ż

Ω
∇V pBzqq ¨ Bzq1dz `

ż

Ω
op|Bzq

1|q

“ Hpp, q, tq `

ż

Ω
∇V pBzqq ¨ Bzq1dz ` op|q1|q.

After an integration by parts, since by hypothesis q1 is zero on BΩ, we find
ż

Ω
∇V pBzqq ¨ Bzq1dz “ ´

ż

Ω
Bz∇V pBzqq ¨ q1dz,

from which
∇qHpp, q, tq “ ´Bz∇V pBzqq.

The Hamiltonian is thus separated. The term in p represents the kinetic energy and the one
in q the potential one. We study different expressions for V , all given in [4].

To solve this problem in high dimension, we use Störmer-Verlet symplectic solver, given in
[11].

1.3.2 Application of the PSD

One of the potential energy proposed in [4] induces a linear model. As we have seen in a previous
work (see my M1 internship report), the PSD works well in this case. As we see on Figures 1.1
and 1.2, this is not the case for a choice of V which leads to a non-linear model. This work
aims to find reduction methods that improves the results we get with the PSD. We therefore
not consider the linear model and focus on the non-linear one, that we present now.

We consider V pu, vq “ 1´α
2 u2 ` 1

2v
2 ` α

2 pu
2v ` 1

4u
4q, which yields the following system :

$

’

&

’

%

B2
ttu “ Bz

”

p1´ αqBzu` αpBzuBzv `
1
2pBzuq

3q
ı

,

B2
ttv “ Bz

”

Bzv `
α

2 pBzuq
2
ı

.

Numerically, we approach first and second derivatives with finite differences :

Bzu «
upzi`1q ´ upziq

∆z

and
B2
zu «

upzi`1q ´ 2upziq ` upzi´1q

∆z2 .

As we see on Figure 1.1, reduction using PSD gives inaccurate reduced models for k “ 5. The
"bumps" are too sharp on the solution computed with PSD and one can see some oscillations.
Looking at H1 errors and energy, the model built with PSD produces an unstable solution.

Figure 1.1: ...

Figure 1.2: ...
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When we take k “ 10, these problems are still visible. To obtain a satisfactoring solution
with the reduced model, one should increase the reduced space dimension and take k “ 20.
This in fact means that the reduction failed because we did not succeed in capturing the low
dimensional structure of the problem. We can deduce that the problem we want to solve here
is too far from being linear to admit a linear reduction. If we still want to use PSD, we thus
have to look further to improve the reduction.

15



2 Hyperreduction with an optimal
control approach

In this chapter, we suppose that we have already performed a Proper Symplectic Decomposition
or any other linear reduction method that gives a decoding map D : R2k Ñ R2n from the low
dimensional space, where we want to compute the solutions of the studied Hamiltonian system,
to the high dimensional space, where we originally compute them. We also suppose that the
same method gives us an encoding map E : R2n Ñ R2k to compress solutions from the high
dimensional space to the low dimensional one.

In the original PSD approach, we then compute solutions in low dimension using the Hamil-
tonian obtained by composition of the Hamiltonian H of the original, and high-dimensional,
problem with the decoder. Of course, computing solutions this way is as costly as comput-
ing them in the classical high-dimensional way. This is why we usually add a hyperreduction
step to the reduction, which consists in finding a Hamiltonian function in low dimension which
interpolates H ˝D.

Here, we take another approach. Instead of interpolating H ˝ D, we directly want to find
the Hamiltonian in the low dimensional space that gives the more accurate trajectories, that
is trajectories which, when decompressed in the high dimensional space, are the closest to the
those that are computed in high dimension. This is achieved using an optimal control approach.
In the field of learning Hamiltonian dynamics with neurol networks, this kind of methods have
been used in [6, 18, 14] for instance. Here, we use a method of type Sparse Identification of
Non-linear Dynamics (SINDy), proposed in [2]. It briefly consists in taking the target function
in the space spanned by a set of given non-linearities. Coefficients of the target in this space
are chosen such that the image of the source data, which here is the set of the decompressed
low dimensional trajectories, corresponds as much as possible to the target, which here is the
set of high-dimensional trajectories, while keeping a lot of coefficients exactly equal to zero. We
detail the application of this method to our problem in the following section.

2.1 Problem setting

Let F “ tfi : R2k Ñ Rui P J1,KK with K P N a family of non-linear functions of class C2

and VF the finite dimensional Hilbert subspace spanned by F . For θ P RK , denote by Ĥθ the
element of VF such that Ĥθ “

řK
i“1 θifi. In the following, we are looking for the value of the

parameter θ which minimizes the loss

Lpθq “
ż

gPG

ż

tPr0,1s
}Dx̂θ,gptq ´ xgptq}

2
2kdgdt,
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where x̂θ,g : r0, 1s Ñ R2k denotes the solution of the problem
#

x1ptq “ XĤθ
pxptqq @t P r0, 1s,

xp0q “ Ex0,
(2.1)

where XĤθ
is the Hamiltonian flow of Ĥθ, thought of as the reduce version of Hg. Recall

that G is the set of admissible parameter for the high dimensional Hamiltonian Hg and xg :
r0, 1s Ñ R2n is the trajectory of x0 along the flow of Hg. We also denote by E and D the linear
encoder and decoder built at the previous reduction step using the PSD.

A classical method to find numerically a value close to an optimal value, is a gradient descent.
To implement it, however, one needs the gradient of the loss L with respect to the variable θ.
The following computations aims to find it.

To simplify further computations, we introduce the loss function

Lgpθq :“
ż

tPr0,1s
}Dx̂θ,gptq ´ xgptq}

2
2kdt.

Remark 2.1.1. Note that if we have the gradient of Lg for all g P G, then we simply obtain
the gradient of L by integration over G. Indeed, for all θ P RK , we have Lpθq “

ş

gPG Lgpθqdg
so for all h P RK small enough, it comes

Lpθ ` hq “
ż

gPG
Lgpθq `∇Lgpθq ¨ h` op}h}Kqdg “ Lpθq `

ż

gPG

K
ÿ

i“1
BiLgpθqhidg ` op}h}Kq

“ Lpθq `
K
ÿ

i“1
hi

ż K

gPG
BiLgpθqdg ` op}h}Kq “ Lpθq `

C

ż

gPG
∇Lgpθqdg, h

G

K

` op}h}Kq.

We deduce that ∇Lpθq “
ş

gPG ∇Lgpθqdg. In what follows, we will therefore restrict our study
to the case where G “ tg0u and skip mentions of g in our notations.

2.2 In-out application

Denote by F : RK Ñ H1pr0, 1sq2k the application which sends a value of the parameter θ to the
trajectory x̂θ generated by Ĥθ in low dimension. In the following, it will be called the in-out
application. Let also f : H1pr0, 1sq2k Ñ R be such that fpx̂q “ }Dx̂ ´ x}L2pr0,1sq2k . We have
L “ f ˝ F so, provided that both f and F are differentiable, the chain rule gives

dθL “ dFpθqf ˝ dθF .

If the variationnal method gives immediately the differential of f , it does not work with F ,
which is implicitely defined. The strategy that we develop here is a classical method of optimal
control. Briefly, it consists in finding what we call an adjoint state, build to satisfy a well-chosen
ordinary differential equation. Inserted into the expression of dθL, it allows to neutralize the
problematic terms.

2.2.1 Regularity of F

In the first step, we find a differential equation followed by dθF . Before that, we have to prove
that F is at least differentiable. We use here the implicit function theorem to achieve this. By
translating F by the constant function x0, we can reduce the problem where x0 “ 0.
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Consider the application

G :
#

RK ˆ V Ñ L2pr0, 1sq2k

pθ, xq ÞÑ x1 ´XĤθ
pxq

where V :“ tf P H1pr0, 1sq2k | fp0q “ 0u. It is a closed subspace of H1 so it is a Hilbert
space too for the H1 scalar product.

It is of class C1. To prove it, we first need the following result concerning θ ÞÑ XĤθ
.

Lemma 2.2.1. The application θ Ñ XĤθ
is linear and continuous. More precisely, we have

XĤh
“ tXh with

X :“ rXfisi“1,...,K P C1pR2k,R2kqK .

Proof. Let us first see that θ Ñ XĤθ
is linear. Clearly, this is the case of θ Ñ Ĥθ. Thanks to

the properties of the symplectic form ω, this is also the case of Ĥ Ñ XĤ : the bilinearity makes
that

ωpXĤ1`λĤ2
, ¨q “ dxpĤ1 ` λĤ2q “ dxĤ1 ` λdxĤ2 “ ωpXĤ1

, ¨q ` λωpXĤ2
, ¨q “ ωpXĤ1

` λXĤ2
, ¨q

and the non-degeneracy then insures that XĤ1`λĤ2
“ XĤ1

` λXĤ2
.

Then, since XĤθ
“

řK
i“1 θiXfi , if we introduce X as in the statement of the lemma, we have

XĤθ
“ tXθ.

Finally,
}XĤh

}L2 “

ż

xPR2k
}tXpxq ¨ h}2kdt ď }h}K

ż

xPR2k
}|Xpxq}|dt.

As Xpxq lies in M2k,KpRq, which is a finite dimensional space, the operator norm }| ¨ }| and the
Froebenius norm are equivalent so

}XĤh
}L2 ď cst }h}K

ż

xPR2k
}Xpxq}Fdt “ cst }h}K

2k
ÿ

i“1

K
ÿ

j“1
}Xij}L2pR2k,Rq.

All the coefficients of X are continuous functions so the double sum takes a finite value.

Let us go back to G. Let θ be a point in RK and x a function in V Ă H1pr0, 1sq2k. Let h
and y be two small elements of the same spaces. For all t P r0, 1s, we have

Gpθ ` h, x` yqptq ´Gpθ, xqptq “
´

y1ptq ´ dxptqXĤθ
pyptqq ´XĤh

pxptqq
¯

´

´

ε1pyqptq ` dxptqXĤh
pyqptq ` ε2pyqptq

¯

,

where ε1pyq and ε2phq are respectively in op}y}H1q and op}h}Kq.
From the regularity assumption on the elements of VF and from Lemma 2.2.1, we know

that the terms in the first parentheses are linear and continuous in ph, yq. In the second one,
ε1 and ε2 are the remaining terms in the first oder Taylor’s expansion of XĤθ

and XĤh
so they

are in op}y}H1q and a fortiori in op}ph, yq}RKˆH1q. The last term, dxp¨qXĤh
pyq, is bilinear and

continuous in h and y so is also in op}ph, yq}RKˆH1q. This proves that G is differentiable ad
that it’s differential is given by

dθ,xGph, yq : t ÞÑ y1ptq ´ dxptqXĤθ
pyptqq ´XĤh

pxptqq.
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We now have to see that dG : RK ˆ V Ñ Lc
`

V,L2pr0, 1sq2k
˘

is continuous. The first term
does not depend on x nor θ so it is continuous in this variables. The last one is continuous too
for the regularity we assumed on the functions in VF .

Let ȳ and h̄ be two small elements of H1pr0, 1sq and R. We have

~dx`ȳXĤθ`h̄
´ dxXĤθ

~ ď ~dx`ȳXĤθ
´ dxXĤθ

~ ` ~dx`ȳXĤh̄
~,

where ~ ¨ ~ denotes the operator norm for linear continuous functions between H1pr0, 1sq2k and
L2pr0, 1sq2k.

The second term in the last expression tends to zero as ph̄, ȳq Ñ 0 since

~dx`ȳXĤh̄
~ ď

K
ÿ

i“1
h̄i ~dx`ȳXfi~

with ~dx`ȳXfi~ Ñ ~dxXfi~ from Lemma 2.2.1.
For the first term, we have that t ÞÑ dxptqXĤθ

is continuous on the compact r0, 1s as com-
position of such functions so is uniformly continuous. Then,

@ε ą 0, Dδε | }ȳptq}2k ă δε ùñ sup
zPR2k

˜

}dxptq`ȳptqXĤθ
pzq ´ dxptqXĤθ

pzq}2k

}z}2k

¸

ď ε.

In particular,
}dxptq`ȳptqXĤθ

pyptqq ´ dxptqXĤθ
pyptqq}2k ď ε}yptq}2k

for all y P V . Passing to the L2 norm, we get

}dx`ȳXĤθ
pyq ´ dxXĤθ

pyq}L2 ď ε}y}L2 ď ε}y}H1

for all y P V , which gives

sup
yPH1pr0,1sq2k

˜

}dx`ȳXĤθ
pyq ´ dxXĤθ

pyq}L2

}y}H1

¸

ď ε

provided that }ȳ}8 ď δε. As H1pr0, 1sq2k is continuously injected in C0pr0, 1sq2k, this condition
is satisfied when }ȳ}H1 is small enough. Since ε can be chosen arbitrarily small, this proves that
dG is continuous and so that G is of class C1.

Now, the differential of G in the direction x at x̂θ, which is given by

y ÞÑ y1 ´ dxXĤθ
pyq

is bijective. In fact, for all g P L2pr0, 1sq2k, the system
#

y1 “ dxXĤθ
pyq ` g,

yp0q “ 0

has an unique solution by Cauchy-Lipschiz’s theorem. Then, applying the implicit function
theorem, it exists an open neighbourhood Ω “ Ω1 ˆ Ω2 of any pθ, x̂θq in RK ˆ V and a C1

function φ : RK Ñ V such that

pph, yq P Ω^Gph, yq “ 0q ðñ pθ P Ω1 ^ y “ φphqq.

But if Gph, yq “ 0, it means that Fphq “ y so F “ φ on Ω1. It means that F is C1 around θ
and since θ has been arbitrarily chosen, it also means that F is C1 on RK .
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2.2.2 Caracterization of dθF

Now that we have seen that dθF is well defined and continuous, we characterize it with a
differential problem in r0, 1s.

Proposition 2.2.1. The differential of F at θ in the direction h is solution of the following
Cauchy’s system

#

9zptq “ dFpθqptqXĤθ
pzptqq `XĤh

pFpθqptqq @t P r0, 1s,
zp0q “ 0.

(2.2)

Proof. Consider the equation

Fpθ ` hq ´ Fpθq “ dθFphq ` ε1phq

for some infinitesimal h in RK and derive it with respect to time. This leads to

XĤpθ`hq
pFpθ ` hqptqq ´XĤθ

pFpθqptqq “ d

dt
dθFphqptq `

d

dt
ε1phqptq

ðñ XĤθ
pFpθ`hqptqq`XĤh

pFpθ`hqptqq´XĤθ
pFpθqptqq “ d

dt
dθFphqptq`

d

dt
ε1phqptq (2.3)

for all t in r0, 1s.
Now, developing XĤθ

, XĤh
and F at first order, the left hand side becomes

XĤθ

´

Fpθqptq
¯

` dFpθqptqXĤθ

´

dθFphqptq
¯

` dFpθqptqXĤθ

´

ε1phqptq
¯

` ε2

´

dθFphqptq ` ε1phqptq
¯

`XĤh

´

Fpθqptq
¯

` dFpθqptqXĤh

´

dθFphqptq ` ε1phqptq
¯

` ε3

´

dθFphqptq ` ε1phqptq
¯

´XĤθ

´

Fpθqptq
¯

for all t P r0, 1s.
Rearranging the terms, we get

«

dFpθqptqXĤθ

´

dθFphqptq
¯

`XĤh

´

Fpθqptq
¯

ff

`

«

dFpθqptqXĤθ

´

ε1phqptq
¯

` ε2

´

dθFphqptq ` ε1phqptq
¯

` dFpθqptqXĤh

´

dθFphqptq ` ε1phqptq
¯

` ε3

´

dθFphqptq ` ε1phqptq
¯

ff

.

The function

m : h P RK ÞÑ

´

t ÞÑ dFpθqptqXĤθ

´

dθFphqptq
¯

`XĤh

´

Fpθqptq
¯¯

P L2pr0, 1sq2k

is linear and continuous as sum and compositions of such functions :

}mphq}2L2 ď

ż 1

0
}dxθptqXĤθ

pdθFphqptqq}22kdt`
ż 1

0
}tXpFpθqptqqh}22kdt

ď

ż 1

0
~dxθptqXĤθ

~2 ~dθFptq~2 }h}2Kdt`

ż 1

0
~XpFpθqptqq~2}h}2Kdt

“ cst }h}2K .

20



Lemma 2.2.2. The other terms, that is

t ÞÑ dFpθqptqXĤθ

´

ε1phqptq
¯

` ε2`3

´

dθFphqptq ` ε1phqptq
¯

` dFpθqptqXĤh

´

dθFphqptq ` ε1phqptq
¯

,

with ε2`3 “ ε2 ` ε3, are in op}h}Kq for the L2 norm.

Proof. By continuity of dFpθqptqXĤθ
for all t P r0, 1s

›

›

›
dFpθqp¨qXĤθ

´

ε1phqp¨q
¯
›

›

›

2

L2
“

ż 1

0
}dFpθqptqXĤθ

´

ε1phqptq
¯

}22kdt ď

ż 1

0
~dFpθqptqXĤθ

~ }ε1phqptq}
2
2kdt.

As Ĥθ is supposed to be of class C2, x ÞÑ dxXĤθ
is continuous. Since t ÞÑ Fpθqptq is continuous,

we finally have that t ÞÑ ~dFpθqptqXĤθ
~ is continuous on r0, 1s and therefore bounded. This

gives
›

›

›
dFpθqp¨qXĤθ

´

εphqp¨q
¯›

›

›

2

L2
ď cste

ż 1

0
}ε1phqptq}

2
2kdt “ cste }ε1phq}

2
L2 .

As ε1 is in op}h}Kq for the L2 norm, so is t ÞÑ dFpθqptqXĤθ

´

ε1phqptq
¯

.

In the second non-linear term, the fact that ε2`3pxq is in op}x}2kq when x tends to zero can
be written as

@ε ą 0, Dδε ą 0 | @x P R2k, }x} ă δε ùñ }ε2`3pxq}2k ă ε}x}2k. (2.4)

When h tends to zero in RK , dθF ¨ h` ε1phq tends to zero in H1pr0, 1sq, which is continuously
injected in C0pr0, 1sq. Then,

@δ ą 0, Dηδ ą 0 | @h P RK , }h} ă ηδ ùñ
`

@t P r0, 1s, }dθFptq ¨ h` ε1phqptq}2k ă δ
˘

. (2.5)

Now take ε ą 0, consider the δε given in (2.4) and the ηε :“ ηδ given in (2.5) for δ “ δε. If
}h}K ă ηε, then by (2.5),

}dθFptq ¨ h` ε1phqptq}2k ă δε

so by (2.4),
}ε2`3

`

dθFptq ¨ h` ε1phqptq
˘

}2k ă ε}dθFptq ¨ h` ε1phqptq}2k
for all t P r0, 1s. If we take the L2 norm of the previous inequality, we get

ż 1

0
}ε2`3

`

dθFptq ¨ h` ε1phqptq
˘

}22kdt ă ε2
ż 1

0
}dθFptq ¨ h` ε1phqptq}22kdt.

Since dθF ¨ h` ε1phq is in Op}h}Kq, we have

}ε2`3
`

dθFptq ¨ h` ε1phqptq
˘

}L2 ă cste ε}h}K .

As ε is arbitrarily chosen, we have proven that the second non-linear term is also in op}h}Kq.
For the remaining non-linear term, we have

}dFpθqp¨qXĤh

´

dθFphqp¨q ` ε1phqp¨q
¯

}2L2 “

ż 1

0
}dFpθqptqXĤh

´

dθFphqptq ` ε1phqptq
¯

}22kdt

ď

ż 1

0
}|dFpθqptqXĤh

}|2 }dθFphqptq ` ε1phqptq}22kdt

ď

ż 1

0
cste }|

K
ÿ

i“1
hi dFpθqptqXfi}|

2 }h}2Kdt

ď }h}4K

ż 1

0
cste max

1ďiďK
}|dFpθqptqXfi}|

2dt

so this last term is also in op}h}Kq.
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To finish the proof of the proposition, see that the first term in (2.3) is linear and continuous
with respect to h while the second term is in op}h}q in L2. Identifying the linear parts in both
sides of (2.3), we finally find that dθFpθq¨h is solution of the affine ordinary differential equation

9zptq “ dFpθqptqXĤθ
pzptqq `XĤh

pFpθqptqq @t P r0, 1s.

Moreover, as Fpθqp0q “ Ex0 for all θ, dθFpθq ¨ h also satisfies

zp0q “ 0R2k .

2.3 Gradient of L

We now express the differential of L in terms of dθF . Fix g P G. Let θ be any point of RK and
h be an infinitesimal displacement in this same space. Consider F first order Taylor’s expansion

Fpθ ` hq “ Fpθq ` dθFphq ` ε1phq,

where ε1 : RK Ñ H1pr0, 1sq2k satisfies }ε1phq}H1 “ op}h}Kq.
The developpement of L gives

Lpθ ` hq “ }DFpθ ` hq ´ x}2L2

“ }DFpθq ´ x}L2 ` 2xDdθFphq, DFpθq ´ xyL2

` 2xDε1phq, DFpθq ´ xyL2 ` }DdθFphq `Dε1phq}2L2 .

Since D is orthogonal, we have for each pair x, y in L2pr0, 1sq2k that

xDx,DyyL2 “

ż 1

0
Dx ¨Dy “

ż 1

0
x ¨ tDDy “

ż 1

0
x ¨ y “ xx, yyL2 .

Thus,

Lpθ ` hq “ Lpθq ` 2xdθFphq,Fpθq ´ tDxyL2 ` 2xε1phq,Fpθq ´ tDxyL2 ` }dθFphq ` ε1phq}2L2 .

The second term of the previous sum is linear and continuous as composition of such appli-
cations. By Cauchy’s inequality in L2pr0, 1sq2k, the third term is bounded by

}ε1phq}L2}Fpθq ´ tDx}L2

and since }ε1phq}H1 , and a fortiori }ε1phq}L2 , are supposed to be in op}h}Kq, so is the third term.
Applying the triangular inequality to the last term and invoking the assymptotic behaviours of
the linear continuous dθF and the 1-order neglectible ε1, we prove that the last term is also in
op}h}Kq. Therefore,

dθL “ 2xdθFphq,Fpθq ´ tDxyL2 (2.6)

Remark 2.3.1. Unless what usally occurs in optimal control problem, where the parameter θ
depends on time, it is here a fixed point of RK . This allows to rewrite quite immediately the
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differential of dθL in the finite dimensional space :

xdθF ,F ´DxyL2 “

ż 1

0

K
ÿ

i“1

`

dθF iptq ¨ h
˘

ˆ
`

F ipθqptq ´Dixptq
˘

dt

“

ż 1

0

2k
ÿ

i“1

˜

K
ÿ

j“1
BjF ipθqptq ˆ hj

¸

ˆ
`

F ipθqptq ´Dixptq
˘

dt

“

K
ÿ

j“1
hj ˆ

˜

ż 1

0

2k
ÿ

i“1
BjF ipθqptq ˆ

`

F ipθqptq ´Dixptq
˘

dt

¸

“ h ¨

ż 1

0

`

F ipθqptq ´Dixptq
˘

¨∇Fpθqptqdt.

Then, we also have ∇Lpθq “
ş1
0
`

F ipθqptq ´Dixptq
˘

¨ ∇Fpθqptqdt. Now that we have car-
acterized ∇Fpθq, we can compute ∇Lpθq. However, the computation of ∇Fpθq involves K
differential systems in R2k, with K possibly very large.

In fact, it is possible to write ∇Lpθq in another way which only involves one differential
system in R2k. To show that, we use a classical method in optimal control, which makes use of
a well-chosen adjoint function a : r0, 1s Ñ R2k.

More precisely, we set a as the unique solution of the adjoint Cauchy’s problem
$

&

%

9aptq “ dFpθqptqXĤθ
paptqq `

´

Fpθqptq ´ tDxptq
¯

,@t P r0, 1s,

apT q “ 0.
(2.7)

Theorem 2.3.1. For all θ in R2k,

∇Lpθq “ ´2
ż 1

0
X
´

Fpθqptq
¯

aptqdt, (2.8)

with a and X as previously defined.

Proof. We have
9aptq ´ dFpθqptqXĤθ

paptqq “
´

Fpθqptq ´ tDxptq
¯

for all t in r0, 1s. Inserting this equality in (2.6), we get

dθLphq “ 2
ż 1

0
x 9aptq ´ dFpθqptqXĤθ

¨ aptq, dθFphqptqyR2kdt.

After an integration by part of the first term, we obtain

dθLphq “ 2
ż 1

0
´xaptq, 9dθFphqptqyR2k ´ xdFpθqptqXĤθ

¨ aptq, dθFphqptqyR2kdt

` apT qdθFphqpT q ´ ap0qdθFphqp0q.

Thanks to the initial and final condition on a and dθFphq, the last two terms vanish. Using
the equation satisfied by dθFphq, we have

dθLphq “ 2
ż 1

0
´xaptq, dFpθqptqXĤθ

¨ dθFphqptqyR2k ´ xaptq, XĤh
pFpθqptqqyR2k

´ xdFpθqptqXĤθ
¨ aptq, dθFphqptqyR2kdt.
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Now, it suffices to notice that dFpθqptqXĤθ
is skew-symmetric (it is JHessĤθpFpθqptqq) to

finally get

dθLphq “ ´2
ż 1

0
xaptq, XĤh

`

Fpθqptq
˘

y2kdt

“ ´2
ż 1

0
xaptq, tX

´

Fpθqptq
¯

hy2kdt

“ ´2
ż 1

0
xX

´

Fpθqptq
¯

aptq, hyKdt

“ x´2
ż 1

0
X
´

Fpθqptq
¯

aptqdt, hyK .

We conclude that
∇θL “ ´2

ż 1

0
X
´

Fpθqptq
¯

aptqdt.

To compute this gradient, we have to compute the solution of an ODE in dimension 2k,
where k is supposed to be small, evaluate 2kˆK functions on the points of the trajectory x̂θ and
compute a matricial multiplication along the small dimension of X. This is far less expensive
than solving 2k ˆK ODE.

Remark 2.3.2. The equation satisfied by the adjoint can be recovered from a formal resolution
of the optimization problem

inf
xθ

Jpxq

under the constraint that xθ P H1pr0, 1sq2k is solution of the Hamiltonian problem associated
to Ĥθ. with Jpxθq “ Lpθq.

The Lagrangian operator of this problem is given by

Lpθ, λq “ Jpxθq `

ż 1

0
λ ¨

`

x1θ ´XĤθ
pxθq

˘

dt.

The point pθ, λq P RK ˆH1pr0, 1sq2k is a critical point if
#

BθLpθ, λq “ 0,
BλLpθ, λq “ x1θ ´XĤθ

pxθq “ 0.

As all the functions are at stake are at least L2, we can switch the integral and the derivative
in the first equation, which gives for all h P RK small enough

BxJpxθq
`

dθFphq
˘

`

ż 1

0
λ ¨

ˆ

d

dt
dθFphq ´ dxθXĤθ

`

dθFphq
˘

˙

dt “ 0.

After an integration by parts, the first term in the integral becomes

´

ż 1

0
λ1 ¨ dθFphqdt` λp1q ¨ dθFphqp1q ´ λp0q ¨ dθFphqp0q,

where the last term vanishes thanks to the initial condition on dθF .
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We get
ż 1

0

”

pxθ ´
tDxq ´ λ1 ´ λ ¨ dxθXĤθ

ı

¨ dθFphqdt` λp1q ¨ dθFphqp1q “ 0.

Note that the jacobian of XĤθ
is skew-symmetric. The previous equality is then verified if

#

λ1ptq “ dxθXĤθ
pλptqq ` pxθptq ´

tDxptqq, @t P r0, 1s
λp1q “ 0,

which is exactly the adjoint problem.

2.4 Penalisation

In practice, the number K can be chosen very large. When this is the case, it slow down the
evaluation of XĤθ

and then reduce the efficiency of the reduction. To remedy this problem, we
can add a penalization term at the loss function and minimize

Lpθq “
ż

gPG

ż

tPr0,1s
}Dx̂θ,gptq ´ xgptq}

2
R2kdgdt` α}θ}1,

where α is a positive real number. The additional term forces a lot of coefficients of α to be
exactly set to zero.

As it is given, this penalisation term is not differentiable. This is why we replace it in
practice by θ ÞÑ

?
θ2 ` ε for an epsilon chosen very small, 10´6 for example. Then, we just have

to add θ?
θ2`ε

at the gradient we have found at the previous section.

2.5 Algorithms

Now, that we have a satifying expression for ∇Lpθq, we can perform a numerical optimization
using Algorithm 2.5.

Recall that we suppose that we have computed a set of solution txgiui“1,...,m for some values
tgiui Ă G of the parameter g. It can be a parameter of the primal equation or the initial
condition. When g parameters the primal equation, a way to take this dependance into account
in the reduction is to take functions fi which involves this parameter. By doing this, the
optimization will give a family tHθ˚,gug, where θ˚ is the optimal value of the parameter θ over
all the trajectories xgi . When g only appears in the inital condition, we are only looking for one
Hamiltonian function Hθ˚ so we have to take the fi independant of g.

Of course, this basic algorithm can be sophisticated by adding momentum or by using Adam
descent instead of the basic gradient descent. We will present comparisons for some cases in
the following section.

During tests, it happens that taking into account only a small portion of the studied interval
r0, 1s at each step can highly improve the descent efficiency. Below are exposed two precise
algorithms which make use of this idea.

In algorithm 2.5, we in fact use a different gradient at each step, which is actually the
gradient of Lg when the integration interval is rb∆t, c∆ts instead of r0, 1s. This way, we introduce
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Algorithm 1 Simple gradient descent
Require: θ0 P RK , α, η ą 0, ρ ą 0, G “ tg1, ..., gmu, xG :“ txg1 , ..., xgmu, and X
θ Ð θ0
while }∇Lpθq}

}∇Lpθ0q} ą η do
∇ Ð αθ?

θ2`ε
for all g P G do

compute the solution xθ of (2.1) for g and current θ
compute aθ of (2.7) for current θ, g, xθ and xg.
compute ∇Lgpθq from (2.8) with aθ and xθ
∇ Ð ∇`∇Lgpθq

end for
θ Ð θ ´ ρ∇

end while

Algorithm 2 Progressive gradient descent 1
Require: θ0 P RK , α, η ą 0, ρ ą 0, G “ tg1, ..., gNu, xG :“ txg1 , ..., xgN u, w P J1,mK, ∆t, X
θ Ð θ0
while }∇Lpθq}

}∇Lpθ0q} ą η do
∇ Ð αθ?

θ2`ε
for i “ 0, ..., tmw u do

bÐ iw
cÐ b` w
for all g P G do

compute the solution xθ,g of (2.1) starting at x0 “ xgpb∆tq on the interval
rb∆t, c∆ts.

compute aθ,g of (2.7) from xθ,g ending at apc∆tq “ 0 on the interval rb∆t, c∆ts.
compute ∇Lgpθq from (2.8) with aθ and xθ on the interval rb∆t, c∆ts.
∇ Ð ∇`∇Lgpθq

end for
θ Ð θ ´ ρ∇

end for
end while
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"stochastic-like" effect in the descent. A variation of this method can be to shift the considered
window of one time step ∆t instead of w time steps. Another one would consist in taking
randomly the starting points b at each step. One can also imagine taking at each step several
intervals instead of one. We will discuss all these variations in the following section.

Algorithm 3 Progressive gradient descent 2
Require: θ0 P RK , α, η ą 0, ρ ą 0, G “ tg1, ..., gNu, xG :“ txg1 , ..., xgN u, w P J1,mK, ∆t and

X
θ Ð θ0
while }∇Lpθq}

}∇Lpθ0q} ą η do
∇ Ð αθ?

θ2`ε
for all g P G do

compute the solution xθ,g of (2.1) starting at x0 “ xgp0q on the interval r0, 1s.
end for
for i “ 0, ..., tmw u do

bÐ iw
cÐ b` w
for all g P G do

compute aθ,g of (2.7) from xθ,g ending at apc∆tq “ 0 on the interval rb∆t, c∆ts.
compute ∇Lgpθq from (2.8) with aθ and xθ on the interval rb∆t, c∆ts.
∇ Ð ∇`∇Lgpθq

end for
θ Ð θ ´ ρ∇

end for
end while

Algorithm 2.5 presents another way to optimize on subintervals which is less interpretable
but which gives in some cases better results than the previous one. There is a single change
in this new version : to compute the adjoint state, we use the solution of the primal problem
computed with an inital condition at t “ 0 whatever is b. Looking back to the proof of (2.8), we
see that doing this way, the inital term after the integration by parts does not vanish. Therefore,
the quantity we obtain is not longer the gradient of Lg on any interval. We do not even know if
it is a gradient at all. We mentionned this method because in some cases, it gives better results
than the two previous ones. We will present and discuss these results in the following section.

2.6 Tests

2.6.1 First tests on known target Hamiltonians

2.6.2 Tests on the reduction problem
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3 Quadratic corrections for PSD

In this chapter, we present a different approach to learn the Hamiltonian in low dimension.
We worked on it at the beginning of the internship but it does not give satisfying results. We
present our work all the same because it is a lead that we could follow in future works.

As for the previous hyperreduction approach, we supposed that the PSD, or any other
linear reduction method, has already given us a decoder D : R2k Ñ R2n and an encoder
E : R2n Ñ R2k between the high and the low dimensional spaces. As we have seen for the
non-linear piano string model, the induced reduction give bad results when the equations are
too non-linear. This suggest that the submanifold Σk, on which lie the solutions of the PDE
we are looking at, has too strong non-linearities to be embedded in a low dimensional vector
subspace of R2n. Therefore, it seems that we have to look for non-linear decoders D if we want
to obtain better results.

Here, we do not care about hyperreduction, which is viewed as the following step in the
reduction process. We actually look if it is possible to improve the passage from the low
dimensional space to the high dimensional one by adding a non-linear part to the decoder.
More precisely, we want to adapt the method proposed in [10] in the symplectic case and add
to the decoder a quadratic term which reduces the compression-decompression error. By doing
so, we have to make sure that the new decoder remains symplectic. In the following, we present
different variations of this idea and the results we obtained.

3.1 Shears

Before presenting the methods we have explored, we introduce the notion of shear that will
turn out to be useful to build families of symplectic quadratic maps. We say that a map from
Rm to Rr is quadratic if all of its r coordinate functions are polynomial of degree inferior or
equal to 2.

Definition 3.1.1 (Shear, [16]). A shear transformation is a map

σV :
"

R2m Ñ R2m

pq, pq ÞÑ pQ,P q

such that Qi “ qi and Pi “ pi`BqiV pqq with V : Rn Ñ R a cubic potential, that is a polynomial
function of degree 3.

Proposition 3.1.1. In the symplectic space R2m endowed with the usual symplectic form, a
shear is a symplectic quadratic map.

Proof. To prove this assertion, it is sufficient to see that σV is the transformation induced by
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the generating function
S : pq, P q ÞÑ Pq ´ V pqq.

In fact, the transformation pq, pq ÞÑ pQ,P q induced by S verifies
#

pi “
BS
Bqi
pq, P q “ Pi ´ BqiV pqq,

Qi “
BS
BPi
pq, P q “ qi

for all i between 1 and m.
Moreover, as V is supposed to be cubic, σV is quadratic.

Note that the shears form an Abelian group for the composition and that the correspondance
V ÞÑ σV is a homomorphism between the additive group of the cubic functions and the shears.

Let us now see what is the physical meaning of a shear. Consider the Hamiltonian function
H : pq, pq ÞÑ 1

2 |p| ` V pqq. It represents an energy function which is obtained by the sum of a
kinetic energy and a potential one. The corresponding system is given by

#

9p “ ´BH
Bq “ ´V

1pqq,

9q “ BH
Bp “ p

Denote by pqt, ptq the state of the system at a time t. When ε comes close to zero, we have
"

pt`ε “ pt ´ εV 1pqq,
qt`ε “ qt ` εpt

We can see the transformation pqt, ptq ÞÑ pqt`ε, pt`εq, induced by the flow of the equation, as the
composition of the transformation pqt, ptq ÞÑ pqt` εpt, ptq, induced by the Hamiltonian function
without potential energy, and the shear σεV . Therefore, we can link a shear with the effect of a
potential on a system. With that point of view, it seems to be reasonable to try correct a bad
reduction which is particularly wrong on the speed, as it is our case, with a shear.

The following result, proved in [16], gives a normal form, involving shears, for any quadratic
symplectic map.

Theorem 3.1.1 (Normal form for symplectic quadratic maps, [16]). Any quadratic symplectic
map φ on R2m can be decomposed as the composition of a symplectic linear map l, a shear σ
and a symplectic affine function a of R2m, that is

φ “ a ˝ σ ˝ l. (3.1)

Moreover, a and l are linked by the formula

a “ dφp0q ¨ l´1 ` φp0q.

This results implies that any quadratic symplectomorphism is invertible and has another
quadratic symplectomorphism for inverse map.

Unfortunately, the proof of this result can not be adapted to the case of symplectic quadratic
maps between R2m and R2l with l ă m.

3.2 Quadratic correction with shears in low dimension

In this section, we look for a decoder Dcorr of the form D ˝ φλ, where φλ : R2k Ñ R2k is a
quadratic symplectic map.
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3.2.1 Expression of the optimization problem

Expression of the corrected decoder

We first take for the family
`

φλ
˘

λ
the group of the shears. The parameter λ is then the

coefficients of V , which we write

V pyq “
ÿ

1ďiďk
λiyi `

ÿ

1ďiďjďk
λijyiyj `

ÿ

1ďiďjďlďk
λijlyiyjyl.

In the following, R will represent the number of coefficients. We count k terms of order 1 and
kpk`1q

2 terms of order 2 in the previous expression for V . In the same way, there are

k
ÿ

i“1

k
ÿ

j“i

k
ÿ

l“j

1 “
k
ÿ

i“1

k
ÿ

j“i

pk ´ j ` 1q “
k
ÿ

i“1

k´i`1
ÿ

m“1
m “

k
ÿ

i“1

pk ´ i` 1qpk ´ i` 2q
2

“

k
ÿ

i“1

`pk ` 1qpk ` 2q
2 ´ i

2k ` 3
2 `

i2

2
˘

“
kpk ` 1qpk ` 2q

2 ´
2k ` 3

2
kpk ` 1q

2 `
kpk ` 1qp2k ` 1q

12

“
kpk ` 1qpk ` 2q

6

terms of order 3 and
R “

kpk ` 1qpk ` 5q
6 ` k.

According with the normal form of symplectic quadratic maps, if we would like to cover the
whole space of quadratic symplectomorphism of R2k in pφλqλ, we would have to compose the
shears with affines and linear symplectomorphism as in 3.1. This complicates a lot the problem
so we limit ourselves to taking a “ l “ id.

Objective function

We are looking for the λ P RR such that

}X ´DφλX̂}
2
F,2n,N

is minimal, where } ¨ }F,2n,N denotes the Froebenius norm in M2n,N pRq, X the matrix of the
N sample in R2n and X̂ the matrix of their PSD reduction in R2k. It happens that

}X ´DφλX̂}
2
F,2n,N “ }pQ,P q ´DpQ̂, P̂ `∇V pQ̂qq}2F,2n,N

“ }Q´ApsdQ̂}
2
F,n,N ` }P ´ P̂ ´∇V pQ̂qq}2F,n,N

where Apsd is the submatrix of D such that D “

´

Apsd 0
0 Apsd

¯

. The previous problem is then
equivalent to solving

argmin
V PP3pRkq

}P ´ P̂ ´∇V pQ̂qq}2F,n,N , (3.2)

where P3pRkq denotes the ring of polynomial functions of degree at most 3 on Rk.
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3.2.2 Least-square formulation

Clearly, λ ÞÑ φλ is a linear map. We can therefore rewrite the problem in a way such that it
becomes a least-square one. Set

Λ “ t
`

λ1 ... λk λ11 λ12 ... λkk λ111 ... λkkk
˘

P RR.

In what follows, we use the lexico-graphic order when we work with the elements ti, j, lu of
J1, kK3, starting by the smallest indice of the set and finishing by the largest. To simplify further
notations, we introduce the function P : J1, kK3 Ñ J1, RK which associates to the set ti, j, lu its
position in the ordered list of all the 3-uplets pi1, i2, i3q verifying i1 ď i2 ď i3. For i ď j ď l, we
have that

P pi, i, iq “
i´1
ÿ

r“1

k
ÿ

s“r

k
ÿ

t“s

1 “
i´1
ÿ

r“1

pk ´ r ` 1qpk ´ r ` 2q
2

“
i´ 1

2

ˆ

kpk ` 3q ` ipk ` 3
2 `

ip2i´ 1q
6 q

˙

` i,

P pi, j, jq “ P pi, i, iq `
j´1
ÿ

s“i

k
ÿ

t“s

1 “ P pi, i, iq `
pj ´ iqp2k ´ i´ j ` 3q

2 ,

P pi, j, lq “ P pi, j, jq ` l ´ j.

For 1 ď l ď k, let S “ 1 ` k ` kpk`1q
2 . Let also Fl P MS,1pRq be the matrix of the map

y P Rk ÞÑ BlV pyq, verifying BlV pyq “ FlȲ with Ȳ “
`

1 y1 ... yk y1y1 ... ykyk
˘

. For all
1 ď l ď k, we have that

BlV pyq “ λl `
k
ÿ

i“1i‰j
λilxi ` 2λllxl `

ÿ

1ďiďjďki,j‰l
λijlxixj `

k
ÿ

i“1i‰l
2λillxixl ` 3λlllx2

l

so Fl “ GlΛ with Gl in MS,RpRq such that
$

’

’

&

’

’

%

Gl1,l “ Gli`1,P p1,i,lq`k “ GlP p1,i,jq`k`1,P pi,j,lq`K`k “ 1,

Gll`1,P p1,l,lq`k “ GlP p1,i,lq`k`1,P pi,l,lq`K`k “ 2,

GlP p1,l,lq`k`1,P pl,l,lq`K`k “ 3

for all i, j in J1, kK different from l with K “
kpk`1q

2 .
If we set

G “

¨

˚

˚

˚

˚

˝

G1

...

Gk

˛

‹

‹

‹

‹

‚

and ¯̄Y “

¨

˚

˝

tȲ 0
. . .

0 tȲ

˛

‹

‚

,

we then have that ∇V pyq “ ¯̄Y GΛ. Now, if we want to apply this to the matrix Q̂ of the
snapshots and if we take

¯̂̄
Q “

¨

˚

˚

˝

t ¯̂
Q 0

. . .
0 t ¯̂

Q

˛

‹

‹

‚

,
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we have to multiply the result by the permutation matrix P with sends the pik ` jq-th line of
¯̂̄
GGΛ on the pjN ` iq-th one, where N is the number of solutions recorded in X.

This finally gives the least-sqare formulation of the problem 3.2 :

argmin
V PP3pRkq

}X ´ P
¯̂̄
QGΛ}2F,n,N ,

whose solution is given by
ˆ

tpP
¯̂̄
QGqpP

¯̂̄
QGq

˙´1
tpP

¯̂̄
QGqX.

3.2.3 Corrected reduced model

The new decoder is written Dcorr “ D ˝ σV . We have

Dpq, pq “ pDq
corrpq, pq, D

p
corrpq, pqq “ pApsdq, Apsdp`∇V pqq

and therefore
#

∇qD
q
corrpq, pq “ Apsd,

∇pD
q
corrpq, pq “ 0,

#

∇qD
p
corrpq, pq “ ∇2V pqq,

∇pD
p
corrpq, pq “ Apsd.

Then, the components of the new reduced Hamiltonian are given by
$

’

’

’

’

&

’

’

’

’

%

∇qĤpq, pq “
t∇qD

q
corrpq, pq ¨∇qHpDcorrpq, pqq `

t∇qD
p
corrpq, pq ¨∇pHpDcorrpq, pqq

“ tApsd ¨∇qHpDcorrpq, pqq `
t∇2V pqq ¨∇pHpDcorrpq, pqq

∇pĤpq, pq “
t∇pD

q
corrpq, pq ¨∇qHpDcorrpq, pqq `

t∇pD
p
corrpq, pq ¨∇pHpDcorrpq, pqq

“ tApsd ¨∇pHpDcorrpq, pqq.

3.2.4 Results

We have implemented this correction and we obtained the results presented Figures ?? and ??.
We see that the correction do not improve the solution in low dimension.

This can be explained by the fact that we do not change the image of the decoder in R2n.
More precisely, the PSD gives a linear subspace of R2n but the manifold on which lies the
soltuions may not be linear at all. The best that we can obtain with the PSD is therefore a
linear subspace in which this target manifold is included. In the cases where this manifold is
highly non-linear, this subspace can be of high dimension and this is why the linear reduction
fails.

Now, when we correct the decoder produced by the PSD, we change the reduced Hamiltonian
but we do not change the space in which it takes its values. If the dimension of the linear
subspace obtained with the PSD is too high or if it does not include the true manifold, then
the quadratic correction has few chance to really improve the resolution in low dimension.

3.3 Additive quadratic correction

Following an idea found in [10], we now look for a decoder of the form Dcorr “ D ` φλ.
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3.3.1 Tentative 1

Symplecticity condition

We look for φλ of the form y ÞÑ ĀỸ where Ỹ “ py1y1, y2y2, ..., y2ky2kq and Ā is in M2n,2kpRq.
In this case, the jacobian of the new decoder at point y P R2k is given by D ` 2ĀY , with
Y “

´

Yq 0
0 Yp

¯

, where Yq and Yp are the n ˆ k diagonal matrices with diagonal coefficients
y1, ..., yk and yk`1, ..., y2k.

Decompose Ā into four submatrices a, b, c and d of M2n,2kpRq :

Ā “

ˆ

A B
C D

˙

This gives

JDcorrpyq “

ˆ

Apsd ` 2AYq 2BYp
2CYq Apsd ` 2DYp

˙

.

According to previous computations, Dcorr is symplectic if and only if
$

&

%

2Y t
qCpApsd ` 2AYqq “ 2tpApsd ` 2AYqqCYq,

2tpApsd ` 2DYpqBYp “ 2Y t
pBpApsd ` 2DYpq,

tpApsd ` 2DYpqpApsd ` 2AYqq ´ 4Y t
pBCYq “ Ik

for all Yp and Yq diagonal matrices in Mn,kpRq.
Rearranging the terms and taking into account that tApsdApsd “ Ik by construction, we

obtain
$

&

%

2YqptAC ´ tCAqYq `
tApsdCYq ´ Yq

tCApsd “ 0,
2YpptDB ´ tBDqYp `

tApsdBYp ´ Yp
tBApsd “ 0,

2YpptBC ´ tDAqYq ´
tApsdAYq ´ Yp

tDApsd “ 0.
(3.3)

for all Yp and Yq.
When we set pYq, Ypq “ pIk, 0q and pYq, Ypq “ p0, Ikq in the third equation, we respectively get

tApsdA “ 0 and tApsdD “ 0. Inserting these results in the third equation with pYq, Ypq “ pIk, Ikq,
we have tBC ´ tDA “ 0. Conversely, if we have tApsdA “ tApsdD “ 0 and tBC ´ tDA “ 0, the
third equation is true for all Yq, Yp.

On the other hand, when we take Yq “ Ik and ´Ik in the first equation, we obtain 2ptAC ´
tCAq ` tApsdC ´

tCApsd “ 0 and ´2ptAC ´ tCAq ` tApsdC ´
tCApsd “ 0. Adding the two

equation gives tApsdC ´
tCApsd “ 0, substrating them tAC ´ tCA “ 0. Now, if we introduce

the last expression in the third equation of 3.3, we get tApsdCYq ´ YqtCApsd “ 0 for all Yq. Let
us see that the symmetry of tApsdC that we have just shown implies then that tApsdC “ 0. In
fact, if for all indices i, j in J1, nK,

n
ÿ

l“1
pApsdqliClj “

“

tApsdC
‰

ij
“

“

tCApsd
‰

ij
“

n
ÿ

l“1
pApsdqljCli,

then
n
ÿ

l“1
pApsdqliCljpYqqjj “

“

tApsdCYq
‰

ij
“

“

Yq
tCApsd

‰

ij
“

n
ÿ

l“1
pApsdqljClipYqqii “

n
ÿ

l“1
pApsdqliCljpYqqii

so
ppYqqjj ´ pYqqiiq

“

tApsdC
‰

ij
“ ppYqqjj ´ pYqqiiq

n
ÿ

l“1
pApsdqliClj “ 0
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for all indices i, j and for all values of pYqqjj and pYqqii. This implies that tApsdC “ 0. Con-
versely, if we have tApsdC “ 0 and tAC ´ tCA “ 0 , then the first equation of 3.3 in true for all
value of Yq. Exactly in the same way, we find that the second equation of 3.3 is equivalent to
tApsdB “ 0 and tDB ´ tBD “ 0.

Optimization problem

Consider the loss function

L :
#

Mn,kpRq4 Ñ R
pA,B,C,Dq ÞÑ }X̄ ´ Ā

˜̂
X}2F,2n,N ,

where X̄ denotes the compression-decompression error made by the PSD on the samples, that
is X ´DX̂.

According to the preceeding section, Dcorr is symplectic if and only if Ā is a zero of the
functions

g1 : pA,B,C,Dq ÞÑ }tApsdA}
2
F,k,k,

g2 : pA,B,C,Dq ÞÑ }tApsdB}
2
F,k,k,

g3 : pA,B,C,Dq ÞÑ }tApsdC}
2
F,k,k,

g4 : pA,B,C,Dq ÞÑ }tApsdD}
2
F,k,k,

g5 : pA,B,C,Dq ÞÑ }tAC ´ tCA}2F,k,k,

g6 : pA,B,C,Dq ÞÑ }tDB ´ tBD}2F,k,k,

g7 : pA,B,C,Dq ÞÑ }tBC ´ tDA}2F,k,k.

Whatever the dimension of the matrices we are looking at, the Froebenius norm is Euclidian
for the scalar product p¨, ¨q : pA,Bq ÞÑ TrptABq. On Mn,kpRq4, we use the scalar product
induced by the Cartesian product

xpA,B,C,Dq; pE,F,G,Hqy “ pA,Eq ` pB,F q ` pC,Gq ` pD,Hq

and the associated norm }| ¨ }|.
Note

Ki “ tpA,B,C,Dq P Mn,kpRq4 | gipA,B,C,Dq “ 0u

and K “
Ş7
i“1Ki. We want to solve

min
pA,B,C,DqPK

LpA,B,C,Dq.

Consider Taylor’s expansion of L at pA,B,C,Dq in the direction of ph1, h2, h3, h4q:

LpA` h1, B ` h2, C ` h3, D ` h4q

“ }Q̄´ pA` h1q
˜̂
Q´ pB ` h2q

˜̂
P }2F,n,k ` }P̄ ´ pC ` h3q

˜̂
Q´ pD ` h4q

˜̂
P }2F,n,k

“ }Q̄´A
˜̂
Q´B

˜̂
P }2F ´ 2

´

Q̄´A
˜̂
Q´B

˜̂
P, h1

˜̂
Q` h2

˜̂
P
¯

` }h1
˜̂
Q` h2

˜̂
P }2F

` }P̄ ´ C
˜̂
Q´D

˜̂
P }2F ´ 2

´

P̄ ´ C
˜̂
Q´D

˜̂
P, h3

˜̂
Q` h4

˜̂
P
¯

` }h3
˜̂
Q` h4

˜̂
P }2F .
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Thanks to the properties of the trace, we have
´

Q̄´A
˜̂
Q´B

˜̂
P, h1

˜̂
Q
¯

“ Tr
´

tpQ̄´A
˜̂
Q´B

˜̂
P qh1

˜̂
Q
¯

“ Tr
´ ˜̂
QtpQ̄´A

˜̂
Q´B

˜̂
P qh1

¯

“

´

pQ̄´A
˜̂
Q´B

˜̂
P qt

˜̂
Q, h1

¯

.

Equivalent expressions holds for the other terms involving one of the hi, which gives

LpA` h1, B ` h2, C ` h3, D ` h4q

“ LpA,B,C,Dq ´ 2
´

pQ̄´A
˜̂
Q´B

˜̂
P qt

˜̂
Q, h1

¯

q ´ 2
´

pQ̄´A
˜̂
Q´B

˜̂
P qt

˜̂
P, h2

¯

´ 2
´

pP̄ ´ C
˜̂
Q´D

˜̂
P qt

˜̂
Q, h3

¯

´ 2
´

pP̄ ´ C
˜̂
Q´D

˜̂
P qt

˜̂
P, h4

¯

`Op}|h1, h2, h3, h4}|
2q

so the gradient of L for our scalar product is

´2
´

pQ̄´A
˜̂
Q´B

˜̂
P qt

˜̂
Q, pQ̄´A

˜̂
Q´B

˜̂
P qt

˜̂
P, pP̄ ´ C

˜̂
Q´D

˜̂
P qt

˜̂
Q, pP̄ ´ C

˜̂
Q´D

˜̂
P qt

˜̂
P
¯

.

Using the same arguments, we find that

∇g1pA,B,C,Dq “ p2atApsdA, 0, 0, 0q

and that ∇g2, ∇g3 and ∇g4 have similar expressions. Unfortunately, we also find that

∇g5pA,B,C,Dq “ 4pCtCA´ CtAC, 0, AtAC ´AtCA, 0q

which equals to zero when g5pA,B,C,Dq “ 0. Similar results hold for g6 and g7 so we can’t use
usual theoretical tools to caracterize local minima.

Numerically, we will use a gradient descent to find a value of Ā which achieve a small value
of the loss.

Results

3.3.2 Tentative 2

We now want to add crossed terms yiyj for i ‰ j in the quadratic map. We then look for φλ
of the form y ÞÑ ĀỸ where Ỹ “ py1y1, y1y2, ..., y2ky2kq and Ā is in M2n,SpRq. Recall from a
previous section that S “ 1` k ` kpk`1q

2 is the dimension of Ỹ .

Optimization problem

Decompose Ā in
`

A
B

˘

with A and B in Mn,S .
Let G the matrix in MS,4k2pRq whose coefficients are 0 except for : the GP p1,i,iq;2ki`i which

are 2 for i P J1, 2kK and for the GP p1,i,jq,2ki`j and the GP p1,i,jq,2kj`i, which are 1 for all i ă j

between 1 and 2k. The Jacobian matrix of f : y ÞÑ Ỹ at y is given by J fpyq “ GY̌ , where

Y̌ “

¨

˚

˚

˚

˚

˝

Y 0 ... 0

0 Y
. . . ...

... . . . . . . 0
0 ... 0 Y

˛

‹

‹

‹

‹

‚

P M4k2,2kpRq.
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Then, for Dcorr : x “ pq, pq ÞÑ pApsdq `Afpxq, Apsdp`Bfpxqq, we have
$

&

%

∇qD
q
corrpx̂q “ Apsd `AG

ˇ̂
Q,

∇qD
p
corrpx̂q “ BG

ˇ̂
Q,

$

&

%

∇pD
q
corrpx̂q “ AG

ˇ̂
P,

∇pD
p
corrpx̂q “ Apsd `BG

ˇ̂
P,

where ˇ̂
Q and ˇ̂

P in M4k2,kpRq are such that ˇ̂
X “ p ˇ̂

Q |
ˇ̂
P q.

Therefore, the symplecticity conditions for Dcorr are, for all ˇ̂
Q and ˇ̂

P

$

’

’

’

&

’

’

’

%

tApsdBG
ˇ̂
P ` t ˇ̂

QtGptAB ´ tBAqG
ˇ̂
P ` t ˇ̂

QtGtAApsd “ 0,
tpApsd `AG

ˇ̂
QqBG

ˇ̂
Q´ t ˇ̂

QtGtBpApsd `AG
ˇ̂
Qq “ 0,

t ˇ̂
P tGtApApsd `BG

ˇ̂
P q ´ tpApsd `BG

ˇ̂
P qAG

ˇ̂
P “ 0.

If we take ˇ̂
Q “ 0 in the first equation, we have tApsdBG

ˇ̂
P “ 0 for all ˇ̂

P . We can choose
ˇ̂
P with all but one coefficient equal to zero. This leads to tApsdBGi “ 0 for all column Gi of
G, which means that tApsdBG “ 0. The same argument with ˇ̂

P “ 0 shows that tApsdAG “ 0.
Now, taking ˇ̂

P and ˇ̂
Q with all but one coefficients equal to zero, we see that all the coefficients

of tGptAB´ tBAqG are zero. Conversely, if tApsdAG “ tApsdBG “
tGptAB´ tBAqG “ 0, then

the three equation above are satisfied for all ˇ̂
Q and ˇ̂

P and Dcorr is symplectic.
The optimization problem that we want to solve is therefore

min
pA,BqPK

LpA,B,C,Dq.

with the loss function

L :
#

Mn,SpRq2 Ñ R
pA,Bq ÞÑ }X̄ ´ Ā

˜̂
X}2F,2n,N ,

where X̄ denotes the compression-decompression error made by the PSD on the samples, that
is X ´DX̂ and K “ tpA,Bq P Mn,SpRq2 | tApsdAG “

tApsdBG “
tGptAB ´ tBAqG “ 0u.

Results
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Part II

Geometric part
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4 Homotopy principle

4.1 Goals

The aim of the geometrical part of this work is to give theoretical justifications to the methods
we develop in the numerical part. In particular, we would like to know if there is no geometrical
obstacle to learning the manifold Σk. More precisely, we would like to prove the following
conjecture :

Conjecture 4.1.1. Let n, k P N such that k ! n. Consider two manifolds Σk and Σ̃k embedded
in R2n endowed with its usual symplectic structure. Denote by i : Σk Ñ R2n and ĩ : Σ̃k Ñ R2n

the corresponding inclusions.
If k is sufficiently small in front of n, then it exists a symplectic homeomorphism h : R2n Ñ

R2n such that hpΣkq “ Σ̃k.
Moreover, if i and ĩ are C0-close, then h is C0-close from the identity.

If this result is true, then for all Hamiltonian functionH : R2n Ñ R whose flow preserves Σk,
the flow of the composition H̃ “ H˝h´1 preserves Σ̃k. This is immediate since φt

H̃
“ h˝φtH˝h

´1.
In the case Σk and Σ̃k are C0-close, then H and H̃ are also C0-close and the restriction of their
flows on borned intervals of R too.

In other words, if we make a small error when learning the solution manifold, which is highly
probable since we interpolate it with a finite number of points, then the part of the errors on
solutions induced by errors we made on Σk remains small. If this result is true, then we can
hope to learn the dynamic on the interpolated manifold as we try to do.

This result has already been proved in the particular case of isotropic submanifolds in
[3] using methods based on the Gromov’s h-principle. The h-principle, an abbreviation for
homotopy principle, is a principle or a caracteristic of some spaces which, if it holds, guaranty
the existence of solutions for differential problems. It involves a new point of view on differential
equalities and inequalities, involving for example notions of jets and differential relations. When
working with the h-principle, one usually want to establish it and there is some particular
techniques to achieve this.

During this internship, we worked to understand the methods that were used to prove the
results in [3]. Eventually, we will use them to extend the proof of 4.1.1 to the general case. To
become familiar with the h-principle, we read the parts of [8] devoted to the h-principle and its
proofs using holonomic approximation theorem. In this chapter, we present the main notions
that one needs to understand what is the h-principle and some of its applications. We present
all this notions in a way that the chapter leads to the proof of the following theorem :

Theorem 4.1.1. Let pV, ωV q and pW,ωW q be two symplectic manifolds of respective dimensions
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n “ 2l and q “ 2m. Let f0 : V Ñ W be an embedding such that f˚0 rωW s “ rωV s. Suppose also
that F0 “ df0 is homotopic to an isosymplectic homomorphism F1 via Ft Ă Rimm such that
bsFt “ f0 for all t P r0, 1s.

Then, if V is open and m ă l, then it exists an isotopy ft : V Ñ W such that f1 is
isosymplectic and df1 is homotopic to F1 in the isosymplectic homomorphisms.

Moreover, if K is a core of V , we can choose ft arbitrarily C0-close to f0 near K.

All the definitions and the results we present here are taken from [8]. The proofs are taken
from the same reference but we had details in most of them.

In what follows we are sometimes required to consider a metric on some manifolds. Every-
time we talk about C0-closeness of applications, we imply the existence of a distance on the space
where those functions take their values. We also need it to build normal neighbourhoods in
some proofs. A simple way to define a distance on manifolds is to consider a Riemannian metric
on this manifold and we know that this is always possible (see [9] for a proof of this assertion).
When needed, we therefore consider a Riemannian structure on the considered manifold. This
additionnal structure is only useful to properly define normal neighbourhoods or C0-closeness,
it does not change anything to the geometry of the problems we consider.

4.2 Definitions

4.2.1 Jets

Jet spaces

For our purpose, we are interested on derivatives of functions. The notion of jets allows us to
designate and manipulate the functions along with their derivatives. Let us first see how we
define jets in the simple case of functions of Rl.

Definition 4.2.1 (Space of r-jets on Euclidian spaces [8]). Let r P N˚. The space of r-jets of
functions Rn Ñ Rq is the space of all a priori possible values of a function f : Rn Ñ Rq and
its derivatives of order at most r at a point of Rn, that is

Rn ˆRq ˆRqdpn,1q ˆ ...ˆRqdpn,rq,

where dpm, lq is the number of partial derivatives of order l for a function f : Rm Ñ R. We
note this space JrpRn,Rqq.

The space of all possible values that can take a function and its derivative at a point v P Rn

is really the product we have mentionned : for any point P in this product space such that
π1pP q “ v, it exists a polynom of degree r in Rn whose r-order derivatives at v agree with P .

Remark 4.2.1. We have dpn, rq “ pn`r´1q!
pn´1q!r! . This can be proved by induction on n. The

formula is clearly true for n “ 1. Suppose now that the formula is true for all i ď n. We have

dpn, rq “
n
ÿ

i1“0

i1
ÿ

i2“0
...

ir´1
ÿ

ir“0
1

so dpn` 1, rq “ dpn, rq ` dpn` 1, r´ 1q. An immediate induction on r gives then dpn` 1, rq “
řr
i“2 dpn, iq ` dpn ` 1, 1q. Since dpn, 1q “ n and dpn, 0q “ 1 for any n, this can be rewritten
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as dpn` 1, rq “
řr
i“0 dpn, iq. By assumption, this is equivalent to dpn` 1, rq “

ř

i“0

´

n´1`i
n´1

¯

.
Using the "hockey cross" formula,

m´k
ÿ

j“0

ˆ

j ` k

k

˙

“

ˆ

m` 1
m´ k

˙

,

which is true for all m, k P N such that k ă m, we get dpn ` 1, rq “
`

n`r
r

˘

“
pn`rq!
n!r! . We then

have proved that the formula is also true for n` 1. By the induction principle, we deduce that
the formula is true for all n ą 1.

We define now jets on manifolds. For this purpose, we use the definition we have given on
Euclidian spaces. We simply need to adapt it to make it invariant by change of coordinates.

Definition 4.2.2 (Space of r-jets in the general case [8]). Let V and W two manifolds of
respective dimensions n and q. Let v P V and U Ă V be an open neighbourhood of v in V on
which is defined a coordinate system φ : U Ñ Rn. We say that two functions f and g from U
to W are r-tangent at v if they agree at v and if the r-order derivatives of φ˚f and φ˚g agree
at φpvq.

Tangency at v gives rise to an equivalence relation : two functions are in the same class
if and only if they are r-tangent. The space of r-jets JrpV,W q is defined as the space of all
r-tangency classes at any point of V .

When V “ Rn and W “ Rq, the previous definition is equivalent to the first one.
With the chain rule, we verify that this definition is indeed invariant under a change of

coordinates. Let ψ : U Ñ Rn. We have

dφpvqφ˚f “ dφpvqpf ˝ φ
´1q “ dφ˝ψ´1˝ψpvqpf ˝ ψ

´1 ˝ ψ ˝ φ´1q “ dψpvqpf ˝ ψ
´1q ˝ dφpvqpψ ˝ φ

´1q.

Since dφpvqpψ ˝ φ´1q is invertible,

dφpvqφ˚f “ dφpvqφ˚g ðñ dψpvqψ˚f “ dψpvqψ˚g.

If we replace f and g by partial derivatives of order inferior to r, we obtain the invariance of
the notion of r-tangency for r ą 1.

Note that for l ă m, the projection pml : JmpV,W q Ñ J lpV,W q which sends a class of
m-tangency to a class of l-tangency by "forgetting" the derivatives of order superior to l is
invariantly defined. In fact, if two functions are m-tangent at a point v, they are also l-tangent
at the same point for all l ď m.

On the contrary, the inclusions J lpV,W q Ă JmpV,W q are not invariant under a change of
coordinates : if we want to set an inclusion function i : J lpV,W q Ñ JmpV,W q, we can not
simply "complete" the l-jets with zeros. To see that, take for example n “ 1, q “ 2 and the
function whose expresison in polar coordinates is f : x ÞÑ px, xqr,θ. In cartesian coordinates, we
have f : x ÞÑ px cospxq, x sinpxqqu,v. Thus, f2r pxq “ f2θ pxq “ 0 while f2upxq “ ´2 sinpxq ´ cospxq
and f2v pxq “ 2 cospxq ´ x sinpxq for all x in R. This illustrates the fact that prolongating a jet
by 0 does not give the same thing depending on the coordinates we have chosen on W . This
is also true for any choice that we could make to prolongate the l-jets into m-jets. Therefore,
those inclusions are not invariant by a change of coordinates on W .
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Jet extensions of functions

In the following, we will consider functions f : V Ñ W as sections of the trivial fibration
p : V ˆW Ñ V . We will always suppose that it is C8 sections.

The notion of r-jets at points v of V gives rise to an another fibration, pr : V Ñ JrpV,W q,
where pr :“ p ˝ pr0 associates to a r-jet the point of V in which it is defined. This fibration is
endowed with a structure of smooth fibration thanks to the extensions of an atlas on the product
manifold V ˆW . In fact, as V andW are both endowed with a smooth atlas, so is the cartesian
product V ˆ W . Then, we define an atlas on JrpV,W q by extending each coordinate chart
φ : U Ñ RnRq on a coordinate chart φr : ppr0q´1pUq Ñ JrpRn,Rqq „ Rn`qp1`dpn,1q`...`dpn,rqq,
where φr associate a r-jet, or class of r-tangency, to its image by φ in JrpRn,Rqq. As we have
defined a class of r-tangency as the inverse image of classes in JrpRn,Rqq by a coordinate chart,
it is clear that we build this way a smooth structure on the jets space.

This allows us to consider regular sections of the jet fibration and from now on, all the ones
we consider are supposed to be C8. We note bsF the image by pr0 of F , in other words the
section of V ˆW Ñ V induced by a section F of the jet fibration. Conversely, any section
f : V Ñ V ˆW gives rise to a section Jrf : V Ñ JrpV,W q, which associates each point v in V
to the r-class of tangency of f at v. It is called the r-jet extension of f .

All the jet sections are not r-jet extensions. Those which has this property, that is F : V Ñ
JrpV,W q such that it exists f : V Ñ V ˆW with F “ Jrf are called holonomic sections.

Example

Let us illustrate all these notions with an example. Take n “ 1, q “ 2, V “ R and W “ R2.
The space of r-jets is JrpR,R2q “ RˆR2ˆRrˆ2ˆ1. For any element d “ pv, a1, a2, b1, b2, c1, c2q
of J2pR,R2q, the polynom P : x ÞÑ pa1 ` b1px´ vq `

1
2c1px´ vq

2, a2 ` b2px´ vq `
1
2c2px´ vq

2q
around v represents the 2-tangency class of d.

For a function f : R Ñ R2, we have F :“ Jrf pvq “ pv, fpvq, f
1pvq, ..., f prqpvqq. The section

F is then a holonomic function, such that bsF “ f . For other functions g, h, the map v ÞÑ
pv, fpvq, gpvq, hpvqq is also a section of J2pR,R2q but is a priori not holonomic.

4.2.2 Differential relations

A lot of categories of functions that we use to manipulate in geometry are defined using differ-
ential equations, that is conditions on the derivatives of order 1 or more. This is for example the
case of immersions, submersions, diffeomorphisms or symplectomorphisms. Using the notion of
jets, we can give another view on these categories.

Definition 4.2.3 (Differential relation [8]). A differential relation of order r between V and W
is a subset of the r-jets space JrpV,W q.

Let us illustrate this notion with some example.

Example 4.2.1.

• Immersions : the differential relation Rimm associated to the notion of immersion is a
subset of J1pV,W q since it only involves derivatives of order 1. It is exactly the set of
monomorphisms TvV Ñ TwW above each pair pv, wq P V ˆW .
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• Submersions : the differential relation Rsub associated to the notion of submersion is
also a subset of J1pV,W q. It is exactly the set of epimorphisms TvV Ñ TwW above each
pair pv, wq P V ˆW .

• Isoymplectomorphism : isosymplectomorphisms between two symplectic manifolds
pV, ωV q and pW,ωW q are functions f : V Ñ W verifying f˚ωW “ ωV . This equation
involves the first order derivatives of f so it defines a subset of J1pV,W q. We note the
differential relation defined this way Risosymp.

With V “W “ R2n endowed with the canonical symplectic structure, a section f : V Ñ
V ˆW is a symplectomorphism if and only if tBpfqBpfp and tBqfqBqfp are symmetric and
tBqfqBpfp ´

tBqfpBpfq “ Ik. Therefore,

Risosymp “ tpv, w,Aq P RnˆRnˆRn2
| tA3A1,

tA4A2 P SnpRq ^ tA4A1´
tA2A3 “ Inu,

where A “
´

A1 A2
A3 A4

¯

with A1, A2, A3, A4 P Ml,lpRq.

• Symplectomorphisms : symplectomorphisms from V to a symplectic manifold pW,ωW q
are maps f such that f˚ωW defines a symplectic form on V . Since ωW is a symplectic
form, it is closed and we have dpf˚ωW q “ f˚dωW “ f˚0 “ 0. The condition on f is then
reduced to the fact that f˚ωW is non-degenerate.

In V “ W “ R2n endowed with the canonical symplectic structure is symplectic if and
only if t∇fpvqJ2n∇fpvq is non-degenerate for all v P V so

Rsymp “

"

pv, w,Aq P Rn ˆRn ˆRn2
| det

ˆ

tA3A1 ´
tA1A3

tA3A2 ´
tA1A4

tA4A1 ´
tA2A3

tA4A2 ´
tA2A4

˙

‰ 0
*

.

• More generally, any differential equation of order r induce a differnatial relation of order
r.

Together with this definition comes the notion of open and close relations, which correspond
to open and close subsets of the jet space. Immersion and submersions relations are open since
they are defined as the complement of the close set composed of morphisms with at least a
minor equal to zero. The relation associated with isosymplectomorphisms is closed since it is
defined with an equality. On the contrary, the relation associated to symplectomorphisms is
open as it is the complement of a closed subset. As usual, relations defined with equalities or
large inequalities are closed while relations defined as complement of singularities or with strict
inequalities are open.

Of course, smooth solutions of a differential equation, or inequality, of order r are such that
their r-jet extension sends V in the induced differential relation. We now extend the notion of
solution to all sections of the jet space.

Definition 4.2.4 (Formal and genuine solutions [8]). A formal solution of a given differential
relation R of order r is a section of the r-jet space which takes its values in R, that is F : V Ñ R.
We denote by Sec R the subset of sections of the r-jet space composed of formal solutions of R.

A genuine solution of R is a section f : V Ñ V ˆ W whose r-jet extension is a formal
solution. We denote by Hol R the subset of Sec R composed of holonomic formal solutions of
R.
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Example 4.2.2. For V “ Rn and W “ Rq with n “ q “ 2l and endow these two spaces
with the canonical symplectic structure. Consider the relation Risosymp defined in the previous
example and take any section f : V Ñ V ˆ W . The 1-jet section F : v ÞÑ pv, fpvq, idq P
Rn ˆRn ˆRn2 is a formal solution of Risosymp. Since it is not holonomic, f “ bsF is a priori
not a genuine solution.

When we study differential equations, we look for genuine solutions. In some cases, it can be
useful to first see if it exists formal solutions to the considered problem. If this is not the case,
it is useless to search for genuine solutions. In the following section, we intoduce the homotopy-
principle, which, if it holds, insure the existence of genuine solution from the existence of formal
solutions.

4.2.3 Homotopy-principle

Definition 4.2.5 (Homotopy-principle [8]). A differential relation R satisfies the homotopy-
principle (or h-principle) if all formal solutions of R are homotopic in R to a holonomic formal
solution.

In other words, the h-principle holds for a relation R if any formal solution of the relation
can be deformed in Sec R to the jet extension of a section f : V Ñ V ˆW , which is therefore
a genuine solution of R.

There is different variations of this principle. Below is a list of some of them.

• one parameter h-principle : a differential relation R satisfies the one parameter h-
principle if all homotopy Ft in Sec R joining two holonomic sections can be smoothly
deformed in a homotopy in Hol R keeping F0 and F1 fixed.

• multi-parameter h-principle : a differential relation R satisfies the multi-parameter
h-principle if all smooth family FT Ă Sec R such that FT P HolR for T P BIk can be
smoothly deformed in a family in Hol R keeping FT fixed for all T P BIk. Here we have
noted Ik “ r0, 1sk.

• local h-principle : let A Ă V and OpV pAq an open neighbourhood of A in V . A
differential relation R satisfies the local h-principle around A if all formal solutions of R
defined above OpV pAq in V are homotopic in the sections of R defined above OpV pAq to a
holonomic formal solution. In other words, the deformation should not change too much
the space of definition of the original section but the holonomic section that we obtain are
only defined above OpV pAq.

• relative h-principle : let B Ă V and OpV pBq an open neighbourhood of B in V . A
differential relation R satisfies the relative h-principle around B if all formal solutions of
R holonomic above OpV pBq in V are homotopic in the sections of R fixed on OpV pBq
to a holonomic formal solution. In other words, we start from a formal solution which is
already holonomic above an open set and we deforme it to obtain a holonomic solution
on the whole V without changing the part which is already holonomic.

• C0-dense h-principle : a differential relation R satisfies the C0-dense h-principle if any
formal solution F0 of R is homotopic in R to a holonomic formal solution F1 such that
bsF0 and bsF1 are C0-close.
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It is also possible to work with combinations of this versions such as the C0-close one param-
eter h-principle, where we ask that the deformation of the homotopy is C0-small, or the relative
one parameter h-principle, where we ask that the deformation of the homotopy is fixed on B.

Proving that the h-principle holds for a given relation R can be sometimes difficult. In the
following section, we present some tools that we can use to achieve it.

4.3 Proving the h-principle : tools and examples

4.3.1 Holonomic approximation

Below is the theorem on which is based all the results we will present in the following. The
proof of this result can be found in [8].

Theorem 4.3.1 (Holonomic approximation [8]). Let A P V a polyedron of codimension ą 0
and F : OpV pAq Ñ JrpV,W q a section of the jet space.

For all δ, ε ą 0, it exists a diffeotopy phτ qτPr0,1s : V Ñ V δ-small in the C0 sense and
a holonomic section F̃ : OpV ph1pAqq Ñ JrpV,W q such that dpF̃ pvq, F pvqq ă ε for all v P
OpV ph

1pAqq.

This result also holds in its parametric and relative forms :

Theorem 4.3.2 (Parametric holonomic approximation [8]). Let A P V a polyedron of codimen-
sion ą 0 and Fz : OpV pAq Ñ JrpV,W q a family of sections parametrized by z P Ik :“ r0, 1sk
with Fz holonomic for z P BIk.

For all δ, ε ą 0, it exists a family of diffeotopies phτzqτPr0,1s : V Ñ V δ-small in the C0 sense
and a family of holonomic sections F̃z : OpV ph1

zpAqq Ñ JrpV,W q such that dpF̃zpvq, Fzpvqq ă ε
for all v P OpV ph1

zp1qq and all z P Ik and such that hτz “ idV and F̃z “ Fz for z P BIk.

Theorem 4.3.3 (Relative holonomic approximation [8]). Let A P V a polyedron of codimension
ą 0 and F : OpV pAq Ñ JrpV,W q a section of the jet space holonomic in a neighbourhood
OpV BA.

For all δ, ε ą 0, it exists a δ-small diffeotopy phτ qτPr0,1s : V Ñ V fixed on OpV BA and
a holonomic section F̃ : OpV ph1pAqq Ñ JrpV,W q such that dpF̃ pvq, F pvqq ă ε for all v P
OpV ph

1pAqq and F̃ pvq “ F pvq on OpV ph1pBAqq “ OpV pBAq.

The relative form of the theorem is particularly useful when one wants to prove the existence
of a holonomic section on a whole space divided into pieces that are treated one after another.
If it is possible to prove the existence on a piece and to build the section on neighbouring pieces
while sticking to what has already being done, then we can prove the existence on the whole
space.

Here is a first interesting result which can be prove using holonomic approxiation.

Corollary 4.3.1 (Approximation of differential forms by closed forms). Let V be an open
manifold, A a polyedron of positive codimension, a P HppV q a cohomology class. Near A, we
can approach in the C0 sense any p-form ω by a closed p-form ω̃ in a.

Moreover, given Ω P a and a pp ´ 1q-form α, we can chose ω̃ of the form dα̃ ` Ω for α̃
C0-close to α.
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Proof. (from [8])
Consider X “ ΛpV . It exists a map D : pΛp´1V qp1q Ñ ΛpV which sends the formal

derivatives of the coordinate functions of a pp ´ 1q-form to a p-form. Consider its extension
D̃ : SecpΛp´1V qp1q Ñ SecΛpV . Since we can choose what we want on SecpΛp´1V qp1q, this map
is surjective. Let ω be a p-form. It exists a section Fω of pΛp´1V qp1q such that D̃ ˝ Fω “ ω.
Since D̃ only cares about derivatives, we can choose Fω such that bsFω “ α for any pp´1q-form
α.

For A a polyedron of positive codimension, we can apply Theorem 4.3.1 which gives us the
existence of a diffeotopy hτ : V Ñ V as small as we want and a holonomic section F̃ω “ J1

α̃ :
OpV ph

1pAqq Ñ pΛp´1V qp1q C0-close to Fω. In particular, α̃ is C0-close to α and, since D is
continuous, w̃ :“ D̃ ˝ F̃ω is C0-close to ω. We also have dα̃ “ D̃pJ1

α̃q “ ω̃ so ω̃ is exact.
Let now a be an arbitrarily cohomology class and Ω P a. Apply previous argument to

θ “ ω ´ Ω and take ω̃ “ θ̃ ` Ω. It is C0-close to ω and can be written as dα̃ ` Ω. This shows
that we can approach any p-form by a closed form of any cohomology class on OpV ph1pAqq.

Note that the parametric version of this proposition is also true : we just have to apply
Theorem 4.3.2 instead of 4.3.1.

4.3.2 Open DiffV -invariant relations

We are now interested to a special category of differential relation, that we call DiffV -invariant.
Let p : X Ñ V a fibration. All what we have done for X “ V ˆW can immediately be extend
to any X. In particular, we will be required to use X “ ΛpV in some following propositions.

Denote by DiffVX the group of diffeomorphisms of X which preserve the fibers, that is
hX : X Ñ X such that it exists hV : V Ñ V satisfying p˝hX “ hV ˝p. If such a hV exists, then
it is obviously unique : for h1

V and h2
V satisfying the previous equation, we have h1

V ˝ p “ h2
V ˝ p

in X. Since p is surjective, this means that h1
V “ h2

V . Note that all of this can be extended to
any fibration p : E Ñ F .

Definition 4.3.1 (Natural fibration [8]). Let p : E Ñ F a fibration and π : DiffFE Ñ DiffF the
homomorphism which associate a diffeomorphism hE P DiffFE to the unique diffeomorphism
hF P DiffF such that p ˝hE “ hF ˝ p. If π can be inverted, that is if it exists j : DiffF Ñ DiffFE
such that π ˝ j “ idDiffF , then we say that the fibration p : E Ñ F is natural.

Note that j is not necessarily unique.

Example 4.3.1. The fibrations we are working with in this chapter are natural.

• the trivial fibration p : V ˆW Ñ V with j : h ÞÑ ph, idW q,

• The tangent bundle p : TV Ñ V with j : h ÞÑ dh,

• and the fibration of p-forms p : ΛpV Ñ V with j : h ÞÑ dph, where dph : pv, ωq P
V ˆ ΛpvV ÞÑ phpvq, ωh : pa1, ..., apq ÞÑ ωpdvh

´1pa1q, ..., dvh
´1papqqq.

The naturality of those fibrations can be extend to the jet fibration. In fact, we also have
that pr0 : Xprq Ñ X is natural. Let g : X Ñ X be a diffeomorphism and take

gr : s P Xprq Ñ Jrg˝s̄pp ˝ g ˝ p
r
0psqq,

45



where s̄ is a local section of p : X Ñ V whose r-jet coincide with s at prpsq. We immediately
have that p ˝ pr0 ˝ grpsq “ p ˝ g ˝ pr0psq so pr0 ˝ grpsq and g ˝ pr0psq are in the same fiber of X Ñ V
for all s P Xprq. It is also obvious that grpsq and g ˝ pr0psq are in the same class of 0-tangency
since s̄ and pr0psq, and so g ˝ s̄ and g ˝ pr0psq, are 0-tangent by construction of s̄.

Then, if p : X Ñ V is natural, we also have that pr : Xprq Ñ V is natural. Under the
assumption on p, for any diffeomorphism h : V Ñ V , it exists a fiber preserving diffeomorphism
jphq “ hX : X Ñ X. Thanks to the previous argument, we know that it exists hr : Xprq Ñ Xprq

which preserves the fibers of pr0 : Xprq Ñ X. Therefore,

h ˝ pr “ h ˝ p ˝ pr0 “ p ˝ hX ˝ p
r
0 “ p ˝ pr0 ˝ h

r “ pr ˝ hr.

Finally, let us see that jrphq “ pjphqqr so

jrphqpsq “ Jrjphq˝s̄pp ˝ jphq ˝ p
r
0psqq “ Jrjphq˝s̄ph ˝ p

rpsqq.

In particular, jrphq preserves holonomy : jrphqpJrf q “ Jrjphq˝f˝h´1 .

Definition 4.3.2 (DiffV -invariant differential relation [8]). A differential relation is said to be
DiffV -invariant if it is invariant under the action s P Xprq Ñ h˚s :“ jrphqpsq for all h P DiffV .

In other terms, a differential relation is DiffV -invariant if it is invariant under coordinate
changes. A lot of the relations that we will use in the following have this property.

Example 4.3.2.

• The relations Rimm and Rsubm are DiffV -invariant. More generally, any relation in
J1pV,W q which imposes a condition on the rank of the differential is DiffV -invariant.
In fact, for a diffeomorphism h : V Ñ V ,

h˚px, y,Aq “ J1
phˆidq ¯px,y,Aq

phpxqq “ phpxq, y, A ˝ dxhq.

Since h is a diffeomorphism, its differential at any point is invertible so its composition
with the homomorphism A has the same rank as A.

• The same formula shows that all differential relation which would impose conditions on
the image of the differential is also DiffV -invariant. This will be useful when we will talk
about Grassmanians.

The notion of DiffV -invariance is particularly interesting thanks to the following theorem.

Theorem 4.3.4. Let V,W be two manifolds and R Ă J1pV,W q an open DiffV -invariant dif-
ferential relation. All the local forms of the h-principle holds for R.

Proof. (from [8])
We first prove the theorem in the 1-parameter case. Let F0 and F1 two holonomic solutions

of R and Ft a homotopy between them in R.
Let A Ă V be a polyedron of positive codimension. For all δ, ε ą 0, Theorem 4.3.2 insures

the existence of a family of δ-small diffeotopies hτt : V Ñ V and a family of holonomic sections
F̃t : OpV ph1

t pAqq Ñ JrpV,W q such that F̃t and Ft are C0-close for all t P r0, 1s, F̃0 “ F0, F̃1 “ F1
on OpV ph1

t pAqq and hτ0 “ hτ1 “ h0
t “ idV for all τ, t P r0, 1s.
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Since Ft is a homotopy in the open set R, we can choose ε such that F̃t, which is ε-close to
Ft, is also in R for all t P r0, 1s on OpV ph1

t pAqq and the linear homotopy F̂ νt “ νF̃t ` p1´ νqFt
as well. Now, since R is DiffV -invariant, F̄ ν,τt :“ phτt q´1

˚ F̂ νt also has its image on R. Its satisfies
F̄ 1,1
t “ ph1

t q
´1
˚ F̃t, F̄ 0,0

t “ Ft, F̄ ν,τ0 “ F0 and F̄ ν,τ1 “ F1 for all t, τ, ν P r0, 1s. Then, the family
of homotopies given by Gηt “ F̄ 2η,0

t on η P r0, 1
2 s and G

η
t “ F̄ 1,2η´1

t on η P r12 , 1s goes from Ft
to G1

t “ ph
1
t q
´1
˚ F̃t while staying fixed at t “ 0, 1. It is defined on OpV pAq and takes its values

in R. Since the action of ph1
t q
´1 preserves the holonomy, G1 is holonomic. Morevover, since hτt

can be chosen arbitrarily small and F̃t arbitrarily close to Ft, we have that bsG1
t is arbitrarily

C0-close to bsFt.
Therefore, we have established the local C0-dense 1-parameter h-principle. Note that the

above argument also works when t is multivalued, one just has to change the notations. Applying
Theorem 4.3.1 instead of 4.3.2 and skiping mentions of t, we also get the result for the simple
local h-principle. In the same way, all what we have done is still true in the relative case, after
the application of Theorem 4.3.3 instead of 4.3.2 : if the diffeotopies hτt fixes OppBAq and the
homotopy F̃t coincides with Ft on OppBAq, then G1

t also coincides with Ft on OppBAq.

We now extend this result to the global h-principle. For that, we compress the whole space
V to the open set on which are defined the objects we are interested in after application of the
previous theorem. To make that this compression is possible, we have to assume that V is an
open manifold.

Theorem 4.3.5. Let V be an open manifold and R Ă J1pV,W q an open DiffV -invariant
differential relation. All the global forms of the h-principle holds for R, except the C0-dense and
the relative one.

Nevertheless, if V can be retracted into a polyedron of positive codimension K, then the
C0-closeness is still true in a neighbourhood of K and the relative version of the h-principle
holds by respect to K.

Proof. (from [8])
As V is open, it exists a polyedron K of positive codimension such that V can be retracted

in an arbitrarily small neighbourhood OpV pKq via a diffeotopy hτ such that h0 “ idV , h1pV q Ă
OpV pKq and hτ “ idV on K. The polyedron K is then called a core of V . For a proof of this
result, see for instance [8].

We start by the 1-parameter version of the h-principle. Let F0 and F1 two holonomic section
of R and Ft a homotopy joining them in R. From Theorem 4.3.4, it exists a family of homotopy
F̃ τt : OpV pKq Ñ R such that F̃ 1

t is holonomic, F̃ 0
t “ Ft, F̃ τ0 “ F0 and F̃ τ1 “ F1 for all τ, t P r0, 1s

on OpV pKq. Moreover, we can choose it in such a way that F̃ τt is ε-close to Ft for all τ, t P r0, 1s.
Define the family of homotopies Gτt such that Gτt “ ph2τ q´1

˚ Ft for τ P r0, 1
2 s and Gτt “

ph1q´1
˚ F̃ 2τ´1

t for τ P r0, 1
2 s. It is defined on V and since R is DiffV -invariant, it takes its values

in R.
As in Theorem 4.3.4, changing t P r0, 1s for a multi-valued parameter only changes notations.

For the simple h-principle, one just has to use the simple version of Theorem 4.3.4 and forget
the indice t in the passage from local to global.

For the relative version, if B is a core of V , then the retraction hτ can be chosen fixed
on OpV pBq. Since the use of the relative version of Theorem 4.3.4 gives homotopies fixed on
OpV pBq, the resulting homotopies are fixed on OpV pBq too.
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The decompression of OpV pKq into V makes that the C0-closeness does not hold anymore
in the global case. However, since this decompression is fixed on K, we still have that G1

t is
C0-close to Ft in a small neighbourhood of K.

Here is a basic example where having proved the h-principle gives the existence of homotopies
which are really difficult to visualize.

Example 4.3.3. Let V be the annulus tpx, yq P R2 | ε ă x2 ` y2 ă au and W “ R. The
1-jet space is J1pV,W q “ V ˆ R ˆ R2. Let f0 : px, yq ÞÑ x2 ` y2 and f1 “ ´f0. The two
functions f0 and f1 are isotopic.

Since V is open and the relation Rimm is open DiffV -invariant, by Theorem 4.3.5 it is
sufficient to find a formal solution of Rimm linking f0 and f1. Identifying R2 with C, we can
take Ft : px, yq ÞÑ px, y, tf1px, yq ` p1´ tqf0px, yq, e

iπt∇f0q.

Using the same proof as for Theorem 4.3.4 followed by 4.3.5 but replacing the invocation of
holonomic approximation theorem by Corollary 4.3.1, we obtain :

Proposition 4.3.1. Let V be an open manifold, a P HppV q a cohomology class and R Ă ΛpV
an open DiffV -invariant differential relation.

Any p-form ω : V Ñ R is homotopic in R to a closed p-form in a.
Any homotopy of p-forms ωt : V Ñ R between two closed forms ω0 and ω1 in a can be

deformed in R to a homotopy of closed forms in a between ω0 and ω1 without changing the ends
ω0 and ω1.

Proof. (from [8])
The proof is exactly the same as the one of the Theorem 4.3.4 followed by the one of 4.3.5,

excepting that we replace the invocation of the holonomic approximation theorem by Corollary
4.3.1 and that we also use the fact that the cohomology class of hτω is constant for any isotopy
hτ and any p-form ω.

We present below an application of the h-principle for open DiffV -invariant relations.

4.3.3 Application of the h-principle to the Grassmanian bundle

Let W be a q-dimensional manifold and V a n-dimensional submanifold embedded in W . For
l ď q, we note GrlW the Grassmanian of W , which is defined as the set of all the vectorial
spaces of dimension l tangent at W . Denotes by π : GrlW Ñ W the Grassmanian bundle of
the manifold W . The projection π associates an element of GrlW to the point w PW at which
this element is tangent to W .

At each point v P V , the differential of the embedding dp : TV Ñ TW sends the tangent
spaces of v to a vectorial subspace of dimension n tangent to W . We denote Gdf : V Ñ GrnW
the map which associates v P V to dfpTvV q Ă TppvqW . More generally, if F : TV Ñ TW is a
monomorphism, we can define in the same way the map GF : V Ñ GrnW .

For A Ă GrnW , a homomorphism F : TV Ñ TW is said to be A-directed if GF pV q Ă A.

Theorem 4.3.6. Let A be an open subset of GrnW , V an open manifold, f0 : V Ñ W an
immersion such that F0 :“ df0 is homotopic in the space of monomorphisms from TV to TW
to a certain A-directed F1 with bsF1 “ f0.
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Then, f0 is isotopic to f1 such that Gdf1pV q P A and df1 is homotopic to F1 in the space of
A-directed monomorphisms.

Moreover, the isotopy can be chosen as C0-small as we want on an open neighbourhood of a
core K.

Proof. (from [8])
To the open subset A in GrnW , we associate an open differential relation,

RA :“ tF P J1pV,W q | F monomorphism and GF pV q Ă Au.

From a previous example, it is open and DiffV -invariant. Theorem 4.3.5 in its simple version
gives the existence of a homotopy F̂t : V Ñ RA between F1 and a holonomic A-directed
monomorphism F2 that we can choose such that bsF1 “ f0 and f1 :“ bsF2 are C0-close on a
small neighbourhood of K in V .

Taking the homotopy between F0 and F1 followed by F̂t, we obtain a homotopy F̄t of
monomorphisms between two holonomic sections. Then, Theorem 4.3.5 in its parametric version
gives the existence of a holonomic homotopy F̃t : V Ñ Rimm between F0 and F2 with bsF̃t C0-
close to bsF̄t near K.

In particular, f0 “ bsF0 is isotopic to f1 “ bsF2, where f1 is A-directed and the isotopy small
around K, and F1 is homotopic to df1 “ F2 via a homotopy of A-directed monomorphism.

4.4 Application to the symplectic relation

In this section, we present an application of what we have presented in the symplectic case.
More precisely, we have the following theorem, whose proof is a detailed version of the one
proposed in [8].

Theorem 4.4.1. Let pV, ωV q and pW,ωW q be two symplectic manifolds of respective dimensions
n “ 2l and q “ 2m. Let f0 : V Ñ W be an embedding such that f˚0 rωW s “ rωV s. Suppose also
that F0 “ df0 is homotopic to an isosymplectic homomorphism F1 via Ft Ă Rimm such that
bsFt “ f0 for all t P r0, 1s.

Then, if V is open and m ă l, then it exists an isotopy ft : V Ñ W such that f1 is
isosymplectic and df1 is homotopic to F1 in the isosymplectic homomorphisms.

Moreover, if K is a core of V , we can choose ft arbitrarily C0-close to f0 near K.

Proof. (from [8])
The proof is made in three steps.
Step 1 : as the relation associated to the fact of being isosymplectic is not open, we first

consider the relation associated to the fact of being symplectic, which is open. Let Asymp the
associated subset of GrnW .

By the Theorem 4.3.6, it exists an isotopy f̃t : V Ñ W such that f̃0 “ f0, f̃1 is symplectic
and f̃t is C0-close to f0 on K for all t P r0, 1s. Moreover, df̃1 and F1 are homotopic via Φt such
that GΦtpV q Ă Asymp.

Since the cohomology class is invariant by homotopy, the assumption that f˚0 rωW s “ rωV s
implies that f̃˚1 rωW s “ rωV s. Then, by Theorem 4.3.1 it exists a homotopy of symplectic
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forms ωt between f̃˚1 ωW and ωV such that rωts is constant on r0, 1s. This allows us to write
ωt “ ω0 ` dαt for t P r0, 1s.

The proof of the theorem is now reduced to the proof of the following proposition :

Proposition 4.4.1. Let V a symplectic manifold of dimension n “ 2m, pW,ωW q a symplectic
manifold of dimension q “ 2l ą n, h0 : V Ñ W a symplectic embedding, ω0 “ h˚0ωW and
ωt “ ω0 ` dαt a homotopy of symplectic forms.

It exists a symplectic isotopy ht : V ÑW as C0-small as we want such that h˚1ωW “ ω1.

If we apply this proposition to h0 “ f̃1, we can take the homotopy ft given by f̃2t on r0, 1
2 s

and h2t´1 on r12 , 1s. It is an isotopy as its two parts are isotopies and it verifies that f1 “ h1
is isosymplectic. As f̃t is C0-small on K and ht C0-small on the whole V , ft is C0-small on
K. Finally, since the space of isosymplectic homomorphisms is convex, the linear homotopy
Ft “ tdf1 ` p1´ tqF1 realizes the desired homotopy between F1 and df1.

Step 2 : we prove the proposition in the case where wt “ ω0 ` tdr ^ ds for r, s : V Ñ W
borned.

From the symplectic neighbourhood theorem, it exists ε ą 0 such that h0 : V Ñ W can be
extended in an isosymplectic embedding ĥ0 : pE,ωEq Ñ pW,ωW q, where E :“ V ˆD2

ε ˆD
q´n´2
ε

and ωE “ ω0‘ η2‘ ηq´n´2, for pDk
ε , ηkq the ball of radius ε in Rk endowed with the restriction

to Dk
ε of the standard symplectic form of Rk.
Consider φ “ pr, sq : V Ñ R2. As r and s are supposed to be borned, it exists R ą 0 such

that φpV q Ă D2
R. Let τR,ε : D2

R Ñ D2
ε be an area preserving map and set ψ “ τR,ε ˝φ. We then

have that
ptψq˚η2 “ ptφq

˚τ˚R,εη2 “ ptφq
˚η2 “ t2dr ^ ds.

Consider now Φt : V Ñ E such that Φtpvq “ pv,
?
tψpvq, 0q. We have

Φ˚t ωE “ Φ˚t pω0 ‘ η2 ‘ ηq´n´2q “ id˚ω0 `
?
tψ˚η2 ` 0˚ηq´n´2 “ ω0 ` tdr ^ ds.

Now, if we take ht : v ÞÑ ĥ0pΦtpvqq, we have

h˚t ωW “ Φ˚y ĥ˚0ωW “ Φ˚t ωE “ ωt

and ĥ0pΦ0pvqq “ ĥ0pv, 0, 0q “ h0pvq with phtqt ε-small in the C0 sense.
Step 3 : We now reduce the general case, where ωt “ ω0 ` dαt to the case where ωt “

ω0 ` tdr ^ ds, that is, the case where αt “ trds. For that, note that we can consider any
homotopy αt provided that it agrees with the original one at t “ 0, 1 and that the resulting ωt
remains symplectic.

We first consider α̂t linear by parts, build this way :
$

&

%

α̂ti “ αti for some points ti P r0, 1s,

α̂ti`τ “ αti `
τ

ti`1 ´ ti
pαti`1 ´ αtiq for τ P r0, ti`1 ´ tis,

where the finite set ttiui contains 0 and 1 and is chosen such that ω̂t “ ω0 ` dα̂t is symplectic
for all t P r0, 1s.

We can restrict our analysis to an interval of the form rti, ti`1s, where ωt is of the form ω0`tα.
In fact, applying the proposition on each interval, we obtain a finite number of isotopies hi that
we have to take one after another to obtain an isotopy on the whole r0, 1s.
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Suppose now that we have a decomposition of this kind : α “ β1 ` ...` βL with L P N and
the βi of the form ridsi, where the ri and si are borned. Consider βt linear by parts such that

$

’

’

’

’

&

’

’

’

’

%

β0 “ 0,

βsj “ β1 ` ...` βj for sj “
j

L
, j P J1, LK,

βsj`τ “ βsj ` Lτβ
j`1 for τ P r0, 1

L
s

and α̃t such that
$

’

&

’

%

α̃ti “ tiα for ti “
i

N
, j P J0, NK,

α̃ti`τ “ tiα`
1
N
βNτ for τ P r0, 1

N
s,

where N P N can be chosen arbitrarily large. On each subinterval
„

i
N` j

NL

, i
N` j

NL



, ω̃ “ ω0`dα̃

is of the form
`

ωti `
1
N βsj

˘

` τβj`1 so is linear by parts. With the same argument than
previously, we can restrict the problem to the case where ωt is of the form ω0 ` tdprdsq “
ω0 ` tdr ^ ds with r and s borned, which is the case where the proposition is already proved.

It now remains to show how we obtain the decomposition of the 1-form α. We suppose that
V is compact : if it not the case, we consider a compact extension. Let pρiqiPI be a partition
of the unity subordinate to an atlas pUi, φiqiPI of V , that is such that

ř

iPI ρi “ 1 and suppρi is
compact and included in Ui for every i. For every i P I, we also consider χi such that χi “ 1
on suppρi and suppχi Ă Ui.

Choose a coordinate system tx1, ..., xnu on φipUiq Ă Rn and write pφiq˚α|Ui “ ai1dx
i
1 ` ...`

aindx
i
n. Then,

αUi “ φ˚i pa
i
1dx

i
1 ` ...` a

i
ndx

i
nq “ pa

i
1 ˝ φiqφ

˚
i dx

i
1 ` ... “ pa

i
1 ˝ φiqdpx

i
1 ˝ φiq ` ...

Now, see that

α “ p
ÿ

iPI

ρiqα “
ÿ

iPI

ρiα|Ui “
ÿ

iPI

ρi

n
ÿ

j“1
paij ˝ φiqdpx

i
j ˝ φiq “

ÿ

i,j

ρipa
i
j ˝ φiqd

`

χipx
i
j ˝ φiq

˘

.

If we set rni`j “ ρipa
i
j ˝ φiq and sni`j “ χipx

i
j ˝ φiq, which are compactly supported, we obtain

α “
ř

l r
ldsl, which is the desired form. This achieves at the same time the proofs of the

proposition and the theorem.

Remark 4.4.1. In the proof, we have used the fact that the cohomology class remains constant
when we pull back a form by a homotopy. Let us show this. Let ω a closed p-form on W and
ft : V Ñ W a homotopy. Saying that the cohomology class of f˚t ω is constant in HkpV q “
pHkpV qq

´1 is equivalent to say that f˚t ω takes fixed values on a base of HkpV q. Let σ : ∆k Ñ V
be a cycle. We have that

ż

∆k

σ˚pf˚t ωq “

ż

∆k

pft ˝ σq
˚ω.

Let φ : ∆kˆr0, 1s Ñ V be such that φpx, tq “ pft ˝σqpxq. Then, using Stokes theorem, we have
ż

∆kˆr0,1s
dpφ˚ωq “

ż

∆ˆt1u
φ˚ω ´

ż

∆ˆt0u
φ˚ω.

Since ω is closed, the left hand side of the equation is equal to zero and f˚0 ω and f˚1 ω takes
the same value on the cycle σ. As this cycle can be arbitrarily chosen, we have proved that the
cohomology class of f˚0 ω and f˚1 ω is the same.
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5 Generating functions

In this chapter, we present a summary of what we learned about generating functions in [1] and
[15]. We expect to use these notions in futur reduction methods for Hamiltonian systems. In
fact, as we will see, generating functions are useful tools to build symplectomorphisms f : V Ñ V
on a given symplectic manifold pV, ωq. With a generating function S : V Ñ R, we can caracterize
f . When one wants to learn a Hamiltonian dynamic, this caracterization may be interesting.
Here, we take V “ R2n and we use coordinates pq, pq, with q, p P Rn. We endow R2n with the
usual smyplectic structure, given by ω “ dλ with λ “ pdq.

We are here interested in isosymplectic maps, that is f : R2n Ñ R2n such that f˚ω “ ω.
In particular, Hamiltonian flows are isosymplectic transformations :

pφtHq
˚ω “ ω.

To show it, first note that this equation is equivalent to LXHω “ 0. Then, use Cartan’s formula
:

Lzα “ ιzα` dpιzαq,

which is true for all p-form α and all vector field z in R2n. In this formula, Lzα represents the
Lie derivative of the form α in the direction z and ιzα the interior product between z and α.
This immediately gives

ιXHdω ` dpιXHωq “ dpdHq “ 0.

It is obvious that if f is isosymplectic, then the form λ ´ f˚λ is closed. In fact, it it even
exact: it exists S : R2n Ñ R such that

pdqpp, qq ` P pp, qqdQpp, qq “ dSpp, qq. (5.1)

If we assume that the coordinates pq,Qq are independent, we can express S in this coordinate
system. Note

S1pq,Qpp, qqq “ Spp, qq.

We have
p “

BS1
Bq
pq,Qq and P “ ´

BS1
BQ
pq,Qq. (5.2)

Conversely, if a function S1 : RN ˆRN Ñ R verifies det B2S1
BQBq ‰ 0, then the implicite function

theorem applied to BS1
Bq tells that we can express Q in terms of p :“ BS1

Bq and q. If we set
P1pq,Qq “

BS1
BQ pq,Qq and P pp, qq “ P1pq,Qpp, qqq, we obtain an isosymplectic transformation

g : pp, qq ÞÑ pP,Qq. In fact, it verifies equation (5.1) so if we apply the exterior derivative and
use the fact that ddS “ 0, we have g˚ω “ ω. The map f is such that p and P satisfy (5.2). We
then say that S1 is the generating function of f .
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Note that we obtained a cananical transformation from a single map from R2n to R. More-
over, every isosymplectic transformation which verify the independence condition between q
and Q can be obtained from a generating function.

It can happen that q and Q are not independent : this is for example the case in the identity
function. This do not mean that previous computations can not be done anymore. We can
apply the same argument with the coordinates q and P instead of q and Q. We then have

p “
BS1
Bq
pq, P q and Q “

BS1
BP
pq, P q.

For example, a generating function for the identity function is given by S : pq, P q ÞÑ Pq.
Actually, we can choose any partition pi1, ..., ikq, pj1, ..., jmq de p1, ..., Nq such that

det B2S1
BpPj , QiqBq

‰ 0.

For isosymplectic transformations close to the identity, we can choose generating functions
of the form

SpP, qq “ Pq ` εS̄pP, q, εq.

We then have
p “ P ´ ε

BS̄

Bq
and Q “ q ` ε

BS̄

BP

so if we set H : pp, qq ÞÑ Spp, q, 0q, we have

dP

dε

ˇ

ˇ

ˇ

ε“0
“ ´

BH

Bq
and dQ

dε

ˇ

ˇ

ˇ

ε“0
“
BH

Bq
.
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Conclusion

The internship was in line with last year internship, where we explored different linear reduction
methods for Hamiltonian problems, among which the PSD. The aim was to explore different
methods to improve the reduction given by the PSD in non-linear cases and established theoret-
ical justifications for the new methods. Two approaches have been taken : quadratic corrections
of the decoder and hyperreduction via optimal control. The different variations of the first one
which have been tested have given mediocre results, the trajectories computed in low dimension
with the corrected decoder did not differ significantly from the trajectories induced by the PSD
decoder. On the contrary, tests conducted within hyperreduction via control approach have
given promising results. In particular, we have presented a variation of the gradient descent
which appeared to be very efficient on simple cases. We are still carrying out additional tests in
order to explain it and adapat the method to more complex cases. In the geometrical part of the
internship, we have continued to read in order to being familiar with some geometrical tools.
We have learned about generating functions, which we hope to use to build new symplectic
decoders, and h-principle, which we want to use to justify the symplectic reduction approach.

To conclude, I think that the numerical objectives of internship were partially reached.
We have explored the quadratic correction approach but we put it aside due to non-satisfying
results. The hyperreduction approach gived results but we still are working on it and testing
the methods we presented. On the other hand, the geometrical objectives were reached since
we are now ready to start working on the conjecture that we want to prove. I could surely have
been expected to code more quickly, especially the quadratic corrections, and this is certainly
the reason why the numerical part is less developed than originally planed.

During this internship, I worked on some skills I acquired during the two years of Masters.
From the programming point of view, I used Python to implement methods I learned and this
gave me the opportunity to practise this language. From the numerical analysis point of view,
I enriched my knowledge about reduced order models, that we have seen in class in the case of
finite elements and that I have already seen in last year internship. I also used the theoretical
tool we learned in the optimal control lesson, namely the adjoint method, that I had to detail
in a case a little more difficult than the ones we have seen in class. I also worked on my English
skills as almost all the references I had to read were in English. I also developed new skills during
this internship : I discovered the h-principle and some techniques of proof very interesting. In
the field of "soft" skills, I often had to take a step back and think about the global mechanisms
rather than the technical details, but without losing sight of the geometric rigour. Because I
had a geometrician and two numerical analysts for supervisors, I sometimes had to switch from
a point of view to another to understand what there were saying about the same subject. I
found these exercises difficult and I know that I have a lot of room for improvement.
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