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Physical context and objectives

• IFC simulations : interaction between the gas modelized by two-temperatures Euler
equations and the radiation modelized by a linear transport equation.

• Grey linear transport equation : f (x,Ω, t)≥ 0 the distribution function associated to the
particles (photons or neutrons) located in x, with a direction Ω. We consider the following
equation :

∂t f (t,x,Ω)+Ω.∇f (t,x,Ω) = σ

�
S2

(f (t,x,Ω
′
)− f (t,x,Ω))dΩ

′
.

• Diffusion limit : for t >> 1 and σ >> 1, the transport equation, tends toward the following
diffusion equation

∂t E(t,x)−div

(
1
σ

∇E(t,x)
)

= 0,

with E(t,x) =
�

Ω

f (t,x,Ω)dΩ and F(t,x) =
�

Ω

Ωf (t,x,Ω)dΩ.

• Computation cost : The CPU cost is important, consequently one needs simplified models.
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Approximation of transport equation

• Simplified hyperbolic models, depend only on spaces variables.

• Simplified models :
• Pn models : we develop the transport equation on the basis of spherical harmonics.
• Sn models : we use a quadrature formula to discretize the collision operator.
• Mn models : non-linear Pn models where the closure is obtained by minimizing the

entropy.

P1 model : 
∂t E +

1
ε

divF = 0,

∂t F+
1
3ε

∇E =− σ

ε2 F.

• Adapted numerical methods : asymptotic preserving (AP) finite volume schemes capturing
the diffusion limit.

Aims :

Design of cell-centered finite volume schemes for the simplified models capturing the diffusion limit
on unstructured meshes.
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Staggered and centered schemes

• Contrary to the Godunov schemes (HLL, Rusanov, upwind) the centered scheme for the
hyperbolic heat equation is AP.

• The limit diffusion scheme admit spurious modes.

• The centered scheme is not stable.

• The staggered scheme is also asymptotic preserving :


En+1

j −En
j

∆t
+

Fj+ 1
2
−Fj− 1

2

ε∆x
= 0,

F n+1
j+ 1

2
−F n

j+ 1
2

∆t
+

Ej+1−Ej

ε∆x
=− σ

ε2 Fj+ 1
2
.

• But the staggered scheme does not preserve the maximum principle E +F > 0, E−F > 0
in the transport regime.

CEA Constraints

• Design of schemes which are equal to the upwind scheme when σ = 0 to preserve the
transport properties (maximum principle, entropy etc).

• Design of cell-centered schemes. Indeed the hydrodynamic and diffusion codes are coupled
with the transport problem use cell-centered methods.
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AP schemes : design and examples

Hyperbolic heat equation :
∂t E +

1
ε

∂x F = 0,

∂t F +
1
ε

∂x E =− σ

ε2 F ,
=⇒ ∂t E−∂x

1
σ

∂x E = 0.

• Consistency error of the upwind scheme
• for the first equation : O

(
∆x
ε

+∆t
)
,

• for the second equation : O
(

∆x2

ε
+∆x +∆t

)
.

• CFL condition : ∆t
(

1
∆xε

+ σ

ε2

)
≤ 1.

Jin-Levermore scheme
• Principle of design : we introduce the steady state ∂x E =− σ

ε
F in the fluxes.{

E(xj ) = E(xj+ 1
2
)− (xj − xj+ 1

2
) σ

ε
F(xj+ 1

2
),

E(xj+1) = E(xj+ 1
2
)− (xj+1− xj+ 1

2
) σ

ε
F(xj+ 1

2
).

We obtain  Ej+ 1
2

=
(

Ej +Ej+1
2 +

Fj−Fj+1
2

)
,

Fj+ 1
2

= M
(

Fj +Fj+1
2 +

Ej−Ej+1
2

)
.

with M = 2ε

2ε+σ∆x .
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AP schemes in 1D

• The Jin-Levermore scheme is
En+1

j −En
j

∆t +M
Fn

j+1−Fn
j−1

2ε∆x −M
En

j+1−2En
j +En

j−1
2ε∆x = 0,

Fn+1
j −Fn

j
∆t +

En
j+1−En

j−1
2ε∆x −

Fn
j+1−2Fn

j +Fn
j−1

2ε∆x + σ

ε2 F n
j = 0.

(1)

with M = 2ε

2ε+σ∆x .

• Consistency error of Jin-Levermore :
• for the first equation : O

(
∆x2 + ε∆x +∆t

)
,

• for the second equation : O

(
∆x2

ε
+∆x +∆t

)
.

• CFL condition of explicit scheme : ∆t
(

1
∆xε

+ σ

ε2

)
≤ 1.

• CFL condition of semi-implicit scheme : ∆t
(

1
∆xε

)
≤ 1.
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AP schemes in 1D

Gosse-Toscani scheme

• Principle of design : localization of source terms at the interfaces, which induces a stationary
wave in the Riemann problem.


En+1

j −En
j

∆t +M
Fn

j+1−Fn
j−1

2ε∆x −M
En

j+1−2En
j +En

j−1
2ε∆x = 0,

Fn+1
j −Fn

j
∆t +M

En
j+1−En

j−1
2ε∆x −M

Fn
j+1−2Fn

j +Fn
j−1

2ε∆x +M σ

ε2 F n
j = 0.

(2)

with M = 2ε

2ε+σ∆x .

• Consistency error of the Gosse-Toscani scheme :
• for the first equation : O

(
ε∆x +∆x2 +∆t

)
,

• for the second equation :O (∆x +∆t).
• CFL condition of explicit scheme : ∆t

(
1

∆xε

)
≤ 1.

• CFL condition of semi-implicit scheme : ∆t

(
1

∆xε+ ∆x2
σ

)
≤ 1.

• Remark : The Jin-Levermore scheme (1) with the discretization of the source term
1
2 (Fj+1/2 +Fj−1/2) is equal to the Gosse-Toscani scheme.

• Remark : For the two schemes, the numerical viscosity gives the diffusion limit scheme on
coarse grids ( ∆x

ε
>> 1).
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Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.

• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .

• The modified equation associated to the Upwind scheme is

{
∂t E + 1

ε
∂x F − ∆x

2ε
∂xx E = 0,

∂t F + 1
ε

∂x E− ∆x
2ε

∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

• The modified equation associated to the Gosse-Toscani scheme is

{
∂t E +M 1

ε
∂x F −M ∆x

2ε
∂xx E = 0,

∂t F +M 1
ε

∂x E−M ∆x
2ε

∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)

∂t E−
1
σ

∂xx E = 0

• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).

Presentation 11 / 36



Introduction

AP schemes in 1D
and difficulties in
2D

AP schemes for
hyperbolic heat
equation in 2D

AP schemes for
angular
approximations of
the transport
equation

Numerical results

Conclusion

Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.
• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .
• The modified equation associated to the Upwind scheme is{

∂t E + 1
ε

∂x F − ∆x
2ε

∂xx E = 0,
∂t F + 1

ε
∂x E− ∆x

2ε
∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

∂t E−
1
σ

∂xx E− ∆x
2ε

∂xx E = 0.

• The modified equation associated to the Gosse-Toscani scheme is{
∂t E +M 1

ε
∂x F −M ∆x

2ε
∂xx E = 0,

∂t F +M 1
ε

∂x E−M ∆x
2ε

∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)

∂t E−
1
σ

∂xx E = 0

• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).

Presentation 11 / 36



Introduction

AP schemes in 1D
and difficulties in
2D

AP schemes for
hyperbolic heat
equation in 2D

AP schemes for
angular
approximations of
the transport
equation

Numerical results

Conclusion

Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.
• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .
• The modified equation associated to the Upwind scheme is{

∂t E + 1
ε

∂x F − ∆x
2ε

∂xx E = 0,
∂t F + 1

ε
∂x E− ∆x

2ε
∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

• On fine grid ∆x
ε

<< 1, the diffusion limit is

∂t E−
1
σ

∂xx E = 0.

• The modified equation associated to the Gosse-Toscani scheme is{
∂t E +M 1

ε
∂x F −M ∆x

2ε
∂xx E = 0,

∂t F +M 1
ε

∂x E−M ∆x
2ε

∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)

∂t E−
1
σ

∂xx E = 0

• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).

Presentation 11 / 36



Introduction

AP schemes in 1D
and difficulties in
2D

AP schemes for
hyperbolic heat
equation in 2D

AP schemes for
angular
approximations of
the transport
equation

Numerical results

Conclusion

Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.
• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .
• The modified equation associated to the Upwind scheme is{

∂t E + 1
ε

∂x F − ∆x
2ε

∂xx E = 0,
∂t F + 1

ε
∂x E− ∆x

2ε
∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

• On coarse grid ∆x
ε

>> 1, the diffusion limit is

∂t E−
∆x
2ε

∂xx E = 0.

• The modified equation associated to the Gosse-Toscani scheme is{
∂t E +M 1

ε
∂x F −M ∆x

2ε
∂xx E = 0,

∂t F +M 1
ε

∂x E−M ∆x
2ε

∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)

∂t E−
1
σ

∂xx E = 0

• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).

Presentation 11 / 36



Introduction

AP schemes in 1D
and difficulties in
2D

AP schemes for
hyperbolic heat
equation in 2D

AP schemes for
angular
approximations of
the transport
equation

Numerical results

Conclusion

Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.
• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .
• The modified equation associated to the Upwind scheme is{

∂t E + 1
ε

∂x F − ∆x
2ε

∂xx E = 0,
∂t F + 1

ε
∂x E− ∆x

2ε
∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

∂t E−
1
σ

∂xx E− ∆x
2ε

∂xx E = 0.

• The scheme does not capture the diffusion limit.
• The modified equation associated to the Gosse-Toscani scheme is{

∂t E +M 1
ε

∂x F −M ∆x
2ε

∂xx E = 0,
∂t F +M 1

ε
∂x E−M ∆x

2ε
∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)

∂t E−
1
σ

∂xx E = 0

• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).

Presentation 11 / 36



Introduction

AP schemes in 1D
and difficulties in
2D

AP schemes for
hyperbolic heat
equation in 2D

AP schemes for
angular
approximations of
the transport
equation

Numerical results

Conclusion

Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.
• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .
• The modified equation associated to the Upwind scheme is{

∂t E + 1
ε

∂x F − ∆x
2ε

∂xx E = 0,
∂t F + 1

ε
∂x E− ∆x

2ε
∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

∂t E−
1
σ

∂xx E− ∆x
2ε

∂xx E = 0.

• The scheme does not capture the diffusion limit.
• The modified equation associated to the Gosse-Toscani scheme is{

∂t E +M 1
ε

∂x F −M ∆x
2ε

∂xx E = 0,
∂t F +M 1

ε
∂x E−M ∆x

2ε
∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)

∂t E−
M
σ

∂xx E− 1−M
σ

∂xx E = 0

∂t E−
1
σ

∂xx E = 0

• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).

Presentation 11 / 36



Introduction

AP schemes in 1D
and difficulties in
2D

AP schemes for
hyperbolic heat
equation in 2D

AP schemes for
angular
approximations of
the transport
equation

Numerical results

Conclusion

Analysis of AP schemes : modified equations

• To understand the behaviour of the scheme, we use the modified equations method.
• We assume that ||∂ta ,xb E || ≤ Ca,b and ||∂ta ,xb F || ≤ εCa,b .
• The modified equation associated to the Upwind scheme is{

∂t E + 1
ε

∂x F − ∆x
2ε

∂xx E = 0,
∂t F + 1

ε
∂x E− ∆x

2ε
∂xx F =− σ

ε2 F .
(3)

• We plug the relation ε∂x E +O(ε2) =−σF in the first equation of (4), we obtain the diffusion
limit

∂t E−
1
σ

∂xx E− ∆x
2ε

∂xx E = 0.

• The scheme does not capture the diffusion limit.
• The modified equation associated to the Gosse-Toscani scheme is{

∂t E +M 1
ε

∂x F −M ∆x
2ε

∂xx E = 0,
∂t F +M 1

ε
∂x E−M ∆x

2ε
∂xx F =−M σ

ε2 F .
(4)

• We plug the relation Mε∂x E +O(ε2) =−MσF in the first equation of (4)
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<< 1, M → 1 and the diffusion coefficient is correct.
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• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).
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Analysis of AP schemes : modified equations
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• The scheme captures the diffusion limit (idem for the Jin-Levermore scheme).
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Numerical exemple for AP schemes in 1D

• To validate the AP method, we propose the following test case. The parameters are σ = 1,
ε = 0.001. The initial data is given by E(0,x) = G(x) with G(x) a gaussian and F(0,x) = 0.

In left results for AP scheme, in right results for upwind scheme

Schemes Error L1 Error L2 Real time User time

AP scheme, 50 cells 0.0065 0.0110 0m0.054s 0m0.157s
AP scheme, 500 cells 0.0001 0.00018 0m15.22s 1m1.680s

Upwind scheme, 500 cells 0.445 0.647 0m24.317s 1m36.80s
Upwind scheme, 10000 cells 0.0366 0.059 1485m4.26s 5140m56.11s

• The « asymptotic preserving » scheme is significantly more accurate than the upwind
scheme.

• In pratice a classical scheme for this type of problem is unusable.
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Notations for classical finite volume schemes

• We introduce the notations for the edge formulation of finite volume methods.

Notations

x j

xr+1

xr−1

l jk

xr

Cell Ω j

Cell Ωk

xk

n jk

• ljk and njk are the lenght and the normal associated to the edge ∂Ωjk .

• ∑k ljk njk = 0.

• (Fjk ,njk ) and Ejk are the fluxes associated to the edge ∂Ωjk .
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2D Extension : difficulties

• Jin-Levermore method : modify the upwind schemes, plugging the steady states into the
fluxes. We use a Taylor expansion :{

E(xj )' E(xjk )+(xj −xjk ,∇E(xjk )),
E(xk )' E(xjk )+(xk −xjk ,∇E(xjk )).

Discrete equivalent {
Ej ' Ejk − σ

ε
(Fjk ,xj −xjk ),

Ek ' Ejk − σ

ε
(Fjk ,xk −xjk ).

Plugging the previous relations in the acoustic solver, we obtain :{
(Fj ,njk )+Ej = (Fjk ,njk )+Ejk ,
(Fk ,njk )−Ek = (Fjk ,njk )−Ejk .

• To solve this system we need a geometrical assumption.

• Assumption : The mesh satisfy the Delaunay condition, therefore :

(xjk −xj ) = djk njk et (xjk −xk ) =−dkj njk .

Asymptotic limit of Jin-Levermore scheme : Two-Points-Flux scheme

|Ωj |
En+1

j −En
j

4t
− 1

σ
∑
k

ljk
En

k −En
j

d(xj ,xk )
= 0.
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Non convergence of Two-Points-Flux diffusion
scheme

• Two-Points-Flux scheme does not converge on distorted meshes.
Test case : we take as initial condition the fundamental solution of the heat equation at the
time t = 0.001, final time tf =0.010.

• Convergence results on Cartesian mesh and Random quadrangular mesh.

Cartesian mesh Random mesh

• To our knowledge, there were no AP schemes on unstructured meshes before this study.
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Notations for nodal finite volume schemes

Idea :

use nodal formulation of finite volume methods introduced in Lagrangian hydrodynamics to
discretize the wave equation and couple this scheme with the Jin-Levermore method.

• We introduce the nodal formulation

Notations

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

• ljr njr =
(

−yr−1 + yr+1
xr−1− xx+1

)
.

• ∑j ljr njr = ∑r ljr njr = 0.

• Fr and Enjr are the fluxes associated to the node Xr .

• Vr is the control volume around the node Xr .
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Construction of the nodal scheme

GLACE AP scheme 
|Ωj | ∂t Ej (t)+

1
ε

∑
r

ljr (Fr ,njr ) = 0,

|Ωj | ∂t Fj (t)+
1
ε

∑
r

ljr Enjr = Sj .

• Classical nodal solver : {
Enjr −Ej njr = α̂jr (Fj −Fr ),
∑

j
ljr Enjr = 0,

with α̂jr = njr ⊗njr .

• Modified nodal solver : plugging ∇E =− σ

ε
F in the fluxes


Enjr −Ej njr = α̂jr (Fj −Fr ),(

∑
j

ljr α̂jr

)
Fr = ∑

j
ljr Ej njr +∑

j
ljr α̂jr Fj
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• Modified nodal solver : plugging ∇E =− σ

ε
F in the fluxes


Enjr −Ej njr = α̂jr (Fj −Fr )− σ

ε
β̂jr Fr ,(

∑
j

ljr α̂jr +
σ

ε
∑

j
ljr β̂jr

)
Fr = ∑

j
ljr Ej njr +∑

j
ljr α̂jr Fj ,

with β̂jr = njr ⊗ (xr −xj ).
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j
ljr Ej njr +∑

j
ljr α̂jr Fj ,

with β̂jr = njr ⊗ (xr −xj ).

• Source term discretization : (1) Sj =− σ

ε2 |Ωj | Fj , (2) Sj =− σ

ε2 ∑r β̂jr Fr
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Properties of the nodal schemes

• In 1D, the scheme with the source term (1) is equal to the Jin-Levermore scheme,

• the scheme with the source term (2) is equal to the Gosse-Toscani scheme.

• The scheme with the discretization (2) of the source term is equal to


|Ωj | ∂t Ej (t)+

1
ε

∑
r

ljr (Mr Fr ,njr ) = 0,

|Ωj | ∂t Fj (t)+
1
ε

∑
r

ljr Enjr =− 1
ε

(
∑

r
ljr α̂jr (̂Id −Mr )

)
Fj .

with {
Enjr −Ej njr = α̂jr Mr (Fj −Fr ),(
∑j ljr α̂jr

)
Fr = ∑j ljr Ej njr +∑j ljr α̂jr Fj .

Mr =

(
∑

j
ljr α̂jr +

σ

ε
∑

j
ljr β̂jr

)−1(
∑

j
ljr α̂jr

)
.

• The matrix Mr generalize the coefficient M introduced in the 1D schemes

• We implicit the source term to obtain a scheme with a CFL condition independent of ε.
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Diffusion limit

Proposition

When ε tends to zero the limit scheme is :
|Ωj | ∂t Ej (t)−∑

r
ljr (Fr ,njr ) = 0,

σAr Fr = ∑
j

ljr Ej njr , Ar =−∑
j

ljr njr ⊗ (xr −xj ).

‖ e(t) ‖2
L2(Ω)= ∑

j
|Ωj | (Ej (t)−E(xj , t))2.

‖ f(t) ‖2
L2([0,t]xΩ)=

� t

0
∑

r
| Vr | (Fr (t)−∇E(xr , t))2.

Theorem

If the matrix AS
r satisfies AS

r ≥ αVr with α a constant then the semi-discrete diffusion scheme is
convergent for all time T > 0 with the estimation :

‖ E(t) ‖L2(Ω) + ‖ f(t) ‖L2([0,t]xΩ)≤ C(T )h.

• The nodal AP scheme with the discretization (2) of the source term is stable in norm L2.
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Friedrichs systems with stiff source terms

• We introduce the Friedrichs system with stiff source term

∂t u+
1
ε

A∂x u+
1
ε

B∂y u =− σ

ε2 Ru, u ∈ Rn

• A, B, R are symmetric matrices and R is positive.

Lemma

We note Ei the eigenvectors of R with KerR = vect(E1...Ep). There are two particular vectors
associated to the eigenvalues λp+1, λp+2. We assume that

{
AEi = γi Ep+1, ∀i ∈ {1..p} ,
BEi = δi Ep+2, ∀i ∈ {1..p} ,

therefore ((u,E1), ...,(u,Ep)) tends to v ∈ Rp when ε tends to zero with

∂t v−
1

λi1 σ
K1∂xx v− 1

λi2 σ
K2∂yy v = 0,

and K1, K2 symmetric positive matrices.
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Pn and Sn models

• Sn models : (discrete ordinate methods) which approximate the scattering operator with a
quadrature formula.

• Properties of Sn models : A, B diagonal matrices, dimKerR = 1, R symmetric positive for
the variable ui =

√
wi f (Ωi ).

• wi the quadrature weight, Ωi the quadrature speed and f the solution of the transport
equation.

• Pn models : projection of the transport equation on the spherical harmonics basis.

• Properties of Pn models : symmetrizable system, R is defined by R11 = 0 and Rii = 1
(i 6= 0).

Proposition

The Pn and Sn models satisfy the previous assumption of structure.
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Decomposition of Friedrichs systems

Proposition

Then we write a Pn or Sn model in the eigenvectors basis of R, we obtain

∂t v+
1
ε

A
′
∂x v+

1
ε

B
′
∂y v =− σ

ε2 Dv (5)

with D a diagonal matrix defined by D11 = 0 et Dii = 1 (i 6= 0). If the assumption of structure is
satisfied, then

A
′
= P1,x +A

′′
, B

′
= P1,y +B

′′
,

with A
′′
0,j = 0, A

′′
i,0 = 0, B

′′
0,j = 0, B

′′
i,0 = 0.

• The matrices P1,x , P1,y are the matrices associated to the P1 system.

• Conclusion : The Pn and Sn models can be split between a P1 system and a system which
does not play a role in the diffusion regime.

• Numerical method (micro-macro decomposition ?) : Split the system, discretize the P1
system with an AP scheme and the other system with a classical scheme.
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Final algorithm

• Decomposition algorithm for the system

∂t u+
1
ε

A1∂x u+
1
ε

A2∂y u =− σ

ε2 Ru. (6)

• First step : We write the system (6) in the eigenvectors basis of R to obtain

∂t v+
1
ε

A
′
1∂x v+

1
ε

A
′
2∂y v =− σ

ε2 Du, (7)

with v = Qt u, A
′
1 = Qt A1Q et A

′
2 = Qt A2Q.

• Second step : We split the diagonalized system (7). We obtain

∂t v+
1
ε

(P1,x ∂x v+P1,y ∂y v)+
1
ε

(
A
′′
1 ∂x v+A

′′
2 ∂y v

)
=− σ

ε2 Dv. (8)

• Third step : The system (9) is discretized with an AP scheme

∂t v+
1
ε

(P1,x ∂x v+P1,y ∂y v) =− σ

ε2 D
′
v, (9)

with D
′

defined by D
′
22 = D

′
33 = 1 et D

′
ii 6=22,ii 6=33.

• Fourth step : The system (10) is discretized with a classical scheme (Upwind,
Rusanov)

∂t v+
1
ε

(
A
′′
1 ∂x v+A

′′
2 ∂y v

)
=− σ

ε2 D
′′

v, (10)

with D
′′

defined by D
′′
11 = D

′′
22 = D

′′
33 = 0 et D

′′
ii = 1 i ≥ 4 .
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Examples of unstructured meshes

Two classical examples of unstructured meshes.

Random mesh Kershaw mesh
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Numerical results for the P1 system

• In transport regime (ε = O(1) and σ = O(1)), at first order the scheme converges.

• Diffusion regime : The initial data is given by the fundamental solution of the heat equation
at the time t = 0.001. Final time tf = 0.010.

Mesh/ ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

Cartesian 60-120 cells 1.8 2 2. 2.
Cartesian 80-160 cells 1.75 1.97 2 2
Cartesian 120-240 cells 1.7 1.95 2 2

Random quad. 60-120 cells 1.83 2. 2 2
Random quad. 80-160 cells 1.96 2.2 2.2 2.2

Random quad. 120-240 cells 1.73 1.92 2 2

Kershaw 60-120 cells 2 2.1 2.1 2.1
Kershaw 80-160 cells 1.87 1.97 2 2

Kershaw 120-240 cells 1.83 1.97 2 2

• The scheme converges on triangular meshes with an order between 1 and 2.

• The error between the diffusion solution and the solution of the P1 model is homogeneous to
O(ε).

• For ∆x
ε

= O(1) the order decreases. Indeed we compare the numerical solution of P1
system and the exact diffusion solution.
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AP schemes Vs non-AP schemes

• We solve the P1 model with previous test case and ε = 0.001. The results for the hyperbolic
schemes are computed on Kershaw mesh.

Diffusion solution non-AP scheme

Edge AP scheme Nodal AP scheme
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Numerical results for Friedrichs systems

• Diffusion regime : previous test case.

• The order of convergence is computed with two meshes (14400 and 57600 cells) :

Mesh/ ε ε = 10−3 ε = 10−4

Cartesian 1.8 1.95
Random. quad. 1.85 2

Trig. reg. 1.9 2
Random. trig. 1.35 1.35

Kershaw 1.85 1.95

TAB.: Order for the P3 numerical solution

Mesh/ ε ε = 10−3 ε = 10−4

Cartesian 1.80 1.95
Random. quad. 1.85 2

Trig. reg. 1.9 2
Random. trig. 1.35 1.35

Kershaw 1.85 1.95

TAB.: Order for the S2 numerical solution

• Transport test case : fundamental solution

Fundamental solution of P3 Fundamental solution of S2
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M1 model

The non-linear two moments M1 model, obtained by maximizing the photon entropy, is :
∂t E +

1
ε

∇.F = 0

∂t F+
1
ε

∇(P̂) =− σ

ε2 F,
(11)

E is the energy, F the radiative flux and

P̂ =
1
2

((1−χ(f))Id +(3χ(f)−1)
f⊗ f
‖ f ‖

)E ∈ R2×2

the radiative pressure.

We define f =| F | /E and χ(f) =
3+4f2

5+2
√

4−3f2
.

The M1 model satisfies

• the diffusion limit, ε→ 0 : ∂t E−div( 1
3σ

∇E) = 0, First Tools : AP scheme

• the entropy property : ∂t S + 1
ε

div(Q)≥ 0, Second Tools : Reformulation

• the maximum principle : E > 0, | f |< 1, like a dynamic gas system

with

S =
E3/4(1− | u |2)

(3+ | u |2)2 , u =
(3χ−1)f

2 | f |2
, Q = uS.

Idea : we formulate the M1 model like a dynamic gas system :
• to use Lagrange+remap nodal scheme and obtain a consistent limit diffusion scheme,
• to use the entropy to preserve the maximum principle.
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Numerical method
New formulation

∂t ρ+
1
ε

div(ρu) = 0 mass conservation

∂t ρv+
1
ε

div(ρu⊗v)+
1
ε

∇q =− σ

ε2 ρv momentum conservation

∂t ρe +
1
ε

div(ρue +qu) = 0 total conservation energy

∂t ρs +
1
ε

div(ρus)≥ 0 Entropy inequality

F = ρv the radiative flux E = ρe the radiative energy S = ρs.

• q =
1−χ

2
E , u =

3χ−1
2

f
| f |2

• The M1 is independent of the density.
• F = uE +qu P̂ = u⊗F+qId

Numerical discretization
• We use the Lagrange+remap nodal GLACE scheme coupled with the Jin-Levermore

method.
• We use a second order advection scheme for the remap part (when ε is small).

Properties

• The scheme is entropic and preserve the maximum principle.

• The scheme is AP with a second order positive limit scheme.

• We can define a semi-implicit variant with a CFL condition independant of ε.
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Conclusion

• Conclusion
• We have designed and studied AP schemes for hyperbolic heat equation valid on

unstructured meshes ([1]− [2]).
• Using the previous decomposition we have obtained AP schemes for Sn and Pn

models ([3]).
• Using the proximity between the M1 model and the Euler equations, we have

proposed an AP, entropic and positive scheme for M1 model (non-linear radiative
transfer model) based on a Lagrange+remap method ([4]).
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Ongoing works and future works

• Ongoing works

• Design of asymptotic preserving and positive scheme for Sn models based on edge
finite volume scheme. We propose to couple a "even-odd" formulation with a
nonlinear diffusion scheme (LMP scheme).

• Extension of the nodal scheme for Euler and Shallow water equations with gravity
and friction using a Lagrange+remap approach.

• Future works

• Theoretical study of the AP schemes for the P1 model and the Euler equations (with
C. Buet, B. Després).

• Extension of the nodal scheme on unstructured conical meshes.

• Design of asymptotic preserving schemes for multi-groups models.
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Thank you

Thank you for your attention
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