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MHD model

Context: simulate the ELM’s (edge-localized mode) to estimate the amplitude
of these instabilities and understand how to control them.

Model: The full- resistive MHD model given by

∂tρ+∇.(ρv) = ∇.(D||∇||ρ+ D⊥∇⊥ρ) + Sp

ρ∂tv + ρv.∇v +∇(ρT ) = J× B + ν4v

ρ∂tT + ρv.∇T + (γ − 1)ρT∇v = ∇.(K||∇||T + K⊥∇⊥T ) + Sh

∂tB = ∇× (v × B)−∇× ηJ

(1)

with ρ the density, v the velocity, T the temperature, B the magnetic field and
J = ∇× B the current.

The terms D||, D⊥, K||, K⊥ are anisotropic diffusion tensors.

Source terms: Sh is the heat source, Sp is the particle source.

Reduced magnetohydrodynamic simulation of toroidally and poloidally localized
edge localized modes, M. Hölzl and co-workers, Phys. of Plasmas, 2012.
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Reduced MHD: assumptions and derivation

We consider the cylindrical coordinates (R,Z , φ) ∈ Ω× [0, 2π].

(R,Z) corresponds to the poloidal plan and φ the toroidal direction.

Reduced MHD: assumptions

B =
F0

R
eφ +

1

R
∇ψ × eφ v = −R∇u × eφ + v||B

with u the electrical potential and ψ the poloidal magnetic flux.

We add the vorticity w = 4⊥u and the toroidal current zj = 4∗ψ
Derivation: Plugging B and v in the density, magnetic and energy equations +
simplifications. For the equations on u and v|| we use the following projections

eφ.∇× R2 (ρ∂tv + ρv.∇v +∇(ρT ) = J× B + ν4v)

and
B. (ρ∂tv + ρv.∇v +∇(ρT ) = J× B + ν4v) .
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Theoritical results

To ensure numerical stability it is essential to obtain well-posed models

Example of criterion for well posed models: Conservation of total energy

Model without parallel velocity
We assume that the boundary conditions are correctly chosen. We obtain the
following energy estimate

d

dt

∫
Ω

(
|∇⊥ψ|2

2R2
+ ρ̂
|∇⊥u|2

2
+

1

γ − 1
p

)
= −

∫
Ω
η(T )

|4∗ψ|2

R2
−
∫

Ω
ν|4⊥u|2

with E = ρ
|v|2

2
+ |B|2

2
+ 1
γ−1

p the total energy.

If η = ν = 0 the total energy is conserved.

Model with v||: total energy conservation not clear because some terms missing.

These terms can explain the convergence problems in the nonlinear phase with
small dissipation terms.
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Description of the jorek code I

Jorek: Fortran 90 code, parallel (MPI+OpenMP)

Determinate the equilibrium

Define the boundary of the computational
domain
Create a first grid which is used to compute
the aligned grid
Compute ψ(R,Z) in the new grid.

Compute equilibrium

Solve the Grad-Shafranov equation

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −R2 ∂p

∂ψ
− F

∂F

∂ψ

Figure: unaligned grid

E. Franck and al. Nonlinear time solvers for Jorek MHD code



Physical context and models
Jorek Code: description

Nonlinear solvers and time stepping
Preconditioning for Nonlinear solvers

Description of the jorek code II

Computation of aligned grid

Identification of the magnetic flux surfaces
Create the aligned grid (with x-point)
Interpolate ψ(R,Z) in the new grid.

Recompute equilibrium of the new grid.

Time-stepping (restart)

Construction of the matrix and some
profiles (diffusion tensors, sources terms)
Solve linear system
Update solutions

Spatial discretization:

For the poloidal plan: finite element
method.
For the toroidal direction: Fourier
expansion. Figure: Aligned grid
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Time scheme in Jorek code

We recall the model A(∂tU) = B(U, t)

For time stepping we use a Crank Nicholson :

A(Un+1)− A(Un) = θ∆tB(Un+1) + (1− θ)∆tB(Un)

Defining G(U) = A(U)− θ∆tB(U) and

b(Un) = A(Un) + (1− θ)∆tB(Un)

we obtain the nonlinear problem

G(Un+1) = −G(Un) + b(Un)

First order linearization (
∂G(Un)

∂Un

)
δUn = G̃(Un)

with δUn = Un+1 − Un, G̃(Un) = −G(Un) + b(Un) and J = ∂G(Un)
∂Un the

jacobian matrix of G(Un).
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Time scheme in Jorek code

Linear solver in Jorek: Left Preconditioning + GMRES iterative solver.

Principle of preconditioning step:

Replace the problem JδUn = G̃(Un) by P(P−1J)δUk = G̃(Un).
Solve the new system with two steps PδU∗n = G̃(Un) and
(P−1J)δUn = δU∗k

If P is easier to invert than J and P ≈ J the linear solving step is more robust
and efficient.

Construction and inversion of P

P: diagonal block matrix where the submatrices are associated to each
toroidal mode.
Inversion of P: We factorize and invert exactly each subsystem.

This preconditioning is based on the assumption that the coupling between
toroidal modes is weak.

In practice, for the nonlinear phase this coupling can be strong.
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Jorek code: convergence issues

Problem :

For some test cases the GMRES method does not converge in the nonlinear
phase even with small time steps.

Why ?

The preconditioning is not sufficient to obtain a robust GMRES method ?

Numerical instabilities are generated ?

The spatial poloidal and time discretization are not adapted ? Problem of
positivity ?
The models are not stable ?
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Nonlinear solvers and time stepping
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Inexact Newton scheme

At the time step n, we compute b(Un), G(Un) and U0 = Un and ε0.

Step k of the Newton procedure

We compute G(Uk ) and
(
∂G
∂Uk

)
We solve the linear system with GMRES(

∂G(Uk )

∂Uk

)
δUk = G̃(Uk ) = b(Un)− G(Uk )

and the following convergence criterion

||
(
∂G
∂Uk

)
δUk + G̃(Uk )||

||G̃(Uk )||
≤ εk , εk = γ

(
||G̃(Uk )||
||G̃(Uk−1)||

)α
We iterate with Uk+1 = Uk + δUk and apply the convergence test.

If the Newton procedure stops we define Un+1 = Uk+1.

For the Newton procedure it not necessary to solve GMRES step with high
accuracy.

Inexact Newton procedure minimize the number of GMRES iteration.
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The continuation method

The Newton algorithm converges if the initial solution is not too far from the
good one.

Aim: to give a good initial solution for the Newton solver with a continuation

method.

Nonlinear problem: R(U) = 0 not easy to solve.

Idea: replace the initial problem by the homotopy mapping F (U, d) = 0
easier to solve.

Dissipation continuation: F (U, d) = 0 = R(U) + dD(U) with D a
diffusion operator.

Algorithm: we solve F (U, di ) = 0 for a decreasing set of di and use the previous
solution to initialize the Newton procedure of the current step.
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Conclusion about continuation and Newton methods

Inexact Newton procedure :

For difficult cases, the convergence problem is not solved by the Newton
procedure.
In other cases the Newton method allows to use bigger time step and
avoid the accumulation of time error which can generate instabilities

Adaptive time stepping:

The Newton procedure is coupled with an adaptive time stepping based
on the nonlinear residue.

Conclusion: The Inexact Newton procedure with adaptive time stepping is more
robust then the previous time scheme.

Additionnal test cases and numerical studies are necessary.

Continuation method :

For now, the continuation method is not helpful for solving the difficult
cases.
The continuation method can help explain convergence problems.

Other way : Find a more efficient preconditioning for reduced and full MHD.
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Preconditioning idea I

An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive
Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.

Scalable parallel implicit solvers for 3D magnetohydrodynamics, L. Chacon,
Journal of Phys. 2009.

Right preconditioning: We solve JP−1PδUk = ˜G(Uk ).

Aim: Find P easy to invert with P ≈ J−1 and more efficient in the nonlinear
phase as the current preconditioning.

Idea: Operator splitting + parabolic formulation of the MHD + multigrid
methods.

Example {
∂tu = ∂xv
∂tv = ∂xu

−→
{

un+1 = un + ∆t∂xvn+1

vn+1 = vn + ∆t∂xun+1

We obtain (1−∆t2∂xx )un+1 = un + ∆t∂xvn.

The matrix associated to (1−∆t2∂xx ) is diagonal dominant and well
conditioned.
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Preconditioning : simple example I

We assume T constant, ρ = 1
R2 , B = F0

R
eφ + 1

R
∇ψ × eφ and v = −R∇u × eφ

The model obtained is
∂tψ = R[ψ, u] + η4∗ψ − F0∂φu

∂t4⊥u = 1
R

[R24⊥u, u] + 1
R

[ψ,4∗ψ]− F0
R2 ∂φ4∗ψ + ν4⊥(4⊥u)

with w = 4⊥u and zj = 4∗ψ.

In this formulation the evolution equations and elliptic equations are non
coupled.

The Jacobian associated to the evolution equations is

∂G(Uk )

∂Uk
δUk = JδUk =

(
M U
L D

)
δUn

with δUk = (δψ, δu)

M and D the matrices associated to advection and diffusion operators on ψ and
u.

L and U associated to the coupling operators between ψ and u.
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Preconditioning : Algorithm

The final system with Schur decomposition is given by

δUk = J−1G̃(Uk ) =

(
M U
L D

)−1

G̃(Uk )

=

(
I M−1U
0 I

)(
M−1 0

0 P−1
schur

)(
I 0
−LM−1 I

)
G̃(Uk )

with Pschur = D − LaM−1U (La ≈ L).

Algorithm to solve JδUk = G̃(Uk ) + elliptic equations:



Predictor : Mδψk
p = G̃ψ

potential update : D⊥P̃schur δu
k =

(
−Laδψk

p + G̃u)
)

Corrector : Mδψk = Mδψk
p − Uδuk

Current update : δzkj = D∗δψk

Vorticity update : δwk = D⊥δu
k

with G̃ψ and G̃u the rhs for equations on ψ and u. D⊥ is the elliptic operator.

In the potential update step we have factorized the system by 4⊥.
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Preconditioning : Approximation of the Schur complement

To define P̃schur = D − LaM−1U we must know the matrix M−1.

The previous algorithm with a Schur complement approximation gives the
preconditionning P.

Small flow approximation

In P̃schur we assume that M−1 ≈ ∆t

P̃schur =
δu

∆t
−
θ

R
[R2δu, uk ]− θν4⊥δu − θ2∆t

(
Bk .∇(R2Bk .∇δu)

)
Bn.∇(R2Bn.∇δu) is a positive self-ajoint second order wave operator.

Arbitrary flow approximation

We introduce an operator M∗ with UM∗ ≈ MU. Consequently
PSchur = (DM∗ − LaU)M−1

∗ .

In this case the Potential udapte step in given by{
potential update I : (DM∗ − LaU)δu∗,k =

(
−Laδψk

p + G̃u)
)

potential update II : δuk = M∗δu∗,k

The operator M∗ is the advection operator.
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Preconditioning: Remarks and future work

With more difficult calculus and additional tools we can extend the algorithm for
the model with temperature arbitrary density and parallel velocity.

The Schur preconditioning method uses an approximation of the Jacobian based
on the approximation of the Schur complement and the coupling hyperbolic
terms.

Contrary to the previous preconditioning the coupling terms between the Fourier
modes are not neglected.

This preconditioning is easily compatible with free jacobian method.

Future work

Justify the approximations of the operators with a spectral analysis.
Complete the derivation and the study of the algorithm for the different
models.
Validate the Algorithm and implement the method in Jorek with multigrid
method and Free-Jacobian Newton solver.
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Thanks

Thanks for your attention
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