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1 Introduction

This end of study internship is a 2nd year internship in the CSMI Master ("Calcul Scientifique
et Mathématiques de l’Information") of the University of Strasbourg. It is the continuation of a
project done during the first semester of M2, the main objective of this project was the discov-
ery of an innovative non-conformal finite element method for augmented surgery, theφ-FEM
method. The purpose of this project was to have Cemosis and Mimesis collaborate through
the use of Feel++ software (developed by Cemosis) in the framework of the φ-FEM method
(one of the research topics of the Mimesis team). This project was followed by a 6-month in-
ternship whose main objective was to correct the output of a Fourier Neural Operator (FNO)
by a solver using the φ-FEM method.

1.1 Scientific Context

Finite element methods (FEM) are used to solve partial differential equations numerically.
These can, for example, represent analytically the dynamic behavior of certain physical sys-
tems (mechanical, thermodynamic, acoustic, etc.). Among other things, it is a discrete algo-
rithm for determining the approximate solution of a partial differential equation (PDE) on a
compact domain with boundary conditions.
The standard FEM method, which requires precise meshing of the domain under considera-
tion and, in particular, fitting with its boundary, has its limitations. In particular, in the medi-
cal field, meshing complex and evolving geometries such as organs (e.g. the liver) can be very
costly. More specifically, in the application context of creating real-time digital twins of an
organ, the standard FEM method would require complete remeshing of the organ each time
it is deformed, which in practice is not workable.
This is why other methods, known as non-conformal finite element methods, have emerged
in the last few years. These include CutFEM [5] or XFEM [15], based on the idea of introduc-
ing a fictitious domain larger than the domain under consideration. We’re interested here in
another non-conformal method, which we’ll present in more detail later, called φ-FEM. We’ll
only use it in the context of Poisson problem solving, for Dirichlet boundary conditions [9].
But the method has been extended to Neumann conditions [8] and then to solve various me-
chanical problems, including linear elasticity [6, Chapter 2] and heat transfer problems [6,
Chapter 5].

1.2 Presentation of the team

Created in January 2021 within ICube laboratory at the University of Strasbourg, MLMS1

("Machine Learning, Modélisation et Simulation") team is interested in data, models and
simulations for medical science and human motion. It brings together computer scientists,
mathematicians, bio-mechanicians, and neuroscientists to develop functional, physical, and

1MLMS : https://mlms.icube.unistra.fr/en/index.php/Presentation
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geometric models around a transverse axis "Assistance to medical interventions by com-
puter". MLMS hosts the MIMESIS2 project-team as a sub-team. The MIMESIS research team
aims at creating real-time digital twins of an organ, with main application domains as surgi-
cal training and surgical guidance during complex interventions. In 2023, a new inria team
NECTARINE will be created within MLMS, who will focus on scientific challenges related to
neuro-stimulation in the clinical context.
MIMESIS, directed by Stéphane Cotin, is a joint Inria3 ("Institut national de recherche en sci-
ences et technologies du numérique") and CNRS4 ("Centre national de la recherche scien-
tifique") Research Team. The Mimesis research team is working on a set of scientific chal-
lenges in scientific computing, data assimilation, machine learning and control, with the goal
of creating real-time digital twins of an organ.

1.3 Objectives

The main objective of the internship was to combine finite element methods and Machine
Learning in order to solve the Poisson problem with Dirichlet condition. More precisely, we
want to train a neural network called Fourier Neural Network (FNO) [11] to predict the solu-
tions of a PDE for a given problem family (i.e. a "type" of source term). This neural network
is trained with a data set consisting of the φ-FEM solutions of the problems considered. The
predictions of this neural network will then be fed back into a finite element solver to apply a
correction to improve the accuracy of the solution : this was the subject covered during the in-
ternship. The finite element methods considered will be presented in Section 2 and the FNO
in Section 3.
It is important to note that the φ-FEM method has an advantage that is very interesting in the
context of organ geometries. Indeed, this type of geometry can deform in time and meshing a
fictitious domain around this geometry avoids having to remesh the geometry in time. Thus
only the levelset function will be modified and the mesh can be fixed. Moreover, a Carte-
sian mesh of the fictitious domain allows us to use the same type of neural network as those
applied to images (especially FNO).
To be more precise, we will test different correction methods (presented in Section 4.2) on dif-
ferent problems (presented in Section 4.1) which will enable us to use the network prediction
to help the solver get as close as possible to the solution. We will start by testing these differ-
ent types of solver on an analytical solution (Section 4.4.1), then on a "manually perturbed"
solution (Section 4.4.2) and finally on a φ-FEM solution (Section 4.4.3).
After testing the various types of correction on the previous test cases, we’ll apply these same
methods to the prediction of an FNO (Section 4.4.4). The main objective is to enable the
combination of FNO and correction to be more accurate than the conventionalφ-FEM solver.
By first testing the different corrections on the previous test cases, we hope to get an idea of
the order of errors to be expected. During the course of the internship, we realized that the

2MIMESIS : https://mimesis.inria.fr/
3Inria : https://www.inria.fr/fr
4CNRS : https://www.cnrs.fr/fr
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results obtained on the FNO did not correspond to the expected analytical results. For this
reason, other types of neural networks were considered, namely multi-perceptron networks
(Section 4.4.5.1) and PINNs (Section 4.4.5.2), with the aim of checking whether the results
obtained are related to the use of the FNO.

1.4 Deliverables

In the context of the internship, the following deliverables are provided:

• a weekly tracking report, written in French, was produced as the internship progressed,
listing the objectives and results for each week.

• a github repository containing all the code allowing to reproduce the results presented
in this report, as well as the documents written during the internship. The codes have
been implemented in Python: for the finite element solvers, we’ll be using the FEniCS
library, and for the neural network implementation, we’ll be using Tensorflow and Py-
torch.

• an online report generated with a tool called antora5. A continuous integration has been
set up on github to execute a python code for each new push, enabling the latex file to
be converted directly into this antora documentation.

5Antora : https://antora.org/
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2 Finite Element Methods (FEMs)

In the following, we will consider the Poisson problem with Dirichlet condition (homoge-
neous or non-homogeneous):
Problem : Find u :Ω→Rd such that{

−∆u = f , in Ω,

u = g , on ∂Ω,

with ∆ the Laplace operator and Ω⊂ Rd a lipschitzian bounded open set (and ∂Ω its bound-
ary).
Here, we present the 2 finite element methods we will be considering. First, we will present
the standard FEM method in Section 2.1, followed by the φ-FEM method in Section 2.2.

2.1 Standard FEM

In this section, we will present the standard finite element method. We’ll start by presenting
some general notions of functional analysis, then explain the general principle of FEM. Then
we’ll give a few more details on the method and finish by describing the application to the
Poisson problem (with Dirichlet condition). For more information, please refer to [16] and
[14].

2.1.1 Some notions of functional analysis.

In this section, we’ll recall some of the notions of functional analysis that will be used in the
next sections. In particular, Lebesgue spaces and Sobolev spaces. Please refer to the book [3].
Let’s considerΩ an open of Rd (d = 1,2,3) with boundary Γ.
We begin here by defining Lebesgue spaces:

Definition 2.1 (Lebesgue spaces). Lebesgue spaces, denoted Lp , are vector spaces of classes
of functions whose exponent power p is integrable in the Lebesgue sense, where p is a strictly
positive real number. They are defined by

Lp (Ω) =
{

u :Ω→R|
∫
Ω

up dν<+∞
}

In particular, taking p = 2, we define the space

L2(Ω) =
{

u :Ω→R|
∫
Ω

u2dν<+∞
}

which is the space of integrable square functions.

We also define Sobolev spaces of order 1 and order 2:
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Definition 2.2 (Sobolev spaces). The Sobolev space of order 1, denoted H 1, is defined by

H 1(Ω) = {
u ∈ L2(Ω)|∂xi u ∈ L2(Ω)

}
=

{
u ∈ L2(Ω),∇u ∈ L2(Ω)d

}
with the scalar product 〈u, v〉H 1(Ω), defined by :

〈u, v〉H 1(Ω) =
∫
Ω

uv +∇u ·∇v,∀u, v ∈ H q(Ω)

and the induced norm || · ||H 1(Ω).
We also define the space

H 1
0 (Ω) = {

u ∈ H 1(Ω)|u|Γ = 0
}

The Sobolev space of order 2, denoted H 2, is defined by

H 2(Ω) = {
u,u′,u′′ ∈ L2(Ω)

}
with scalar product 〈u, v〉H 2(Ω), defined by :

〈u, v〉H 2(Ω) =
∫
Ω

uv +u′v ′+u′′v ′′,∀u, v ∈ H 1(Ω)

and the induced norm || · ||H 2(Ω).

Remark. In view of these definitions, we can see that

||u||2H 1(Ω) = ||u||2L2(Ω) +|u|2H 1Ω)

with |u|H 1Ω) = ||∇u||L2(Ω) called H 1 semi-norm.
We also note that

||u||2H 2(Ω) = ||u||2L2(Ω) +|u|2H 1(Ω) +|u|2H 2(Ω)

with |u|H 2Ω) = ||u′′||L2(Ω) called H 2 semi-norm.

Remark. In the following, we will note || · ||0,Ω the L2 norm onΩ, || · ||1,Ω the H 1 norm onΩ and
|| · ||2,Ω the H 2 norm on Ω. We will also note | · |1,Ω the H 1 semi-norm on Ω and | · |2,Ω the H 2

semi-norm onΩ.

2.1.2 General principle of the method

Let’s consider a domainΩwhose boundary is denoted ∂Ω. We seek to determine a function u
defined onΩ, solution of a partial differential equation (PDE) for given boundary conditions.
The general approach of the finite element method is to write down the variational formula-
tion of this PDE, thus giving us a problem of the following type:
Variational Problem :

Find u ∈V such that a(u, v) = l (v), ∀v ∈V

7



where V is a Hilbert space, a is a bilinear form and l is a linear form.
To do this, we multiply the PDE by a test function v ∈V , then integrate over L2(Ω). remarque
Michel "pas assez précis", qu’est-ce que je dois rajouter ?
The idea of FEM is to use Galerkin’s method. We then look for an approximate solution uh in
Vh , a finite-dimensional space dependent on a positive parameter h such that

Vh ⊂V , dimVh = Nh <∞, ∀h > 0

The variational problem can then be approached by :
Approach Problem :

Find uh ∈Vh such that a(uh , vh) = l (vh), ∀vh ∈V

As Vh is of finite dimension, we can consider a basis (ϕ1, . . . ,ϕNh ) of Vh and thus decompose
uh on this basis as :

uh =
Nh∑
i=1

uiϕi (1)

The approached problem is then rewritten as

Find u1, . . . ,uNh such that
Nh∑
i=1

ui a(ϕi , vh) = l (vh), ∀vh ∈V

and

Find u1, . . . ,uNh such that
Nh∑
i=1

ui a(ϕi ,ϕ j ) = l (ϕ j ), ∀ j ∈ {1, . . . , Nh}

Solving the PDE involves solving the following linear system:

AU = b

with
A = (a(ϕi ,ϕ j ))1≤i , j≤Nh , U = (ui )1≤i≤Nh and b = (l (ϕ j ))1≤ j≤Nh

2.1.3 Some details on FEM

After having seen the general principle of FEM, it remains to define the Vh spaces and the {ϕi }
basis functions.

Remark. The choice of Vh space is fundamental to have an efficient method that gives a good
approximation uh of u. In particular, the choice of the {ϕi } basis of Vh influences the structure
of the A matrix in terms of its sparsity and its condition number.
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To do this, we’ll need several notions, which will be detailed in the following sections. First,
we’ll need to generate a mesh of ourΩ domain. This will enable us to solve the PDE discretely
at selected points. This is where the notion of finite Lagrange elements comes in. The prop-
erties of these elements, particularly in terms of their affine family of finite elements, is a
key point of the method, which will enable us to bring each element of the mesh back to a
reference element by using a geometric transformation. To describe these steps, we’ll need
to know 2 basic concepts: the unisolvence principle and the definitions of the polynomial
spaces used (Pk andQk ).

2.1.3.1 Unisolvance

Definition 2.3. Let Σ = {a1, . . . , aN } be a set of N distinct points of Rn . Let P be a finite-
dimensional vector space of Rn functions taking values in R. We say that Σ is P-unisolvent
if and only if for all realα1, . . . ,αN , there exists a unique element p of P such that p(ai ) =αi , i =
1, . . . , N . This means that the function

L : P →RN

p 7→ (p(a1), . . . , p(aN ))

is bijective.

Remark. In practice, to show thatΣ is P-unisolvent, we simply check that dimP = card (Σ) and
then prove the injectivity or surjectivity of L. The injectivity of L is demonstrated by showing
that the only function of P that annuls on all points of Σ is the null function. The surjectivity of
L is shown by identifying a family p1, . . . , pN of elements of P such that pi (a j ) = δi j . Given real
α1, . . . ,αN , the function p =∑N

i=1αi pi then verifies p(a j ) =α j , j = 1. . . , N .

Remark. We call local basis functions of element K the N functions p1, . . . , pN of P such that

pi (a j ) = δi j , 1 ≤ i , j ≤ N

2.1.3.2 Polynomial space

Let Pk be the vector space of polynomials of total degree less than or equal to k.

• In R : Pk = Vect{1, X , . . . , X k } and dimPk = k +1

• In R2 : Pk = Vect{X i Y j ,0 ≤ i + j ≤ k} and dimPk = (k+1)(k+2)
2

• In R3 : Pk = Vect{1, X i Y j Z l ,0 ≤ i + j + l ≤ k} and dimPk = (k+1)(k+2)(k+3)
6

Let Qk be the vector space of polynomials of degree less than or equal to k with respect to
each variable.

• In R : Qk =Pk .

9



• In R2 : Qk = Vect{X i Y j ,0 ≤ i , j ≤ k} and dimQk = (k +1)2

• In R3 : Qk = Vect{1, X i Y j Z l ,0 ≤ i , j , l ≤ k} and dimQk = (k +1)3

Remark. In practice, we will use the Pk family for triangles/tetrahedra andQk for quadrilater-
als.

2.1.3.3 Finite Lagrange Element

The most classic and simplest type of finite element is the Lagrange finite element.

Definition 2.4 (Lagrange Finite Element). A finite Lagrange element is a triplet (K ,Σ,P ) such
that

• K is a geometric element of Rn (n = 1,2 or 3), compact, connected and of non-empty
interior.

• Σ= {a1, . . . , aN } is a finite set of N distinct points of K .

• P is a finite-dimensional vector space of real functions defined on K and such that Σ is
P-unisolvent (so dimP = N ).

Example. Let K be the segment [a1, a2]. Let’s show that Σ= {a1, a2} is P-unisolvent for P = P1.
Since {1, x} is a base of P1, we have dimP = card Σ= 2.
Moreover, we can write pi =αi x +βi , i = 1,2. Thus

{
p1(a1) = 1

p1(a2) = 0
⇐⇒

{
α1a1 +β1 = 1

α1a2 +β1 = 0
⇐⇒


α1 = 1

a1 −a2

β1 =− a2

a1 −a2

and {
p2(a1) = 0

p2(a2) = 1
⇐⇒

{
α2a1 +β2 = 0

α2a2 +β2 = 1
⇐⇒


α1 = 1

a2 −a1

β1 =− a1

a2 −a1

Thus
p1(x) = x −a2

a1 −a2
and p2(x) = x −a1

a2 −a1

We deduce the surjectivity of L and Σ is P1-unisolvent.
Thus (K ,Σ,P ) is a Lagrange Finite Element.

Definition 2.5. Two finite elements (K̂ , Σ̂, P̂ ) and (K ,Σ,P ) are affine-equivalent if and only if
there exists an inversible affine function F such that

• K = F (K̂ )

• ai = F (âi ), i = 1, . . . , N

10



• P = {p̂ ◦F−1, p̂ ∈ P̂ }.

We then call an affine family of finite elements a family of finite elements, all affine-equivalent
to the same element (K̂ , Σ̂, P̂ ), called the reference element.

Remark. Let (K̂ , Σ̂, P̂ ) and (K ,Σ,P ) be two affine-equivalent finite elements, via an F trans-
formation. Let p̂i be the local basis functions on K̂ . Then the local basis functions on K are
pi = p̂i ◦F−1.

Remark. In practice, working with an affine family of finite elements means that all integral
calculations can be reduced to calculations on the reference element.
The reference elements in 1D, 2D triangular and 3D tetrahedral are :

Figure 2.1: Example of reference Elements.

2.1.3.4 Mesh

In 1D, the construction of a mesh consists in creating a subdivision of the interval [a,b]. We
can extend this definition in 2D and 3D by considering that a mesh is formed by a family of
elements Th = {

K1, . . . ,KNe

}
(see Fig 2.2) where Ne is the number of elements.

In 2D, these elements can be triangles or rectangles. In 3D, they can be tetrahedrons, paral-
lelepipeds or prisms.

Figure 2.2: Example of a triangular mesh on a circles.
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2.1.3.5 Construction of Vh space

Geometric transformation : A mesh is generated by

• A reference element noted K̂ .

• A family of geometric transformations mapping K̂ to the elements K1, . . . ,KNe . Thus, for
a cell K ∈Th , we denote TK the geometric transformation mapping K̂ to K :

TK : K̂ → K

Figure 2.3: Geometric transformation applied to a triangle.

Let (K̂ , Σ̂, P̂ ) be the finite reference element with

• the degrees of freedom of the reference element K̂ : Σ̂= {â1, . . . , ân f } with n f the number
of degrees of freedom.

• the local basis functions of K̂ : {ψ̂1, . . . ,ψ̂n f } (also called form functions)

So for each K ∈ Th , we consider a tuple {aK ,1, . . . , aK ,n f } (degrees of freedom) and the associ-
ated geometric transformation is defined by :

TK : x̂ 7→
n f∑

i=1
aK ,i ψ̂i (x̂)

In particular, we have
TK (âi ) = aK ,i , i = 1, . . . ,n f

Remark. In particular, if the form functions are affine, the geometric transformations will be
too. This is an interesting property, as the gradient of these geometric transformations will be
constant.

Remark. In the following, we will assume that these transformations are C 1-diffeomorphisms
(i.e. the transformation and its inverse are C 1 and bijective).

Construction of the basis (ϕi ) of Vh :
For each K ∈Th , let (K ,Σ,P ) be an finite element with

12



• the degrees of freedom of the element K : Σ= {aK ,i = TK (âi ), i = 1, . . . ,n f }

• the local basis functions of K : {ψK ,i = ψ̂i ◦ T −1
K , i = 1, . . . ,n f } (because (K̂ , Σ̂, P̂ ) and

(K ,Σ,P ) are affine-equivalent).

By noting {a1, . . . , aN f } =⋃
K∈Th

{aK ,1, . . . , aK ,n f } with N f the total number of degrees of freedom
(over all the geometry), we have

∀ j ∈ {1, . . . , N f }, ϕ j |K =ψK ,aK , j

The φ j functions are then in the space of piecewise affine continuous functions, defined by

P k
C ,h = {vh ∈C 0(Ω̄),∀K ∈Th , vh |K ∈Pk } ⊂ H 1(Ω)

In fact, the functions {ϕ1, . . . ,ϕN f } form a basis of P k
C ,h and so we can choose Vh = P k

C ,h .

2.1.4 Application to the Poisson problem

Weak formulation :
We want to apply the standard FEM method to the Poisson problem with Dirichlet condition
under consideration. Let’s start by writing the variational formulation of the problem. We
start with the strong formulation of the problem :

−∆u = f onΩ

Multiplying by a test function v ∈ H 1
0 (Ω) and integrating overΩ, we obtain

−
∫
Ω
∆uv =

∫
Ω

f v.

By integration by parts, we have

−
∫
Ω
∆uv =

∫
Ω
∇u ·∇v −

∫
Γ

∂u

∂n
v.

This leads to the following weak formulation

Find u ∈V such that a(u, v) = l (v), ∀v ∈V

with 
a(u, v) =

∫
Ω
∇u ·∇v

l (v) =
∫
Ω

f v

because v ∈ H 1
0 (Ω).

Unicity of the solution :
An important result of the FEM method is the following theorem, which shows the unicity of
the solution:
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Proposition 2.1 (Lax-Milgram). Let a be a continuous, coercive bilinear form on V and l a
continuous, linear form on V . Then the variational problem has a unique solution u ∈V .
Moreover, if the bilinear form is symmetrical, u is a solution to the following minimization
problem:

J (u) = min
v∈V

J (v), J (v) = 1

2
a(v, v)− l (v)

It can then be shown that the Poisson problem with Dirichlet condition has a unique weak
solution u ∈ H 2(Ω).

2.2 φ-FEM

In this section, we will present the φ-FEM method. We will first present the context in which
the method is used and its general principle (Section 2.2.1. Next, we will give a general pre-
sentation of the method, starting with a description of the spaces required (Section 2.2.2.1),
followed by a description of the φ-FEM method (Section 2.2.2.2). Finally, we will give some
details on the φ-FEM method (section 2.2.3).

2.2.1 Context and general principle of the method

The PhiFEM method is a new fictitious domain finite element method that does not require
a mesh conforming to the real boundary. In the context of augmented surgery, this method
presents a considerable advantage. During real-time simulation, the geometry (in our spe-
cific context, an organ such as the liver, for example) can deform over time. Methods such as
standard FEM, which requires a mesh fitted to the boundary, necessitate a complete remesh-
ing of the geometry at each time step (Figure 2.4). Unlike this type of method,φ-FEM requires
only the generation of a single mesh : the mesh of a fictitious domain containing the entire
geometry (Figure 2.5). As the boundary of the geometry is represented by a levelset function
φ, only this function will change over time, which is a real time-saver.

Remark. Note that changing the φ function creates new sets of cells, all of them described in
the Section 2.2.2.1.

Figure 2.4: Standard FEM mesh example.
Figure 2.5: φ-FEM mesh example.
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Remark. For the purposes of this internship, the geometries considered are not organs (such as
the liver), because these are complex geometries. We are considering simpler geometries such
as circles or squares. It is also important to note that the φ-FEM method has a considerable
advantage: by constructing a fictitious mesh around the domain, we can generate a Cartesian
mesh. This type of mesh can easily be represented by matrices, in the same way as images, hence
the possibility of teaching these φ-FEM solutions to an FNO who generally works on images.
A paper in progress presents results with the combination of PhiFEM and an FNO on more
complex geometries, notably ellipses.

2.2.2 General presentation of the φ-FEM method

In this section, we consider the case of the Poisson problem with homogeneous Dirichlet con-
dition (g = 0 on Γ). For the case of non-homogeneous Dirichlet conditions, we will give more
details in Section 2.2.3.2. For more details on mesh assumptions, convergence results and
finite element matrix condition number, please refer to [9]. φ-FEM schemes for the Poisson
problem with Neumann or mixed (Dirichlet and Neumann) conditions are presented in [8, 6].
Theφ-FEM scheme can also be found for other PDEs, including linear elasticity [6, Chapter 2],
the heat equation [6, Chapter 5] and the Stokes problem [7].

2.2.2.1 Description of spaces

As previously said, we will consider the Poisson-Dirichlet problem{
−∆u = f , in Ω,

u = g , on ∂Ω,
(2)

where the domainΩ and its boundary Γ are given by a level-set function φ such that

Ω= {φ< 0} and Γ= {φ= 0}.

The level-set function φ is supposed to be known on Rd , sufficiently smooth, and to behave
near Γ as the signed distance to Γ (Figure 2.6).

Figure 2.6: Definition of the level-set function.
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Example. If Ω is a circle of center A of coordinates (xA, y A) and radius r , the level-set function
can be defined by

φ(x, y) =−r 2 + (x −xA)2 + (y − y A)2.

If Ω is an ellipse with center A of coordinates (xA, y A) and parameters (a,b), the level-set func-
tion can be defined by

φ(x, y) =−1+ (x −xA)2

a2
+ (y − y A)2

b2
.

We assume that Ω is inside a domain O and we introduce a simple quasi-uniform mesh T O
h

on O (Figure 2.7).
We introduce now an approximation φh ∈ V (l )

h,O of φ given by φh = I (l )
h,O (φ) where I (l )

h,O is the
standard Lagrange interpolation operator on

V (l )
h,O =

{
vh ∈ H 1(O ) : vh|T ∈Pl (T ) ∀T ∈T O

h

}
and we denote by Γh = {φh = 0}, the approximate boundary of Γ (Figure 2.8).
We will consider Th a sub-mesh of T O

h obtained by removing the elements located entirely
outsideΩ (Figure 2.8). To be more specific, Th is defined by

Th =
{

T ∈T O
h : T ∩ {φh < 0} ̸= ;

}
.

We denoteΩh the domain covered by the Th mesh (Ωh will be slightly larger thanΩ) and ∂Ωh

its boundary (Figure 2.8). The domainΩh is defined by

Ωh = (∪T∈Th T
)O .

Figure 2.7: Fictitious domain.
Figure 2.8: Domain considered.

Now, we can introduce T Γ
h ⊂ Th (Figure 2.9) which contains the mesh elements cut by the

approximate boundary Γh = {φh = 0}, i.e.

T Γ
h = {T ∈Th : T ∩Γh ̸= ;} ,

and FΓ
h (Figure 2.10) which collects the interior facets of the mesh Th either cut by Γh or

belonging to a cut mesh element

FΓ
h = {E (an internal facet of Th) such that ∃T ∈Th : T ∩Γh ̸= ; and E ∈ ∂T } .
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We denote byΩΓ
h the domain covered by the T Γ

h mesh (Figure 2.9) and also defined by

ΩΓ
h =

(
∪T∈T Γ

h
T

)O
.

Figure 2.9: Boundary cells. Figure 2.10: Boundary edges.

2.2.2.2 Description of the φ-FEM method

As with standard FEM, the general idea behindφ-FEM is to find a weak solution (i.e. a solution
to the variational problem) to the considered problem (2). The main difference lies in the
spaces considered. In fact, we are no longer looking to solve the problem on Ω (of boundary
Γ) but on Ωh (of boundary ∂Ωh). Since our boundary conditions are defined on Γ, we don’t
have a direct condition on the ∂Ωh boundary, so we will have to add terms to the variational
formulation of the problem, called stabilization terms.
Assuming that the right-hand side f is currently well-defined on Ωh and that the solution
u can be extended on Ωh such that −∆u = f on Ωh , we can introduce a new unknown w ∈
H 1(Ωh) such that u = φw and the boundary condition on Γ is satisfied (since φ = 0 on Γ).
After an integration by parts, we have∫

Ωh

∇(φw) ·∇(φv)−
∫
∂Ωh

∂

∂n
(φw)φv =

∫
Ωh

f φv, ∀v ∈ H 1(Ωh).

Remark. Note thatΩh is constructed using φh and therefore implicitly depends on φ.

Given an approximation φh of φ on the mesh Th , as defined in Section 2.2.2.1, and a finite
element space Vh on Th , we can then search for wh ∈Vh such that

ah(wh , vh) = lh(vh), ∀vh ∈Vh .

We can consider the finite element space Vh =V (k)
h with

V (k)
h = {

vh ∈ H 1(Ωh) : vh|T ∈Pk (T ) ∀T ∈Th
}

.

The bilinear form ah and the linear form lh are defined by

ah(w, v) =
∫
Ωh

∇(φh w) ·∇(φh v)−
∫
∂Ωh

∂

∂n
(φh w)φh v +Gh(w, v)
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and

lh(v) =
∫
Ωh

f φh v +Gr hs
h (v)

with

Gh(w, v) =σh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(φh w)

][
∂

∂n
(φh v)

]
+σh2

∑
T∈T Γ

h

∫
T
∆(φh w)∆(φh v)

and

Gr hs
h (v) =−σh2

∑
T∈T Γ

h

∫
T

f ∆(φh v).

with σ an independent parameter of h, which we’ll call the stabilization parameter.

Remark. Note that [ · ] is the jump on the interface E defined by[
∂

∂n
(φh w)

]
=∇(φh w)+ ·n −∇(φh w)− ·n

with n is the unit normal vector outside E.

2.2.3 Some details on φ-FEM

In this section, we first give some information on stabilization terms (Section 2.2.3.1) and
then present two methods for imposing non-homogeneous Dirichlet conditions, the direct
method and the dual method (Section 2.2.3.2).

2.2.3.1 Stabilization terms

As introduced previously, the stabilization terms are intended to reduce the errors created
by the "fictitious" boundary, but they also have the effect of ensuring the correct condition
number of the finite element matrix and permitting to restore the coercivity of the bilinear
scheme.
The first term of Gh(w, v) defined by

σh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(φh w)

][
∂

∂n
(φh v)

]
is a first-order stabilization term. This stabilization term is based on [4]. It also ensures the
continuity of the solution by penalizing gradient jumps.
By substracting Gr hs

h (v) from the second term of Gh(w, v), i.e.

σh2
∑

T∈T Γ
h

∫
T
∆(φh w)∆(φh v)+σh2

∑
T∈T Γ

h

∫
T

f ∆(φh v),

which can be rewritten as

σh2
∑

T∈T Γ
h

∫
T

(
∆(φh w)+ f

)
∆(φh v),
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we recognize the strong formulation of the Poisson problem. This second-order stabilization
term penalizes the scheme by requiring the solution to verify the strong form on ΩΓ

h . In fact,
this term cancels out ifφh w is the exact solution of the Poisson problem under consideration.

2.2.3.2 Non-homogeneous case

In the case of a non-homogeneous Dirichlet condition, we want to impose u = g on Γ. To do
this, we will consider 2 approaches introduced in [6] and presented below:

• Direct method : In this method, we must suppose that g is currently given over the
entireΩh and not just over Γ. We can then write the solution u as

u =φw + g , onΩh .

It can then be injected into the weak formulation of the homogeneous problem and we
can then search for wh onΩh such that∫

Ωh

∇(φh wh)∇(φh vh)−
∫
∂Ωh

∂

∂n
(φh wh)φh vh +Gh(wh , vh) =

∫
Ωh

f φh vh

−
∫
Ωh

∇g∇(φh vh)+
∫
∂Ωh

∂g

∂n
φh vh +Gr hs

h (vh), ∀vh ∈Ωh

with

Gh(w, v) =σh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(φh w)

][
∂

∂n
(φh v)

]
+σh2

∑
T∈T Γ

h

∫
T
∆(φh w)∆(φh v)

and

Gr hs
h (v) =−σh2

∑
T∈T Γ

h

∫
T

f ∆(φh v)−σh
∑

E∈FΓ
h

∫
E

[
∂g

∂n

][
∂

∂n
(φh v)

]
−σh2

∑
T∈T Γ

h

∫
T
∆g∆(φh v)

• Dual method : We now assume that g is defined on ΩΓ
h and not on Ωh . We then intro-

duce a new unknown p on ΩΓ
h in addition to the unknown u on Ωh and so we aim to

impose
u =φp + g , onΩΓ

h .

So we look for u onΩh and p onΩΓ
h such that∫

Ωh

∇u∇v −
∫
∂Ωh

∂u

∂n
v + γ

h2

∑
T∈T Γ

h

∫
T

(
u − 1

h
φp

)(
v − 1

h
φq

)
+Gh(u, v) =

∫
Ωh

f v

+ γ

h2

∑
T∈T Γ

h

∫
T

g

(
v − 1

h
φq

)
+Gr hs

h (v), ∀v onΩh , q onΩΓ
h .
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with γ an other positive stabilization parameter,

Gh(u, v) =σh
∑

E∈FΓ
h

∫
E

[
∂u

∂n

][
∂v

∂n

]
+σh2

∑
T∈T Γ

h

∫
T
∆u∆v

and

Gr hs
h (v) =−σh2

∑
T∈T Γ

h

∫
T

f ∆v.

Remark. The factors 1
h and 1

h2 control the condition number of the finite element matrix.
For more details, please refer to the article [8].
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3 Fourier Neural Operator (FNO)

We will now introduce Fourier Neural Operators (FNO). For more information, please refer to
the following article [11, 12, 10, 13].
In image treatment, we call image tensors of size ni×n j×nk, where ni×n j corresponds to the
image resolution and nk corresponds to its number of channels. For example, an RGB (Red
Green Blue) image has nk = 3 channels. We choose here to present the FNO as an operator
acting on discrete images. The reference article [11] present it in its continuous aspect, which
is an interesting point of view. Indeed, it is thanks to this property that it can be trained/eval-
uated with images of different resolutions.

Remark. The FNO used was implemented by Vincent Vigon6 using Python’s tensorflow library7.
Furthermore, note that this report does not include a test of model parameter variation.

3.1 Architecture of the FNO

The following figure (Figure 3.1) describes the FNO architecture in detail:

Figure 3.1: Architecture of the FNO.

The architecture of the FNO is as follows:

Gθ =Q ◦H L
θ ◦ · · · ◦H 1

θ ◦P

6Vincent Vigon: https://irma.math.unistra.fr/ vigon/
7Tensorflow: https://www.tensorflow.org/?hl=fr
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We’ll now describe the composition of the Figure 3.1 in a little more detail :

• We start with input X of shape (batch_size, height, width, nb_channels) with batch_size
the number of images to be processed at the same time, height and width the dimen-
sions of the images and nb_channels the number of channels. Simplify by (bs,ni,nj,nk).

• We perform a P transformation in order to move to a space with more channels. This
step enables the network to build a sufficiently rich representation of the data. For ex-
ample, a Dense layer (also known as fully-connected) can be used.

• We then apply L Fourier layers, noted H l
θ

, l = 1, . . . ,L, whose specifications will be de-
tailed in Section 3.2.

• We then return to the target dimension by performing a Q transformation. In our case,
the number of output channels is 1.

• We then obtain the output of the Y model of shape (bs,ni,nj,1).

3.2 Fourier Layer structure

Each Fourier layer is divided into two sublayers:

Ỹ =H l
θ(X̃ ) =σ

(
C l
θ(X̃ )+Bl

θ(X̃ )
)

where

• X̃ corresponds to the input of the current layer and Ỹ to the output.

• σ is an activation function. For l = 1, . . . ,L −1, we’ll take the activation function ReLU
(Rectified Linear Unit) and for l = L we’ll take the activation function GELU (Gaussian
Error Linear Units).

Figure 3.2: Activation functions used.

• C l
θ

is a convolution layer where convolution is performed by FFT (Fast Fourier Trans-
form). For more details, see Section 3.2.1.

• Bl
θ

is the "bias-layer". For more details, see Section 3.2.2.
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3.2.1 Convolution sublayer

Each C l
θ

convolution layer contains a trainable kernel Ŵ and performs the transformation

C l
θ(X ) =F−1(F (X ) ·Ŵ )

where F corresponds to the 2D Discrete Fourier Transform (DFT) on a ni ×n j resolution grid
and

(Y ·Ŵ )i j k =∑
k ′

Yi j k ′Ŵi j k ′

In other words, this transormation is applied channel by channel.

Remark. An image is fundamentally a signal. Just as 1D signals show changes in amplitude
(sound) over time, 2D signals show variations in intensity (light) over space. The Fourier trans-
form allows us to move from the spatial or temporal domain into the frequency domain. In a
sound signal (1D signal), low frequencies represent low-pitched sounds and high frequencies
represent high-pitched sounds. In the case of an image (2D signal), low frequencies represent
large homogeneous surfaces and blurred parts, while high frequencies represent contours, more
generally abrupt changes in intensity and, finally, noise.

The 2D DFT is defined by :

F (X )i j k = 1

ni

1

n j

ni−1∑
i ′=0

n j−1∑
j ′=0

Xi ′ j ′k e
−2

p−1π
(

i i ′
ni +

j j ′
n j

)

The inverse of the 2D DFT is defined by :

F−1(X )i j k =
ni−1∑
i ′=0

n j−1∑
j ′=0

Xi ′ j ′k e
2
p−1π

(
i i ′
ni +

j j ′
n j

)

We can easily show that F is the reciprocal function of F−1. We have

F−1(F (X ))i j k =
ni−1∑
i ′=0

n j−1∑
j ′=0

F (X )i ′ j ′k e
2
p−1π

(
i i ′
ni +

j j ′
n j

)

= 1

ni

1

n j

∑
i ′ j ′

∑
i ′′ j ′′

Xi ′′ j ′′k e
−2

p−1π
(

i ′i ′′
ni + j ′ j ′′

n j

)
e

2
p−1π

(
i i ′
ni +

j j ′
n j

)

= 1

ni

1

n j

∑
i ′′ j ′′

Xi ′′ j ′′k
∑
i ′ j ′

e2
p−1π i ′

ni (i−i ′′)e2
p−1π j ′

n j ( j− j ′′)

Let

S = ∑
i ′ j ′

e2
p−1π i ′

ni (i−i ′′)e2
p−1π j ′

n j ( j− j ′′)

Thus
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• If (i , j ) = (i ′′, j ′′) : S =∑
i ′, j ′ 1 = ni ×n j

• If (i , j ) ̸= (i ′′, j ′′) :

S =∑
i ′

(
e

2
p−1π

ni (i−i ′′)
)i ′ ∑

j ′

(
e

2
p−1π

n j ( j− j ′′)
) j ′

=
1−

(
e

2
p−1π

ni (i−i ′′)
)ni

1−e
2
p−1π

ni (i−i ′′)
×

1−
(
e

2
p−1π

n j ( j− j ′′)
)n j

1−e
2
p−1π

n j ( j− j ′′)

= 1−e2
p−1π(i−i ′′)

1−e
2
p−1π

ni (i−i ′′)
× 1−e2

p−1π( j− j ′′)

1−e
2
p−1π

ni ( j− j ′′)
= 0

as the sum of a geometric sequence.

We deduce that

F−1(F (X ))i j k = 1

ni

1

n j
×ni ×n j ×Xi j k = Xi j k

And finally F is the reciprocal function of F−1.
For more details about the Convolution sublayer, see Section 3.3.

3.2.2 Bias subLayer

The bias layer is a 2D convolution with a kernel size of 1. This means that it only performs
matrix multiplication on the channels, but pixel by pixel. In other words, it mixes channels
via a kernel, but does not allow interaction between pixels.
Precisly,

Bl
θ(X )i j k =∑

k ′
Xi j kWk ′k +Bk

3.3 Some details on the convolution sublayer

In this section, we will specify some details for the convolution layer.

3.3.1 Border issues

Let W =F−1(Ŵ ), we have :

C l
θ(X̃ ) =F−1 (

F (X ) ·Ŵ )= X̃ ⋆W

with
(X̃ ⋆W )i j =

∑
i ′ j ′

X̃i−i ′[ni ], j− j ′[n j ]Wi ′ j ′

In other words, multiplying in Fourier space is equivalent to performing a⋆ circular convolu-
tion in real space.
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Remark. These modulo operations are only natural for periodic images, which is not our case.
The discontinuity that appears when we periodize the image causes oscillations on the edges of
the filtered images. To limit this problem, we will apply a padding on the image which is the
fact to extend the images by adding pixels all around, before performing the convolution. After
the convolution, we restrict the image to partially erase the oscillations.

3.3.2 FFT

To speed up computations, we will use the FFT (Fast Fourier Transform). The FFT is a fast
algorithm to compute the DFT. It is recursive : The transformation of a signal of size N is
make from the decomposition of two sub-signals of size N /2. The complexity of the FFT is
N log(N ) whereas the natural algorithm, which is a matrix multiplication, has a complexity of
N 2.

3.3.3 Real DFT

In reality, we’ll be using a specific implementation of FFT, called RFFT (Real Fast Fourier Tran-
sorm). In fact, for F−1(A) to be real if A is a complex-valued matrix, it is necessary that A
respects the Hermitian symmetry:

Ai ,n j−( j+1) = Āi , j

In our case, we want C l
θ

(X ) to be a real image, so F (X ) ·Ŵ must verify Hermitian-symmetry.
To do this, we only need to collect half of the Discrete Fourier Coefficients (DFC) and the
other half will be deduced by Hermitian symmetry. More precisely, using the specific RFFT
implementation, the DFCs are stored in a matrix of size (ni ,n j //2+ 1). Multiplication can
then be performed by the Ŵ kernel, and when the inverse RFFT is performed, the DFCs will
be automatically symmetrized. So the Hermitian symmetry of F (X ) ·Ŵ is verified and C l

θ
(X )

is indeed a real image.
To simplify, let’s assume nk=1. Here is a diagram describing this idea:

Figure 3.3: RFFT with Hermitian-symmetry scheme.

Remark. In fact, we can check that F (X ) satisfies Hermitian symmetry immediately.
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3.3.4 Low pass filter

When we perform a DFT on an image, the DFCs related to high frequencies are in practice
very low. This is why we can easily filter an image by ignoring these high frequencies, i.e.
by truncating the high Fourier modes. In fact, eliminating the higher Fourier modes enables
a kind of regularization that helps the generalization. So, in practice, it’s sufficient to keep
only the DFCs corresponding to low frequencies. Typically, for images of resolution 32×32 to
128×128, we can keep only the 20×20 DFCs associated to low frequencies.
Here is a representation of this idea in 1D :

Figure 3.4: Low pass filter.

3.3.5 Global aspect of the FNO

Classical Convolutional Neural Networks (CNN) use very small kernels (typically 3×3). This
operation only has a local effect, and it’s the sequence of many convolutions that produces
more global effects.
In addition, CNNs often use max or mean-pooling layers, which process the image on sev-
eral scales. Max-pooling (respectively mean-pooling) consists in slicing the image into small
pieces of size n×n, then choosing the pixel with the highest value (respectively the average of
the pixels) in each of the small pieces. In most cases, n = 2 is used, which divides the number
of pixels by 4.
The FNO, on the other hand, uses a Ŵ frequency kernel and W = F−1(Ŵ ) has full support.
For this reason, the effect is immediately non-local. As a result, we can use less layers and we
don’t need to use a pooling layer.

3.4 Application

In our case, we want to use the FNO to predict the solutions of a PDE. As explained above,
we’ll train the FNO with a data set (sample of size nd at a) generated by aφ-FEM solver. We will
then inject the output of our FNO into a new solver that can correct the solution, i.e. improve
its accuracy.
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We are still trying to solve the Poisson problem with Dirichlet condition, defined by{
−∆(φw) = f , onΩ,

u = g , in Γ,

with u =φw .
This problem can be approached in different ways. For example, we may want to consider a
case where the level-set function φ changes, as in the case where we want to solve the prob-
lem of the geometry of an organ at different time steps. In this case, we’ll need to generate
a {φi }i=1,...,nd at a collection of level-sets sufficiently representative of the possible variations of
the levelset. In a more simple case, if our geometry is defined by an ellipse in a precise do-
main, the {φi }i=1,...,nd at a family will group nd at a ellipses whose parameters change, such as
center or axes.
We may also want to solve the problem for a collection of source terms { fi }i=1,...,nd at a . For ex-
ample, this set could be a Gaussian set whose esperance and variance are varied. In the same
idea, we might wish to vary the Dirchlet condition and thus create a collection {gi }i=1,...,nd at a .

Remark. Note that we’re working in a discrete way here, so for each i , the terms fi , gi and φi

are in fact 2D matrices of size (ni ,n j ).

Remark. Note also that the FNO has less difficulty learning solutions that don’t have a wide
range of values. This is why the collection of { fi } that we’ll be using in the following will in fact
be the normalization of the previous collection :

fi ,nor m = fi

max j=1, . . . ,nd at a || f j ||L2(O )
.

Here are the steps that will be performed to train the FNO (Figure 3.5):

• We start by creating a dataset containing the level-set, source term and boundary con-
dition collections, defined by

X _tr ai n = { fi , gi ,φi }i=1,...,nd at a .

Remark. Note that we can also consider the problem as homogeneous, in which case
X_train will only be generated from f and φ. We may also wish to fix the geometry, in
which case the training sample X_train will not contain the φ term.

We can then solve these nd at a problems using the φ-FEM method, where the solution
to each of them is defined by u =φw . We then define the training sample

Y _tr ai n = {wi }i=1,...,nd at a

where ui =φi wi is the solution associated to the i-th problem of the X_train sample, i.e.
solution of {

−∆(φi wi ) = fi , onΩ,

ui = gi , in Γ.
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Remark. Note that in practice, we have enriched the data by increasing the number of
channels in the X_train sample. In fact, for each problem i , we add to the sample the
primitives of fi according to x and y, as well as the second primitives according to xx
and yy. The X_train sample is then of size (nd at a ,ni ,n j ,nk) with nk = 7 the number of
channels if we consider the 3 collections. The Y_train sample is of size (nd at a ,ni ,n j ,1).

• At this moment, we have the (X_train,Y_train) pair that will enable us to train our FNO.
More precisely, we’re looking to minimize a loss function on the model’s θ parameters
by using gradient descent. We’ll choose the following loss function:

l ossθ = l oss(0)
θ

+ l oss(1)
θ

+ l oss(2)
θ

with

l oss(0)
θ

= 1

nd at a

nd at a∑
i=1

mse(φi wi −φi wθ,i )

l oss(1)
θ

= 1

nd at a

nd at a∑
i=1

mse(∇x(φi wi )−∇x(φi wθ,i ))+mse(∇y (φi wi )−∇y (φi wθ,i ))

l oss(2)
θ

= 1

nd at a

nd at a∑
i=1

mse(∇xx(φi wi )−∇xx(φi wθ,i ))+mse(∇y y (φi wi )−∇y y (φi wθ,i ))

with wi the φ-FEM solution associated to the i-th problem considered (i.e. the i-th
Y_train sample data), wθ,i the FNO prediction associated to the i-th problem, φi the
i-th levelset and mse the "Mean Square Error" function defined by

mse(A) = 1

ni

1

n j

ni−1∑
i=0

n j−1∑
j=0

A2
i , j .

Remark. Note that first and second derivatives according to x and y are calculated here
by finite differences.

Figure 3.5: Representation of the FNO training.

We can now proceed to the correction stage (Figure 3.6), where we consider a type of cor-
rection defined in Section 4.2 (correction by adding, correction by multiplying or correction
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by multiplying on an enhanced problem). We can then consider a new test sample X_test
constructed in the same way as the training sample and defined by

X _test = { f test
i , g test

i ,φtest
i }i=1,...,ntest .

We will then provide this sample as input to the FNO in order to obtain its prediction w test
θ,i

for each problem i of the test sample (where θ corresponds to the parameters learned dur-
ing training). We then construct utest

θi
= φi w test

θ,i which will be given as input to one of the
correction solvers. We will then obtain what we call the corrected solution.

Figure 3.6: Representation of correction steps
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4 Correction

In this section, we will look at the different correction methods. we will start by presenting the
different problems considered (Section 4.1), then we will introduce the different correction
methods (Section 4.2), more specifically correction by addition, correction by multiplication
and correction by multiplication on a so-called elevated problem. We will then continue by
presenting some theoretical results on these different methods (Section 4.3), and finish by
presenting the numerical results obtained (Section 4.4).

4.1 Presentation of different problems considered

In this section, we present the different problems we will be considering in Section 4.4. We
will consider the geometry of a circle in Section 4.1.1 represented in Figure 4.1 as well as the
geometry of a square in Section 4.1.2 represented in Figure 4.2. For the circle, we will con-
sider a first analytic trigonometric solution, parameterized in such a way that the problem
can be considered homogeneous. we will then consider a second problem for which no exact
solution is known, and for which we will take an over-refined FEM solution as the reference
solution. For the square, we will consider only an analytic trigonometric solution parameter-
ized in such a way that the problem can be considered homogeneous.

Figure 4.1: Representation of the first do-
main considered : the Circle.

Figure 4.2: Representation of the second do-
main considered : the Square.

Remark. To generate meshes with FEM, we will consider a mesh comparable to φ-FEM. To
do this, we generate our φ-FEM grid, which is simply the regular mesh of the O domain of
nver t ×nver t nodes. From this mesh we generate a FEM mesh whose largest element diameter
hF E M is very close to the largest diameter associated with φ−F E M, hφ−F E M (hF E M ∼ hφ−F E M ).
Here, we have a representation of the meshes generated for FEM andφ-FEM on the circle (Figure
4.3) and on the square (Figure 4.4) with nver t = 10 vertices in each direction.
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Figure 4.3: Representation of meshes for
FEM and φ-FEM on the Circle.

Figure 4.4: Representation of meshes for
FEM and φ-FEM on the Square.

Remark. Note that in the case where the problem is non-homogeneous, if we don’t have a defi-
nition of the Dirichlet boundary condition, we can consider

g (x, y) = uex(x, y)× (1+φ(x, y))

with φ the level-set function, null by definition on Γ.

4.1.1 First domain : the Circle.

Here, we will consider the Ω domain to be the circle of radius
p

2/4 and center (0.5,0.5).This
domain is entirely included in the fictitious domain O = [0,1]2 (Figure 4.1).
We will consider the level-set function φ defined by

φ(x, y) =−1/8+ (x −1/2)2 + (y −1/2)2,

negative function inside the domain, null at the boundary and positive outside it
We will consider a first analytic trigonometric solution (Section 4.1.1.1), parameterized in
such a way that the problem can be considered homogeneous and then consider a second
problem (Section 4.1.1.2) for which no exact solution is known, and for which we’ll take an
over-refined FEM solution as the reference solution.

4.1.1.1 First problem

Here, we are interested in the Poisson problem with an analytical solution

uex(x, y) = S × sin
(
8π f

(
(x −0.5)2 + (y −0.5)2)+ϕ)

where S ∈ [0,1] is the amplitude of the signal, f ∈N can be associated with the "frequency" of
the signal and ϕ ∈ [0,1] the phase at the origin, represented in Figure 4.5.
Thus, the second associated member is defined by

f (x, y) = 256π2S f 2 (
(x −0.5)2 + (y −0.5)2)sin

[
8π f

(
(x −0.5)2 + (y −0.5)2)+ϕ]

−32πS f cos
[
8π f

(
(x −0.5)2 + (y −0.5)2)+ϕ]

and represented in Figure 4.6.
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Remark. Note that for ϕ= 0, the Dirichlet conditions considered are then homogeneous on the
circle (i.e. g = 0 on Γ).

Figure 4.5: Representation of the solution
uex on the Circle with S = 0.5 and f = 1 (with
p = 0 and p = 1).

Figure 4.6: Representation of the term f on
the Circle with S = 0.5 and f = 1 (with p = 0
and p = 1).

4.1.1.2 f Gaussian

In the case considered here, no analytical solution is known. We consider the source term f
to be a Gaussian defined by

f (x, y) = exp

(
− (x −µ0)2 + (y −µ1)2

2σ2

)
,

with σ ∼ U ([0.1,0.6]) and µ0,µ1 ∼ U ([0.5−p
2/4,0.5+p

2/4]) with the condition φ(µ0,µ1) <
−0.05 and represented in Figure 4.7
Since we don’t have an exact solution, we will consider a so-called reference solution, denoted
ur e f . This reference solution is defined as an over-refined P1 solution obtained by the stan-
dard FEM method (with hr e f ≈ 0.006). It is to this reference solution that we can compare the
solutions obtained by the correction methods or by the FNO.

Remark. For this problem, we choose to consider only the homogeneous case, i.e. we take g = 0
on Γ.

Figure 4.7: Representation of the term f on the Circle with (µ0,µ1) = (0.5,0.5) and σ= 0.3.
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4.1.2 Second domain : the Square.

Here, we will consider the Ω domain to be the unit square Ω= [0,1]2. This domain is entirely
included in the fictitious domain O = [−0.5,1.5]2 (Figure 4.2).
In this case, we will consider two level-set functions. The first function φ, defined by

φ(x, y) = x(1−x)y(1− y),

will be used when solving the weak problem. However, it cannot be used to construct our cell
and face sets, because it is not only negative in theΩ domain (Figure 4.8).

Figure 4.8: Representation of φ(x, y) < 0.

To construct the sets of cells and faces needed to perform theφ-FEM method, we will consider
a second function, denoted φC and defined by

φC (x, y) = max(|x −0.5|, |y −0.5|)−0.5,

which is indeed negative inside the domain, zero at the boundary and positive outside, but
which does not sufficiently satisfy the regularity conditions necessary for φ-FEM.
We will consider only an analytic trigonometric solution parameterized in such a way that the
problem can be considered homogeneous.

4.1.2.1 Problem

Here, we are interested in the Poisson problem with as analytical solution

uex(x, y) = S × sin
(
2π f x +ϕ)× sin

(
2π f y +ϕ)

where S ∈ [0,1] is the amplitude of the signal, f ∈N can be associated with the "frequency" of
the signal and ϕ ∈ [0,1] the phase at the origin.
Thus, the associated second member is defined by

f (x, y) = 8π2S f 2 sin
(
2π f x +ϕ)

sin
(
2π f y +ϕ)

Remark. It should be noted that as for the circle for ϕ= 0, the Dirichlet conditions considered
are then homogeneous on the square (i.e. g = 0 on Γ).
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Figure 4.9: Representation of the solution
uex on the Circle with S = 0.5 and f = 1 (with
p = 0 and p = 1).

Figure 4.10: Representation of the term f on
the Circle with S = 0.5 and f = 1 (with p = 0
and p = 1).

4.2 Presentation of the different correction methods considered

Here we are given φ̃ an "initial" solution to the problem under consideration, i.e. a solution
that has not yet been corrected. This may be a perturbed analytic solution, a φ-FEM solution,
or a solution predicted by a neural network (such as an FNO, a Multi-perceptron network or
PINNs, for example). The aim is to inject this solution into a new problem in order to improve
the accuracy of the solution. To achieve this, we consider 3 types of correction: correction by
addition (Section 4.2.1), correction by multiplication (Section 4.2.2) and correction by multi-
plication on an elevated problem (Section 4.2.3).

Remark. In what follows, we assume that φ̃ already has the right conditions at the boundary,
i.e. φ̃= g on Γ.

4.2.1 Correction by adding

In this first method, we will try to approximate the solution obtained φ̃ to the exact solution
by completing the difference between the two, which is what we will call correction by adding.
To do this, we will consider

ũ = φ̃+ C̃

and we want to find C̃ :Ω→Rd solution to the problem{
−∆ũ = f , onΩ,

ũ = g , in Γ.

Remark. Note that this problem is in fact equivalent to the initial problem. We only hope
that the approximate solution ũ obtained is more accurate than the approximate solution u
obtained by solving the initial problem.

Rewriting the problem, we seek to find C̃ :Ω→Rd solution to the problem{
−∆C̃ = f̃ , onΩ,

C̃ = 0, in Γ.
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with f̃ = f +∆φ̃.
Thus for the standard FEM method, the weak formulation will be given by∫

Ω
∇C̃ ·∇v =

∫
Ω

f̃ v

where the homogeneous Dirichlet conditions can be strongly imposed by classical methods
(penalization, elimination...).
For the φ-FEM method, we look for C such that C̃ =φC and the weak formulation (associated
with a homogeneous problem because C̃ = 0 on Γ) is given by∫

Ωh

∇(φC ) ·∇(φv)−
∫
∂Ωh

∂

∂n
(φC )φv +Gh(w, v) =

∫
Ωh

f̃ φv +Gr hs
h (v)

with

Gh(C , v) =σh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(φC )

][
∂

∂n
(φv)

]
+σh2

∑
T∈T Γ

h

∫
T
∆(φC )∆(φv)

and

Gr hs
h (v) =−σh2

∑
T∈T Γ

h

∫
T

f̃ ∆(φv).

In the non-homogeneous case, the formulation is the same, as the correction problem stays
homogeneous (C̃ = 0 on Γ).

Remark. In practice, it may be useful to integrate by parts (IPP) the term containing ∆φ̃ (im-
plicitly included in f̃ ).
So for FEM, as v ∈ H 1

0 (Ω), we have∫
Ω

f̃ v =
∫
Ω

f v +
∫
Ω
∆φ̃v =

∫
Ω

f v −
∫
Ω
∇φ̃ ·∇v.

For φ-FEM, we have∫
Ωh

f̃ φv =
∫
Ωh

f φv +
∫
Ωh

∆φ̃φv =
∫
Ωh

f φv −
∫
Ωh

∇φ̃ ·∇(φv)+
∫
∂Ωh

∂φ̃

∂n
φv.

4.2.2 Correction by multiplying

In this second method, we try to approach the exact solution in a different way. In fact, we
want to bring the factor between the φ̃ solution and the solution of the corrected problem
closer to 1. In other words, by considering

ũ = φ̃C ,

we try to bring C = ũ
φ̃

closer to 1 (for φ̃ ̸= 0). This type of correction is called correction by

multiplying.
So we’re looking for C :Ω→Rd solution to the problem{

−∆(φ̃C ) = f , onΩ,

C = 1, on Γ.
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Remark. In the same way as for correction by adding, we note that this problem is equivalent
to the initial problem.

So for the standard FEM method, the weak formulation will be given by∫
Ω
∇(φ̃C ) ·∇(φ̃v) =

∫
Ω

f φ̃v

where homogeneous or non-homogeneous Dirichlet conditions can be strongly imposed by
classical methods (penalization, elimination...).
For the φ-FEM method, the weak formulation for the homogeneous problem is given by∫

Ωh

∇(φ̃C ) ·∇(φ̃v)−
∫
∂Ωh

∂

∂n
(φ̃C )φ̃v +Gh(w, v) =

∫
Ωh

f φ̃v +Gr hs
h (v)

with

Gh(C , v) =σh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(φ̃C )

][
∂

∂n
(φ̃v)

]
+σh2

∑
T∈T Γ

h

∫
T
∆(φ̃C )∆(φ̃v)

and

Gr hs
h (v) =−σh2

∑
T∈T Γ

h

∫
T

f ∆(φ̃v).

In the non-homogeneous case, it is important to impose the boundary conditions either by
the direct method or by the dual method presented in Section 2.2.3.2.

4.2.3 Correction by multiplying on an elevated problem

We now introduce a third correction method, which we will call correction by multiplying on
an elevated problem. This method is in fact very similar to the previous one (correction by
multiplying), except that we are no longer trying to correct the same problem.
The initial modified problem, which we now consider, consists in finding u :Ω→Rd such that{

−∆û = f , in Ω,

û = g +m, on Γ,

with û = u +m and m a constant.
We then apply the same multiplication correction method, but this time on the modified
problem, which has been elevated by a constant m. We then consider

ũ = φ̂C

with
φ̂= φ̃+m

and so we look for C :Ω→Rd solution to the problem{
−∆(φ̂C ) = f , in Ω,

C = 1, on Γ.
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So for the standard FEM method, the weak formulation will be given by∫
Ω
∇(φ̂C ) ·∇(φ̂v) =

∫
Ω

f φ̂v

where homogeneous or non-homogeneous Dirichlet conditions can be strongly imposed by
classical methods (penalization, elimination...)
For the φ-FEM method, the weak formulation for the homogeneous problem is given by∫

Ωh

∇(φ̂C ) ·∇(φ̂v)−
∫
∂Ωh

∂

∂n
(φ̂C )φ̂v +Gh(w, v) =

∫
Ωh

f φ̂v +Gr hs
h (v)

with

Gh(C , v) =σh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(φ̂C )

][
∂

∂n
(φ̂v)

]
+σh2

∑
T∈T Γ

h

∫
T
∆(φ̂C )∆(φ̂v)

and

Gr hs
h (v) =−σh2

∑
T∈T Γ

h

∫
T

f ∆(φ̂v).

In the case of this correction, whether the problem is homogeneous or non-homogeneous,
the correction problem is non-homogeneous (for m ̸= 0), so it is important to impose the
boundary conditions either by the direct method, or by the dual method presented in Section
2.2.3.2.

Remark. Note that if the problem is sufficiently elevated for its solution to be strictly positive,
the operation of bringing C = ũ

φ̂
closer to 1 doesn’t pose any problem (since in this case φ̂ ̸= 0).

Moreover, we can easily return to the original problem by subtracting m from ũ.

4.3 Theoretical results

The aim of this section is to present some interesting theoretical results. We begin by present-
ing the interest of elevating the problem in Section 4.3.1. We will then present an interesting
result for standard FEM in Section 4.3.2. In fact, we’ll show that the solution obtained by the
multiplication correction on the elevated problem converges to the solution obtained by the
addition correction when m tends to infinity. Finally, we will demonstrate the estimation error
of the correction on the elevated problem in Section 4.3.3.

4.3.1 Interest of elevating the problem

The aim of this section is to explain the interest in elevating the problem in the case of the
multiplication correction presented in Section 4.2.3 with a P1 solution. Only the standard
FEM method is considered here. For this purpose, we will consider a so-called disturbed so-
lution, i.e. one that is close to the exact solution. We assume we have an analytical solution to
the problem, denoted uex , to which we will apply a perturbation, denoted P . We then define

φ̃(x, y) = u(x, y)+ϵP (x, y)
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with P the perturbation (such that P = 0 on Γ) and ϵ small.
We pose

φ̂= φ̃+m

with m a constant, and consider the multiplication correction on a elevated problem, defined
in Section 4.2.3 by the problem {

−∆(φ̂C ) = f , in Ω,

û = g +m, on Γ.

with û = φ̂C .
In Section 4.3.3, we will prove the following inequality in the context of this problem

|| ˆuex − ûh ||0 ≤ chk+1||φ̂||∞ |C |k+1,Ω

with c a constant, ˆuex = uex +m and C = uex+m
φ̂

.

For k = 1, we then have

|C |2,Ω =
∣∣∣∣uex +m

φ̂

∣∣∣∣
2,Ω

=
∣∣∣∣∣∣∣∣(uex +m

φ̂

)′′∣∣∣∣∣∣∣∣
0,Ω

= ϵ
∣∣∣∣∣∣∣∣(P

φ̂

)′′∣∣∣∣∣∣∣∣
0,Ω

= ϵ
∣∣∣∣∣∣∣∣( P

φ̃+m

)′′∣∣∣∣∣∣∣∣
0,Ω

with (
P

φ̃+m

)′′
= P ′′(φ̃+m)−P φ̃′′

(φ̃+m)2
+ 2(P φ̃′−P ′(φ̃+m))φ̃′

(φ̃+m)3

= P ′′φ̃−P φ̃′′

(φ̃+m)2
+ 2(P φ̃′−P ′φ̃)φ̃′

(φ̃+m)3
+ mP ′′

(φ̃+m)2
− 2mP ′φ̃′

(φ̃+m)3

As ∣∣∣∣∣∣∣∣( P

φ̃+m

)′′∣∣∣∣∣∣∣∣
0,Ω

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 P

m
(
1+ φ̃

m

)

′′∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
0,Ω

= 1

m

∣∣∣∣∣∣
∣∣∣∣∣∣
 P

1+ φ̃
m

′′∣∣∣∣∣∣
∣∣∣∣∣∣
0,Ω

and P

1+ φ̃
m

′′

= m

(
P

φ̂

)′′
= m(P ′′φ̃−P φ̃′′)

(φ̃+m)2
+ 2m(P φ̃′−P ′φ̃)φ̃′

(φ̃+m)3
+ m2P ′′

(φ̃+m)2
− 2m2P ′φ̃′

(φ̃+m)3

= m(P ′′φ̃−P φ̃′′)

m2
(
1+ φ̃

m

)2 + 2m(P φ̃′−P ′φ̃)φ̃′

m3
(
1+ φ̃

m

)3 + m2P ′′

m2
(
1+ φ̃

m

)2 − 2m2P ′φ̃′

m3
(
1+ φ̃

m

)3

= P ′′φ̃−P φ̃′′

m
(
1+ φ̃

m

)2 + 2(P φ̃′−P ′φ̃)φ̃′

m2
(
1+ φ̃

m

)3 + P ′′(
1+ φ̃

m

)2 − 2P ′φ̃′

m
(
1+ φ̃

m

)3
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then, for m sufficiently large : ∣∣∣∣∣∣
∣∣∣∣∣∣
 P

1+ φ̃
m

′′∣∣∣∣∣∣
∣∣∣∣∣∣
0,Ω

∼ ∣∣∣∣P ′′∣∣∣∣
0,Ω

Finally, for m sufficiently large, we have ||φ̂||∞ ∼ m and thus∣∣∣∣∣∣∣∣uex +m

φ̂
−Ch

∣∣∣∣∣∣∣∣
0,Ω

≤ chk+1ϵ
∣∣∣∣P ′′∣∣∣∣

0,Ω

We deduce that when m is big, the error no longer depends on the solution but only on the
perturbation P . These results were obtained numerically and are presented in Section 4.4.2.
However, when m is small, we can see that the error is dominated by the first derivatives and
second derivatives of the disturbed solution φ̃.

Remark. In addition, raising the problem can be extremely efficient when the solution cancels
out on the domain. However, note that in the case of the addition correction presented in Section
4.2.1, elevated the problem is of no interest.

4.3.2 Comparison of correction methods

Here, we compare 2 methods, the addition correction method defined in Section 4.2.1 and
the multiplication correction method on a elevated problem defined in Section 4.2.3. In fact,
we will show that when m tends to infinity, the solution of the multiplication correction on a
elevated problem converges to the solution of the addition correction.
Correction by adding :
Let’s start by looking at the form of the solution in the case of correction by addition. The
decomposition of uh on the (ϕ1, . . . ,ϕNh ) basis of Vh is written as follows for this problem

uh =Ch + φ̃(x) =
(

Nh∑
i=1

Ciϕi

)
+ φ̃(x) (3)

We have
Ci = uex(xi )− φ̃(xi ) (4)

with
uex(xi ) = φ̃(xi )−ϵP (xi ) (5)

With the 2 previous relations, we can develop 3 :

uh = φ̃(x)+
Nh∑
i=1

Ciϕi

= φ̃(x)+
Nh∑
i=1

(u(xi )− φ̃(xi ))ϕi by 4
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= φ̃(x)+
Nh∑
i=1

(φ̃(xi )−ϵP (xi )− φ̃(xi ))ϕi by 5

uh = φ̃(x)−ϵ
Nh∑
i=1

P (xi )ϕi (6)

Correction by multiplying on an elevated problem :
We are now interested in the form of the solution in the case of multiplication correction on
a elevated problem. The decomposition of ûh on the (ϕ1, . . . ,ϕNh ) basis of Vh is written as
follows for this problem

ûh =Chφ̂=
(

Nh∑
i=1

Ciϕi

)
φ̂(x) (7)

We have

Ci = u(xi )+m

φ̂(xi )
= u(xi )+m

φ̃(xi )+m
(8)

with
u(xi ) = φ̃(xi )−ϵP (xi ) (9)

and
φ̃(x) = φ̃(xi )+ (x −xi )φ̃′(xi ). (10)

Moreover, we have
Nh∑
i=1

ϕi = 1 (11)

With the 4 previous relations, we can develop 7 :

ûh =
(

Nh∑
i=1

Ciϕi

)
φ̂(x)

=
(

Nh∑
i=1

u(xi )+m

φ̃(xi )+m
ϕi

)
φ̂(x) by 8

=
(

Nh∑
i=1

φ̃(xi )+m −ϵP (xi )

φ̃(xi )+m
ϕi

)
φ̂(x) by 9

=
Nh∑
i=1

(
1−ϵ P (xi )

φ̃(xi )+m

)
ϕi φ̂(x)

=
(

Nh∑
i=1

ϕi

)
φ̂(x)−ϵ

Nh∑
i=1

P (xi )
φ̂(x)

φ̃(xi )+m
ϕi

= φ̂(x)−ϵ
Nh∑
i=1

P (xi )
φ̃(xi )+m + (x −xi )φ̃′(xi )

φ̃(xi )+m
ϕi by 10 et 11

= φ̂(x)−ϵ
Nh∑
i=1

P (xi )

(
1+ (x −xi )φ̃′(xi )

φ̃(xi )+m

)
ϕi
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= φ̃(x)+m −ϵ
Nh∑
i=1

P (xi )

(
1+ (x −xi )φ̃′(xi )

φ̃(xi )+m

)
ϕi

Thus

uh = ûh −m = φ̃(x)−ϵ
Nh∑
i=1

P (xi )

(
1+ (x −xi )φ̃′(xi )

φ̃(xi )+m

)
ϕi

and finally

uh −−−−→
m→∞ φ̃(x)−ϵ

Nh∑
i=1

P (xi )ϕi (12)

So by 6 and 12, it would seem that the 2 proposed methods are equivalent (taking m to be
large).

Remark. Taking m = 0, we return to the case of correction by multiplication defined in Section
4.2.2 and the solution is of the form

uh = φ̃(x)−ϵ
Nh∑
i=1

P (xi )

(
1+ (x −xi )φ̃′(xi )

φ̃(xi )

)
ϕi

4.3.3 Error estimation of the correction on the elevated problem

As in the Section 4.3.1, we assume we have an analytical solution to the problem, denoted uex ,
to which we will apply a perturbation, denoted P . We then define

φ̃(x, y) = u(x, y)+ϵP (x, y)

with P the perturbation (such that P = 0 on Γ) and ϵ small.
We consider

φ̂= φ̃+m = uex +ϵP +m = ˆuex +ϵP

with ˆuex = uex +m et m a constant.
We still want to solve the following problem:{

−∆(φ̂C ) = f , in Ω,

û = g +m, on Γ.

with û = φ̂C whose approximate variational problem consists of

Find ûh ∈Vh such that a(ûh , vh) = l (vh), ∀vh ∈Vh

Here we seek to prove the following property:

||û − ûh ||0 ≤ chk+1||φ̂||∞ |C |k+1
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• We’re first interested in ||û − ûh ||1.

Since Vh is a vector subspace of V , posing v = vh , we obtain :

a(φ̂C , φ̂vh)−a(φ̂Ch , φ̂vh) = 0 ∀vh ∈Vh .

We then have Galerkin orthogonality:

a(û − ûh , vh) = 0 ∀vh ∈Vh

and

||û − ûh ||21 ≤αa(û − ûh , û − ûh) by coercivity

=αa(û − ûh , û − Ihû + Ihû − ûh)

=αa(û − ûh , û − Ihû) by Galerking orthogonality taking vh = ûh − Ihû

≤α|û − ûh |1|û − Ihû|1 by continuity

≤α||û − ûh ||1|û − Ihû|1.

Thus
||û − ûh ||1 ≤α|û − Ihû|1 =α|(C − IhC )φ̂|1.

By posing A =C − IhC , we have

|Aφ̂|1 = ||(Aφ̂)′||0 = ||A′φ̂+ Aφ̂′||0 ≤ ||A′φ̂||0 +||Aφ̂′||0 ≤α||φ̂||∞||A||1
because

||A′φ̂||0 =
√∫

Ω
(A′φ̂)2 ≤ max

Ω
φ̂

√∫
Ω

(A′)2 = ||φ̂||∞|A|1 ≤ ||φ̂||∞||A||1

and

||Aφ̂′||0 =
√∫

Ω
(Aφ̂′)2 ≤ max

Ω
φ̂′

√∫
Ω

(A)2 = ||φ̂′||∞||A||0 ≤α||φ̂||∞||A||1.

Therefore, we have

|û − Ihû|1 = |(C − IhC )φ̂|1 ≤α||φ̂||∞||C − IhC ||1

Finally, using the interpolation inequality, we obtain

||û − ûh ||1 ≤αhk ||φ̂||∞|C |k+1 (13)

• We can now turn our attention directly to ||û − ûh ||0.

We’ll start by applying the Aubin-Nitsche duality method by considering the dual prob-
lem:
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Let ẑ ∈ H 1
0 (Ω) solution of the problem{

−∆ẑ = êh , inΩ

ẑ = 0, on Γ

with êh = û − ûh . Thus

a(u, v) =−
∫
Ω
∆u · v =

∫
Ω
∇u ·∇v

and as êh ∈ H 1
0 (Ω)

a(ẑ, êh) =
∫
Ω

(−∆ẑ) · êh =
∫
Ω

êh
2 = ||êh ||20 (14)

Moreover, by the regularity properties :

ẑ ∈ H 2(Ω) (15)

and
||ẑ||2 ≤α||êh ||0 =α||û − ûh ||0 (16)

Thus

||û − ûh ||20 = ||êh ||20
= a(ẑ, êh) by 14

= a(ẑ − Ih ẑ, êh) by Galerkin orthogonality

≤α|ẑ − Ih ẑ|1|êh |1 by continuity

≤αh|ẑ|2|êh |1 by 15 et by interpolation inequality

≤α ·h|ẑ|2 ·hk ||φ̂||∞|C |k+1 by 13

≤αhk+1||û − ûh ||0||φ̂||∞|C |k+1 by 16

Finally
||û − ûh ||0 ≤αhk+1||φ̂||∞|C |k+1

Remark. Note that

||û − ûh ||0 = ||u +m − (uh +m)||0 = ||u −uh ||0

4.4 Numerical results

As explained above, we wish to combine φ-FEM and FNO in order to predict the solution
of the Poisson problem as accurately as possible. In this section, we present various results
obtained using the 3 correction methods presented in the previous section (Section 4.2). It is
important to note that, for practical purposes, almost all the following results obtained with
φ-FEM will be compared with those obtained with the standard FEM method.
we will start by presenting the results obtained on an analytical solution (Section 4.4.1). we
will consider here the "initial" solution φ̃, which we will inject into the correction problems,

43



as the analytical solution of the problem. This first step simply enables us to check that, by
supplying the exact solution directly to the correction solvers, they are indeed reduced to ma-
chine errors.
Next, in order to verify that correction solvers can improve accuracy when providing a solu-
tion close to the exact solution, we will consider the case of so-called "disturbed", firstly by
applying an analytical perturbation (Section 4.4.2) and then by considering a φ-FEM solution
as being the disturbed solution for which we don’t know the perturbation (Section 4.4.3). This
step will also provide us with a basis for further work, giving us an idea of what we can expect
in terms of neural network output correction.
Finally, we will consider the case of neural networks with an FNO in Section 4.4.4 and then
with other networks in Section 4.4.5 (a multi-perceptron network and a PINNs). The reasons
for considering other neural networks will be explained in more details in these sections.
In this section, we defined by

||uex −umethod ||(r el )
0,Ωh

=
∫
Ωh

(uex −umethod )2∫
Ωh

u2
ex

the relative error between the exact solution uex and umethod a solution obtained by FEM or
φ-FEM, a correction solver or the prediction of an neural network.
We can defined too

||uex −umethod ||(abs)
0,Ωh

=
∫
Ωh

(uex −umethod )2

the absolute error.

4.4.1 Correction on exact solution

First, we will look at the correction of an exact solution. In other words, we consider

φ̃= uex

This first step enables us to check that, by supplying an already exact solution to the vari-
ous correctors under consideration, we again obtain an exact output solution (to the nearest
machine error).
In all the following cases, we will consider S = 0.5, as well as ϕ = 0 in the case of the homo-
geneous problem and ϕ = 1 in the non-homogeneous case. We will vary f between 1 (low
solution variability) and 4 (high solution variability) and we will choose to take 100 vertices in
each direction nver t = 100.

Remark. We will consider here only the case of correction by addition (with and without IPP
on ∆φ̃) as well as the case of correction by multiplication.

• Results on the Circle :

We consider here the Circle problem with the solution defined in Section 4.1.1.1.
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Homogeneous case :

We consider here the homogeneous problem (i.e. withϕ= 0) and seek to test the various
correction methods with standard FEM and φ-FEM methods.

Figure 4.11: Relative errors obtained with
different methods on the Circle with stan-
dard FEM.

Figure 4.12: Relative errors obtained with
different methods on the Circle with φ-
FEM.

Non-homogeneous case :

We consider here the non-homogeneous problem (i.e. with ϕ = 1) and seek to test the
various correction methods with standard FEM and φ-FEM methods.

Figure 4.13: Relative errors obtained with
different methods on the Circle with stan-
dard FEM.

Figure 4.14: Relative errors obtained with
different methods on the Circle with φ-
FEM.

• Results on the Square :

We consider here the Square problem with the solution defined in Section 4.1.2.1.

Homogeneous case :

We consider here the homogeneous problem (i.e. withϕ= 0) and seek to test the various
correction methods with standard FEM and φ-FEM methods.

Figure 4.15: Relative errors obtained with
different methods on the Square with
standard FEM.

Figure 4.16: Relative errors obtained with
different methods on the Square with φ-
FEM.
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Non-homogeneous case :

We consider here the non-homogeneous problem (i.e. with ϕ = 1) and seek to test the
various correction methods with standard FEM and φ-FEM methods.

Figure 4.17: Relative errors obtained with
different methods on the Square with
standard FEM.

Figure 4.18: Relative errors obtained with
different methods on the Square with φ-
FEM.

It would therefore seem that the various correction methods work in the different cases con-
sidered.

4.4.2 Correction on disturbed solution

Now, let’s consider a deliberately disturbed solution. The purpose of this step is to check that
the correction solvers also work with a solution that is very close to the real solution, but not
exact. In this section, we will consider a manually disturbed solution, i.e. the exact solution
to which we’ve added a small, analytically known perturbation.
As explained above, we begin by considering φ̃ as a manually perturbed solution defined by

φ̃(x, y) = uex(x, y)+ϵP (x, y)

where uex defines the exact solution to the problem, P the perturbation applied to it and ϵ is a
real number that allows the amplitude of the perturbation to be easily increased or decreased.

Remark. Notice that by taking ϵ = 0, we return to the case of correction on an exact solution
presented in Section 4.4.1.

In our case, we will choose to consider P as being of the same form as our exact solution
(defined with different parameters), but we could very well consider a completely different
perturbation.

Remark. Note that the form of the perturbation has a huge influence on the accuracy of the
solvers, and that the difficulty lies in the following cases where its expression is not explicitly
known (as in the case of φ-FEM in Section 4.4.3 or FNO in Section 4.4.4).

In the case of Circle geometry where we consider the problem 4.1.1.1, the perturbation will be
defined by

P (x, y) = Sp × sin
(
8π fp

(
(x −0.5)2 + (y −0.5)2)+ϕp

)
where Sp ∈ [0,1] is the amplitude of the signal, fp ∈N can be associated with the "frequency"
of the signal and ϕp ∈ [0,1] the phase at the origin.
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In the case of Square geometry where we consider the problem 4.1.2.1, the perturbation will
be defined by

P (x, y) = Sp × sin
(
2π fp x +ϕp

)× sin
(
2π fp y +ϕp

)
where Sp ∈ [0,1] is the amplitude of the signal, fp ∈N can be associated with the "frequency"
of the signal and ϕp ∈ [0,1] the phase at the origin.

Remark. Note that for the boundary conditions of the solution to be satisfied, i.e. for φ̃= uex on
Γ, it is essential that P = 0 on Γ. In the case of both circle and square, we will then take ϕp = 0.

Recall the relative errors obtained by standard FEM andφ-FEM on the circle and on the square
for frequencies f ∈ {1,2,3,4} for the homogeneous (Figure 4.19) and non-homogeneous prob-
lem (Figure 4.20).

Figure 4.19: Table summarizing the errors
obtained by standard FEM and φ-FEM on
the circle and the square (homogeneous
case).

Figure 4.20: Table summarizing the er-
rors obtained by standard FEM and φ-
FEM on the circle and the square (non-
homogeneous case).

Remark. In the previous results, we use the direct method to impose the edge conditions with
φ-FEM.

4.4.2.1 Results with differents ϵ

The aim of this section is to test correction by addition (without IPP) and correction by multi-
plication by varying the amplitude of the perturbation (in other words, by varying ϵ).
We will try to separate the cases according to the frequencies considered. In other words, for
f , fp ∈ {1,2,3,4}, we’re interested in the following three cases. The first is the case where the
solution frequency is greater than the perturbation frequency ( f > fp ), i.e. a highly variable
solution and a less variable perturbation. The second is where the solution and perturbation
frequencies are equal ( f = fp ), i.e. the solution and perturbation have the same variability.
The last category covers cases where the perturbation is "nastier" than the solution, i.e. it has
a higher frequency than the solution ( f < fp ).
In this section, we will consider for the circle the solution defined in Section 4.1.1.1 and for
the square the solution defined in Section 4.1.2.1.
Results with standard FEM :
First we will consider the standard FEM method on the homogeneous case (i.e. with ϕ = 0)
and then on the non-homogeneous case (i.e. with ϕ= 1).
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• Results on the homogeneous case :

First, we consider the correction by adding (without IPP) on the Circle problem (Figure
4.21) and on the Square problem (Figure 4.22).

Figure 4.21: Correction by adding on the
Circle with standard FEM in the homoge-
neous case.

Figure 4.22: Correction by adding on the
Square with standard FEM in the homo-
geneous case.

Then, we consider the correction by multiplying on the Circle problem (Figure 4.23) and
on the Square problem (Figure 4.24).

Figure 4.23: Correction by multiplying on
the Circle with standard FEM in the ho-
mogeneous case.

Figure 4.24: Correction by multiplying on
the Square with standard FEM in the ho-
mogeneous case.

Observation : We can make a few comments on the results obtained:

• First of all, it would therefore seem that, overall, the smaller the perturbation ap-
plied (i.e. the smaller the ϵ), the more efficient the addition and multiplication
correction solvers are in terms of accuracy.
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• Then, it would appear that, as with the standard FEM and φ-FEM solvers without
correction, the more the solution varies (i.e. the larger f ), the greater the error.
This is a fairly intuitive result, since the more the solution varies, the more points
are needed to approximate it.

• It would also seem that for ϵ = 1 (i.e. a large perturbation), the ϵ parameter has a
greater impact on the multiplicative corrector than on the additive corrector. We
explained earlier the benefits of elevating the problem, which could be beneficial
here. Results on elevation will be presented in the Section 4.4.2.2.

• In view of the results obtained here, it would also appear that, overall, correction by
addition is more effective than correction by multiplication. Moreover, correction
by addition has more advantages than correction by multiplication. In particular,
if the solution cancels out on the domain, correction by multiplication will require
elevating the problem sufficiently so that it no longer cancels out, unlike correc-
tion by addition.

• There is one final and rather important point to make. In fact, if we take a closer
look at the results, we can see that in the case of correction by adding, the errors
only seem to depend on the frequency of the perturbation and not on that of the
solution (at a fixed ϵ). This is a result that has been explained theoretically in the
case of correction by multiplication on a elevated problem in the Section 4.3.1 (for
m large, similar to correction by addition as explained above). Thus, as we have
shown (in Section 4.3.2) that for m large, the error of correction by multiplication
on a elevated problem converges to the error of correction by addition, we recover
this result on correction by addition.

• Results on the non-homogeneous case :

First, we consider the correction by adding (without IPP) on the Circle problem (Figure
4.25) and on the Square problem (Figure 4.26).

Figure 4.25: Correction by adding on the
Circle with standard FEM in the non-
homogeneous case.

Figure 4.26: Correction by adding on the
Square with standard FEM in the non-
homogeneous case.
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Then, we consider the correction by multiplying on the Circle problem (Figure 4.27) and
on the Square problem (Figure 4.28).

Figure 4.27: Correction by multiplying on
the Circle with standard FEM in the non-
homogeneous case.

Figure 4.28: Correction by multiplying on
the Square with standard FEM in the non-
homogeneous case.

Observation : In view of the results obtained, it would appear that the conclusions are
the same as for the homogeneous case.

Results with φ-FEM :
Then we will consider theφ-FEM method on the homogeneous case (i.e. withϕ= 0) and then
on the non-homogeneous case (i.e. with ϕ= 1).

• Results on the homogeneous case :

First, we consider the correction by adding (without IPP) on the Circle problem (Figure
4.29) and on the Square problem (Figure 4.30).

Figure 4.29: Correction by adding on the
Circle with φ-FEM in the homogeneous
case.

Figure 4.30: Correction by adding on the
Square with φ-FEM in the homogeneous
case.
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Then, we consider the correction by multiplying on the Circle problem (Figure 4.31) and
on the Square problem (Figure 4.32).

Figure 4.31: Correction by multiplying on
the Circle with φ-FEM in the homoge-
neous case.

Figure 4.32: Correction by multiplying on
the Square with φ-FEM in the homoge-
neous case.

Observation : An interesting result can also be observed. Indeed, it seems that in the
case where f = fp , the multiplication correction with φ-FEM seems to approach the
solution almost perfectly for all ϵ considered. In fact, in the homogeneous case, for
f = fp the perturbation is identical to the solution (i.e. P = uex) and so the solution
injected into the correction solvers is of the form

φ̃= uex +ϵP = (1+ϵ)uex

In the case of correction by multiplication, we have ũ = φ̃C . So for ũ = uex , we must
have

φ̃C = uex ⇐⇒ (1+ϵ)uexC = uex

So if the solution does not cancel out onΩ, we must have

C = 1

1+ϵ onΩ

By imposing C = 1
1+ϵ on Γ for FEM instead of C = 1, we should get closer to the φ-FEM

results obtained. We can see in Figure 4.33 and Figure 4.34 that we obtain the expected
results for FEM by changing the boundary condition C = 1 to C = 1

1+ϵ .

Figure 4.33: Results by changing FEM
boundary conditions on the circle.

Figure 4.34: Results by changing FEM
boundary conditions on the square.
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Remark. It should be noted, however, that in practice, for example in the case where φ̃
is a φ-FEM solution or an FNO output, this case is not very realistic. There’s no reason
to expect the form of the perturbation created by the φ-FEM solver or by the FNO to be
exactly identical to the solution under consideration.

• Results on the non-homogeneous case :

First, we consider the correction by adding (without IPP) on the Circle problem (Figure
4.35) and on the Square problem (Figure 4.36).

Figure 4.35: Correction by adding on
the Circle with φ-FEM in the non-
homogeneous case.

Figure 4.36: Correction by adding on
the Square with φ-FEM in the non-
homogeneous case.

Then, we consider the correction by multiplying on the Circle problem (Figure 4.37) and
on the Square problem (Figure 4.38). We start by considering the same φ-FEM scheme
as in the homogeneous case, i.e. here we don’t impose any edge conditions.

Figure 4.37: Correction by multiplying
on the Circle with φ-FEM in the non-
homogeneous case.

Figure 4.38: Correction by multiplying
on the Square with φ-FEM in the non-
homogeneous case.

Observation : We note that the multiplicative corrector using φ-FEM seems to succeed,
in a similar way to the homogeneous case, to correct the non-homogeneous problem
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without imposing the boundary conditions. In fact, there’s a subtlety to the scheme
we’re considering here. Unlike φ-FEM (without correction), the scheme is written on φ̃,
which is non-zero at the boundary, and not on φ, which is zero at the boundary. This
could explain this result, whereas in the case of φ-FEM (without correction), we can’t
avoid imposing boundary conditions.

We will now use the direct method to impose the boundary condition. For this method,
we’re tempted to consider the solution ũ = φ̃C + g as the solution to the multiplication
correction problem. In fact, unlike the classic φ-FEM method, the φ̃ function that re-
places our level-set in the formulation is non-zero at the boundary and so, by imposing
C = 1 at the boundary, we’d have ũ = 2g . To avoid this problem, we will raise the prob-
lem by −g and consider ũ = (φ̃− g )C + g . We will test this method on the circle (Figure
4.39) and on the square (Figure 4.40).

Figure 4.39: Correction by multiplying
on the Circle with φ-FEM in the non-
homogeneous case (direct method).

Figure 4.40: Correction by multiplying
on the Square with φ-FEM in the non-
homogeneous case (direct method).

We’re now going to test imposing boundary conditions with the dual method on the
circle (Figure 4.41) and on the square (Figure 4.42).

Figure 4.41: Correction by multiplying
on the Circle with φ-FEM in the non-
homogeneous case (dual method).

Figure 4.42: Correction by multiplying
on the Square with φ-FEM in the non-
homogeneous case (dual method).
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Observation : It seems that by imposing the boundary conditions with the direct
method, the errors are better when ϵ is a bit large, especially for ϵ = 1. For the dual
method, it seems also works for imposing boundary conditions. However, we can see
that it can become slightly stagnant when ϵ is decreased. It’s possible that changing the
stabilization parameters could have an impact here.

4.4.2.2 Results on the elevated problem

In this section, we aim to show numerically the interest of elevating the problem. To do this,
we will consider the case of the circle with the solution defined in Section 4.1.1.1 and the case
of the square with the solution defined in Section 4.1.2.1. We will choose the homogeneous
case (i.e. with ϕ= 0) with S = 0.5 and set ϵ= 10−3.
Results with FEM :
Here, we consider some of the cases considered above, in order to test the correction by mul-
tiplying on an elevating problem with FEM (theoretical result presented in Section 4.2.3). We
will test this method on the circle (Figure 4.43 and Figure 4.45) and on the square (Figure 4.44
and Figure 4.46) for selected frequencies and by varying m.

Figure 4.43: Correction by multiplying on the
elevated problem on the Circle with FEM.

Figure 4.44: Correction by multiplying on the
elevated problem on the Square with FEM.

Figure 4.45: Representation of the results on
the Circle with FEM.

Figure 4.46: Representation of the results on
the Square with FEM.

Observation : The numerical results obtained on the circle in Figure 4.43 and on the square
4.44, seem to show that the higher we raise the problem, the better the error. Furthermore, as
explained in Section 4.3.2, we can see that by increasing m, the error converges to the error
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obtained with the correction by adding (because the solution itself converges to the solution
obtained with the correction by adding).
Results with φ-FEM :
Now we to test the correction by multiplying on an elevating problem with φ-FEM. We will
test this method on the circle (Figure 4.47 and Figure 4.49) and on the square (Figure 4.48 and
Figure 4.50) for selected frequencies and by varying m. Here, we’re using the same scheme as
in the homogeneous case, i.e. we’re not going to impose the boundary conditions using the
direct or dual method.

Figure 4.47: Correction by multiplying on the
elevated problem on the Circle with φ-FEM.

Figure 4.48: Correction by multiplying on the
elevated problem on the Square withφ-FEM.

Figure 4.49: Representation of the results on
the Circle with FEM.

Figure 4.50: Representation of the results on
the Square with FEM.

Now, we impose the boundary conditions using the dual method, always considering the cir-
cle (Figure 4.51 and Figure 4.53) and on the square (Figure 4.52 and Figure 4.54) for selected
frequencies and by varying m.

Figure 4.51: Correction by multiplying on the
elevated problem on the Circle with FEM.

Figure 4.52: Correction by multiplying on the
elevated problem on the Square with FEM.
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Figure 4.53: Representation of the results on
the Circle with FEM.

Figure 4.54: Representation of the results on
the Square with FEM.

Observation : It would appear that, in the case of multiplication correction on an elevated
problem, we are forced to impose the boundary conditions using one of the two methods,
unlike multiplication correction without elevation. By imposing boundary conditions using
the dual method, it seems that in the case where the frequency of the solution is greater than
the frequency of the perturbation (for f > fp ), we do reduce the error by increasing m, but
it doesn’t seem as efficient as in the case with FEM. Indeed, in all the cases considered here,
correction by addition gives much better results. Moreover, for f < fp , it would appear that
the enhancement is the opposite of the expected effect.

Remark. Note that the direct method is not applicable in the case of this problem because, as
explained in the case of correction without elevation on a non-homogeneous problem, we are
in some ways returning to the homogeneous problem. In fact, if we consider

û = (φ̂− g −m)C + (g +m) = (φ̃− g )C + (g +m)

with g = 0 because we’ve placed ourselves in the homogeneous case, which amounts to solving
the problem without elevation.

4.4.3 Correction on φ-FEM solution

A rédiger, résultat ok ! Then we will look at correcting a disturbed solution for which we don’t
know the form of the perturbation. A φ-FEM solution can be considered for injection into
correction solvers.
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4.4.4 Correction with FNO

In this section, we will consider the problem presented in Section 4.1.1.2, where we take as ge-
ometry the circle and f Gaussian. In practice, this is a very probable case, i.e. one in which no
exact solution is known. As explained above, we will take an over-refined solution (calculated
with FEM) as our reference solution.
We want to train an FNO to predict the solutions of the problem under consideration and test
the correction on its predictions. To do this, we will follow the steps presented in Section 3.4.
In the following, we will choose an FNO with 4 Fourier layers.

4.4.4.1 Training the FNO

We start by training the FNO with φ-FEM solutions. To do this, we consider a number of
training data nd at a and perform the following steps:

• First, we randomly generate a sample of parameters defined by

{µ(i )
0 ,µ(i )

1 ,σ(i )}i=1,...,nd at a

with σ ∼ U ([0.1,0.6]) and µ0,µ1 ∼ U ([0.5 − p
2/4,0.5 + p

2/4]) with the condition
φ(µ0,µ1) <−0.05.

Remark. The condition φ(µ0,µ1) <−0.05 ensures that the center (µ0,µ1) of the Gaussian
is inside the domain.

From the parameter sample created, we can generate a Gaussian sample defined by

{ fi }i=1,...,nd at a =
{

exp

(
− (x −µ(i )

0 )2 + (y −µ(i )
1 )2

2(σ(i ))2

)}
i=1,...,nd at a

Remark. As explained in Section 3.4, each Gaussian is in fact evaluated at the nodes of
our grid, so they are 2D matrices of size nver t ×nver t .

We can also consider the degrees of freedomP2, which also form a regular grid, as they are
composed of the nodes as well as the midpoints of each segment. So our matrices will be
of size ndo f s ×ndo f s (with ndo f s = 2nver t −1). In the following, we will choose nver t =32
and thus ndo f s = 63.

In our case, the geometry is fixed (the circle with center (0.5,0.5) and radius
p

2/4), so
we will not have a level-set collection in our training data. Similarly, we choose to con-
sider the homogeneous problem and so, since g = 0 on Γ, we won’t have a collection of
Dirichlet conditions in our training data either.
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• We can now use theφ-FEM scheme associated with the Poisson problem with homoge-
neous Dirichlet condition defined in Section 2.2.2.2 to solve for each i = 1, . . . ,nd at a , the
problem {

−∆(φwi ) = fi , in Ω,

ui = 0, on ∂Ω,

with ui =φwi .

We thus have a collection of φ-FEM solutions of the problem defined by

{ui }i=1,...,nd at a = {φwi }i=1,...,nd at a

• From the previous collections, we can now create the X_train and Y_train samples that
will enable us to train the FNO. we will start by performing a kind of pre-processing on
our data (explained in Section 3.4) by normalizing the source term collection. We thus
consider

fi ,nor m = fi

max j=1, . . . ,nd at a || f j ||L2(O )
, ∀i ∈ 1, . . . ,nd at a .

We can now define X_train as follows

X _tr ai n =
{

fi ,nor m ,F (x)
i ,nor m ,F (y)

i ,nor m ,F (xx)
i ,nor m ,F (y y)

i ,nor m

}
i=1,...,nd at a

of size (nd at a ,nver t ,nver t ,5) where F (x)
i ,nor m ,F (y)

i ,nor m ,F (xx)
i ,nor m and F (y y)

i ,nor m are respectively
the first primitives of fi ,nor m according to x and y and the second primitives of fi ,nor m

according to x and y. Y_train can also be constructed as follows

Y _tr ai n = {wi }i=1,...,nd at a

of size (nd at a ,nver t ,nver t ,1).

Remark. Considering the term w as training data rather than u ensures that the condi-
tions at the edge will be accurate at the output of the FNO. Indeed, multiplying the FNO
prediction by φ guarantees u = 0 on Γ.

Similarly, in the non-homogeneous case, we simply multiply the FNO prediction byφ and
then add the Dirichlet condition g .

Remark. In practice, the set defined above is separated into 2 sets: the training set
(X_train,Y_train), which trains the FNO, and the validation set (X_val,Y_val), which val-
idates the training. Together, these two sets contain the nd at a under consideration. In the
following, we will consider nd at a to be the size of our separate training set (for 1000 data
at the beginning, after separation we have nd at a = 875).

• We can now train our FNO by minimizing the loss defined by

l ossθ = l oss(0)
θ

+ l oss(1)
θ

+ l oss(2)
θ
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with

l oss(0)
θ

= 1

nd at a

nd at a∑
i=1

mse(wi −wθ,i )

l oss(1)
θ

= 1

nd at a

nd at a∑
i=1

mse(∇x(wi )−∇x(wθ,i ))+mse(∇y (wi )−∇y (wθ,i ))

l oss(2)
θ

= 1

nd at a

nd at a∑
i=1

mse(∇xx(wi )−∇xx(wθ,i ))+mse(∇y y (wi )−∇y y (wθ,i ))

where l oss(i )
θ

will in practice be called misfit i , i = 0,1,2.

Remark. In practice, it may be more interesting to train the FNO directly on φw. How-
ever, all the results presented here were obtained with loss on w and not φw.

By training our FNO over 4000 epochs with a batch size of 64, we obtain the following misfits
as a function of epochs (Figure 4.55):

Figure 4.55: Misfits obtained during FNO training by epoch (line - training set, point - valida-
tion set).

Results on the validation set :
We’re interested here in the || · ||0,abs errors obtained at the end of training on the validation
set. In fact, we’re going to consider different checkpoints in the training, or to be more precise,
we’re interested in different moments in the training (i.e. we will have 8 similar models whose
total number of epochs differs: for the first, we make 500 epochs, for the second we make
1000... up to the last at 4000 epochs). Here are the errors obtained on the validation sample
for each of these 8 checkpoints (Figure 4.56):
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Figure 4.56: Errors obtained on the validation set at different training checkpoints (every 500
epochs).

Here are the mean, standard deviation, minimum and maximum error values obtained on the
validation set at these different checkpoints (Figure 4.57), as well as the boxplots of the errors
at each checkpoint (Figure 4.58):

Figure 4.57: Mean, standard deviation, mini-
mum and maximum errors on the validation
set according to checkpoints. Figure 4.58: Boxplots of the errors on the val-

idation set according to checkpoints.
Observation : It would seem, therefore, that as epochs progress, the errors in the validation
sample decrease. In fact, we can see that the mean and standard deviation of the errors de-
crease according to the epoch. It would therefore seem that training works.
Results on a test set :
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This time we’re interested in a new test sample of size ntest = 100, denoted X_test, created in
exactly the same way as the training sample (with parameters again created randomly) and
we’re looking to reproduce exactly the same results as on the validation set. Here are the errors
obtained on the test sample for each of these 8 checkpoints (Figure 4.59):

Figure 4.59: Errors obtained on the test set at different training checkpoints (every 500
epochs).

Here are the mean, standard deviation, minimum and maximum error values obtained on the
test set at these different checkpoints (Figure 4.60), as well as the boxplots of the errors at each
checkpoint (Figure 4.61):
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Figure 4.60: Mean, standard deviation, mini-
mum and maximum errors on the test set ac-
cording to checkpoints.

Figure 4.61: Boxplots of the errors on the test
set according to checkpoints.

Observation : The same observations can be made as for the validation set.

4.4.4.2 Correction of the FNO prediction

As with the analytical solution and the perturbed solution, the φ-FEM method is used to test
the various correction methods presented in Section 4.2 on the test sample (of size ntest =
100) created in Section 4.4.4.1, i.e. correction by addition, correction by multiplication and
correction by multiplication on an elevated problem. For each piece of data in the test sample,
we consider

φ̃= uF NO =φwF NO

with wF NO the prediction made by the FNO on the current data.

Remark. Note that, unlike correction on analytic or perturbed solutions, the FNO can only
predict the solution at points on the regular grid (i.e. nodes or degrees of freedom P2). At FNO
output, we can therefore only provide our correctors with φ̃ in P2.

For correction by multiplication on a elevated problem, we use the dual method to impose
conditions at the boundary.
Here are the errors obtained with the different correction methods, in addition to those ob-
tained directly at the FNO output, according to the checkpoints (Figure 4.62).
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Figure 4.62: Errors obtained with the FNO and with different correction methods according
to checkpoints.

We can also plot the error boxplots at each checkpoint (Figure 4.63):

Figure 4.63: Errors obtained with the FNO and with different correction methods according
to checkpoints.

Observation : The results here are not really conclusive. Indeed, the 3 correction methods
considered did reduce the error made by the FNO, but none seems to be more efficient than
φ-FEM. In fact, the method that seems to give the best results is correction by multiplication,
in contrast to the analytical test cases where the addition method seemed more effective.
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4.4.4.3 High degree interpolation

As explained in Section 4.4.4.2, it would seem that considering φ̃ only in P2, is not sufficient
for the various correction methods applied after the FNO to be more accurate than the initial
φ-FEM method. For this reason, we’re going to attempt to interpolate the solution in order to
evaluate this interpolation in a Pk space of higher degree (k > 2). To do this, we will decom-
pose our solution into a series of polynomials, choosing Legendre polynomials.
Explanation :
We want to decompose a function into a series of Legendre polynomials as follows:

f (x, y) =
P−1∑
p=0

Q−1∑
q=0

αp,q Pp (x)Pq (y)

where the Legendre polynomials are defined for all n ∈N and x ∈R by

Pn(x) = 1

2nn!

d n

d xn
[(x2 −1)n]

and P and Q are respectively the number of Legendre polynomials associated with x and y .
Note that the Legendre polynomials are orthogonal in the space L2(]−1,1[) and more precisely
∀n,m ∈N,

〈Pn ,Pm〉L2(]−1,1[) =
∫ 1

−1
Pn(x)Pm(x)d x = 2

2n +1
δnm .

Let us first show that for p ∈ {0, . . . ,P −1} and q ∈ {0, . . . ,Q −1}, the polynomials

Qp,q (x, y) = Pp (x)Pq (y)

are orthogonal in space L2(]−1,1[2) :

Remark. Numerically, we will use the trapezoid method to calculate the scalar product on
L2(]−1,1[2).

Let p, p ′ ∈ {0, . . . ,P −1} and q, q ′ ∈ {0, . . . ,Q −1}, then

〈Qp,q ,Qp ′,q ′〉L2(]−1,1[2)

∫ 1

−1

∫ 1

−1
Qp,q (x, y)Qp ′,q ′(x, y)d xd y =

∫ 1

−1

∫ 1

−1
Pp (x)Pq (y)Pp ′(x)Pq ′(y)d xd y

=
∫ 1

−1
Pp (x)Pp ′(x)d x ×

∫ 1

−1
Pq (y)Pq ′(y)d y

= 2

2p +1
δpp ′

2

2q +1
δqq ′

= 4

(2p +1)(2q +1)
δ(p,q)(p ′,q ′)

Thus
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∫ 1

−1

∫ 1

−1
f (x, y)Qp,q (x, y)d xd y = 〈 f ,Qp,q〉L2(]−1,1[2)

=
P−1∑
p=0

Q−1∑
q=0

αp,q〈Qp,q ,Qp ′,q ′〉L2(]−1,1[2)

=αp ′,q ′〈Qp ′,q ′ ,Qp ′,q ′〉L2(]−1,1[2)

by orthogonality of polynomials Qp,q in L2(]−1,1[2).
We deduce

αp ′,q ′ = 〈 f ,Qp ′,q ′〉L2(]−1,1[2)

〈Qp ′,q ′ ,Qp ′,q ′〉L2(]−1,1[2)
= (2p ′+1)(2q ′+1)

4
〈 f ,Qp ′,q ′〉L2(]−1,1[2)

Remark. For x ∈ [a,b], we make a change of variable to bring us back to the interval [−1,1] by
considering

x̃ = 2

b −a
x + a +b

a −b

So, assuming that the function f is evaluated on a regular grid, of domain O , of size N ×
N (which corresponds to the type of output we get from FNO), then we can calculate the
coefficientsαp,q for p ∈ {0, . . . ,P−1} and q ∈ {0, . . . ,Q−1}. This gives us an analytical expression
for the function corresponding to a series of Legendre polynomials, enabling us to interpolate
our function in all x, y ∈Ω.
Decomposition of an analytical function into a Legendre polynomial series :
We want to test Legendre’s polynomial series decomposition on the following analytical func-
tion

f (x, y) = exp

(
− (x −µ0)2 + (y −µ1)2

2σ2

)
with x, y ∈ [0,1], µ= 0 and σ= 1.

Remark. In practice, with the FNO, it’s u that we want to interpolate (for which we don’t have
an analytical expression) and not f .

Let’s take P = Q = 5 and consider the evaluation of f on a regular N × N grid of [0,1]2 with
N = 100. After calculating the coefficients αp,q for p ∈ {0, . . . ,P −1} and q ∈ {0, . . . ,Q −1}, we
can evaluate the expression

f (x, y) =
P−1∑
p=0

Q−1∑
q=0

αp,q Pp (x)Pq (y)

at any point x, y ∈ [0,1]. Considering, for example, a new regular grid of size N2 ×N2 of [0,1]2

with N2 = 500, we obtain an error || · ||0 between the analytical solution and the expression of
the solution in a series of Legendre polynomials of 8.1e −4 (Figure 4.64).
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Figure 4.64: Reconstruction of the solution by Legendre polynomials on a new grid of size
500×500.

Decomposition of the FNO predictions into a Legendre polynomial series :
We will again consider the problem presented in Section 4.1.1.2, where we take as geometry
the circle and f as being a Gaussian. We again consider the sample X _test (of size ntest = 100)
but this time with nver t = 300 (and therefore ndo f s = 599) to integrate more precisely and thus
have a better approximation of the decomposition coefficients. We seek to decompose each
FNO output wθ,i , i = 1, . . . ,ntest into a series of Legendre polynomials, defined by

wθ,i (x, y) =
P−1∑
p=0

Q−1∑
q=0

αp,q Pp (x)Pq (y)

and thus
uθ,i =φ(x, y)wθ,i (x, y).

Remark. Note that each data in the test sample has its own decomposition.

In the following, we will consider P = Q and test the decomposition for P = 4, P = 6 and
P = 8 on each data of the test sample and at each checkpoint considered. First, we will look
at the mean error made by the decomposition into a series of Legendre polynomials, which
we will call the mean reconstruction error (Figure 4.65). In other words, for each data item,
we calculate the coefficients of the decomposition from the known values of the solution in
degrees of freedom P2, denoted W_pred (of size (ntest ,ndo f s ,ndo f s)). We then look at the
reconstruction of the solution by the decomposition into a series of Legendre polynomials in
these same degrees of freedom P2, denoted W_pred_reconstruct (of size (ntest ,ndo f s ,ndo f s)),
then we calculate the error

mean_error_reconstruction = ||W_pred-W_pred_reconstruct||0,O
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Figure 4.65: Mean reconstruction error for each data in test set (at each checkpoint).

Looking at the results, it seems that the decomposition works. However, it would appear that,
on average, we are not as precise as in the analytical case considered.
We can now look at the maximum error made by the Legendre polynomial series decompo-
sition, which we will call the maximum reconstruction error (Figure 4.66), which is the error
defined by

max_error_reconstruction = max |W_pred-W_pred_reconstruct|
This will allow us to see if there are any error spikes at certain points.

Figure 4.66: Maximal reconstruction error for each data in test set (at each checkpoint).
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We can also display solutions in the case of an example (Figure 4.67). we will take the first data
item from the first checkpoint to compare W_pred and W_pred_reconstruct.

Figure 4.67: Example of result on w (first data from first checkpoint).

It would therefore seem that some regions are more difficult to approach by decomposition
than others. We can now look directly at the u solution, rather than w , and consider it on the
circle only. To do this, we multiply the predicted solution by φ and apply a mask ( equal to 1
on the domain and 0 outside). We’re then interested in the same errors, but this time only on
the solution in our domain. Consider the mean error on the solution (Figure 4.68), defined by

mean_error_solution = ||(W_pred-W_pred_reconstruct)×φ||0,Ω

Figure 4.68: Mean solution error for each data in test set (at each checkpoint).

Then we also look at the maximum error on the solution (Figure 4.69), defined by

max_error_solution = maxΩ |W_pred-W_pred_reconstruct|×φ
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Figure 4.69: Max solution error for each data in test set (at each checkpoint).

We can then compare the solution with the one reconstructed by the series decomposition of
Legendre polynomials on the same example (Figure 4.70).

Figure 4.70: Example of result on y (first data from first checkpoint).

We can therefore see that it was more interesting to decompose into a series of Legendre poly-
nomials w and then multiply by φ, rather than considering u directly.
Correction with the evaluation of the legendre decomposition :
We have now recovered the αp,q coefficients for each data item in the test sample and at each
checkpoint. we will try applying the multiplication correction by taking

φ̃(x, y) =
(

P−1∑
p=0

Q−1∑
q=0

αp,q Pp (x)Pq (y)

)
×φ(x, y)

where x, y are the degrees of freedom associated with Pk with k large enough.
For each data item at each checkpoint, we will compare the following errors (Figure 4.71): the
FNO errors, the errors obtained with the classic multiplication correction (i.e. with φ̃ in P2
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without Legendre polynomial series decomposition) and finally the errors obtained with the
decomposition for k = 3 and k = 5. To do this, we will simply use the calculated coefficients
and evaluate the analytical expression of the decomposition in degrees of freedom Pk (for
k = 3 and k = 5). Each of these errors will be calculated using the reference solution (over-
refined solution obtained with standard FEM).

Figure 4.71: Correction by multuiplication with t i ldφ of high degree.

At this stage, the error generated by the decomposition into Legendre polynomial series is
probably affecting the correction too much. For this reason, we have not pursued this ap-
proach.

4.4.5 Correction with other networks

4.4.5.1 Multiperceptron

4.4.5.2 PINNs
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5 Conclusion

Penser à parler de la thèse : sujet etc...
TO COMPLETE !
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