Numerical issues for nonlinear MHD Jorek code

Emmanuel Franck
Max Planck Institute For Plasma Physics (Munich)
Seminar ITER, UPMC
23/05/2013

May 22, 2013

Table of contents

- Physical context and models
- 2 Jorek Code: description
- 3 Current works on the time discretization
- 4 Other way for the future
- 6 Conclusion

Physical context and models
Jorek Code: description
Current works on the time discretization
Other way for the future
Conclusion

Physical context and models

Fusion DT: Reaction between
 Deuterium and tritium which product
 Helium and energy. The deuterium and tritium form a plasma (ionized gas).

- Fusion DT: Reaction between
 Deuterium and tritium which product
 Helium and energy. The deuterium and tritium form a plasma (ionized gas).
- Iter: International project to prove the efficiency of controlled fusion as a power source. Iter is an experimental power plant using fusion.

- Fusion DT: Reaction between
 Deuterium and tritium which product
 Helium and energy. The deuterium and tritium form a plasma (ionized gas).
- Iter: International project to prove the efficiency of controlled fusion as a power source. Iter is an experimental power plant using fusion.
- Magnetic confinement: The plasma obtained by the reaction is confined in the center of the reactor (tokamak) using a powerful magnetic field.

- Fusion DT: Reaction between
 Deuterium and tritium which product
 Helium and energy. The deuterium and tritium form a plasma (ionized gas).
- Iter: International project to prove the efficiency of controlled fusion as a power source. Iter is an experimental power plant using fusion.
- Magnetic confinement: The plasma obtained by the reaction is confined in the center of the reactor (tokamak) using a powerful magnetic field.
- Tokamak: Toroidal room used for the plasma confinement.

Figure: Tokamak

Models for Iter

 The dynamic of the plasmas in Iter is a very difficult multiscale problem.

Figure: Spatial and time scales

Models for Iter

- The dynamic of the plasmas in Iter is a very difficult multiscale problem.
- We have different models for the different time and space scales :
 - Kinetic Vlasov-Maxwell equation not used in pratice (CPU cost very important).
 - Gyrokinetic approximation of the Vlasov-Maxwell equation used for the turbulence in the core Tokamak.
 - MagnetoHydrodynamics fluids models (resistive MHD, two fluids MHD) used to simulate the edge instabilities.

Figure: Spatial and time scales

ELMs and instabilities

- An edge-localized mode ("ELM's") is a disruptive instability occurring in the edge region of a tokamak plasma.
- The development of edge-localized modes poses an important challenge in magnetic fusion research with tokamaks. Instabilities can damage wall components due to their extremely high energy transfer rate.
- Aim: simulate the ELM's to estimate the amplitude of these instabilities and understand how control these.
- MHD stability in X-point Geometry: simulation of ELMs, G. Huysmans, O. Czarny, Nuclear fusion, 2007.
- Reduced magnetohydrodynamic simulation of toroidally and poloidally localized edge localized modes, M. Hölzl and co-workers, Phys. of Plasmas, 2012.

MHD model

The full - resistive MHD model is given by

$$\begin{cases}
\partial_{t}\rho + \nabla \cdot (\rho \mathbf{v}) = \nabla \cdot (D_{||}\nabla_{||}\rho + D_{\perp}\nabla_{\perp}\rho) + S_{\rho} \\
\rho \partial_{t}\mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} + \nabla(\rho T) = \mathbf{J} \times \mathbf{B} + \nu \triangle \mathbf{v} \\
\rho \partial_{t}T + \rho \mathbf{v} \cdot \nabla T + (\gamma - 1)\rho T \nabla \mathbf{v} = \nabla \cdot (K_{||}\nabla_{||}T + K_{\perp}\nabla_{\perp}T) + S_{h} \\
\partial_{t}\mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times \eta \mathbf{J} + S_{c} \\
\nabla \cdot \mathbf{B} = \mathbf{0}
\end{cases}$$
(1)

with ρ the density, ${\bf v}$ the velocity, ${\bf T}$ the temperature, ${\bf B}$ the magnetic field and ${\bf J}=\nabla\times{\bf B}$ the current.

- The terms $D_{||}$, D_{\perp} , $K_{||}$, K_{\perp} are anisotropic diffusion tensors.
- We add source terms. S_c correspond to the current source, S_h correspond to the heat source, S_p correspond to the particle source.

Reduced MHD: assumption and derivation

- We consider the cylindric coordinate $(R, Z, \phi) \in \Omega \times [0, 2\pi]$.
- ullet (R,Z) correspond to the poloidal plan and ϕ the toroidal direction.

Reduced MHD: assumptions

$$\mathbf{B} = \frac{F_0}{R} \mathbf{e}_{\phi} + \frac{1}{R} \nabla \Psi \times \mathbf{e}_{\phi} \quad \mathbf{v} = -R \nabla u \times \mathbf{e}_{\phi} + v_{||} \mathbf{B}$$

with u the electrical potential and ψ the poloidal magnetic flux.

- For the reduced MHD the quantities are ρ , T, Ψ , u,v_{||} the parallel velocity, w the vorticity and z_i the toroidal current.
- Derivation: Plug **B** and **v** in the density, magnetic and energy equations. For the equations on u and $v_{||}$ we use

$$\mathbf{e}_{\phi}.
abla imes (
ho\partial_t \mathbf{v} +
ho \mathbf{v}.
abla \mathbf{v} +
abla (
ho T) = \mathbf{J} imes \mathbf{B} +
u \triangle \mathbf{v})$$

and

$$\mathbf{B}.\left(\rho\partial_{t}\mathbf{v}+\rho\mathbf{v}.\nabla\mathbf{v}+\nabla(\rho T)=\mathbf{J}\times\mathbf{B}+\nu\triangle\mathbf{v}\right).$$

Basic Reduced MHD: model 199

- With $v_{||} = 0$ we obtain the model 199 considered in this talk.
- We solve $\partial_t A(\mathbf{U}) = B(\mathbf{U}, t)$ with

$$B(\mathbf{U}) = \begin{pmatrix} [\Psi, u] - \epsilon \frac{F_0}{R} \partial_{\phi} u + \frac{\eta(T)}{R} (z_j - S_c(\Psi)) - \eta_n \nabla . (\nabla z_j) \\ \frac{1}{2} [R^2 ||\nabla u||^2, \hat{\rho}] + [R^2 \hat{\rho} w, u] + [\Psi, z_j] - \epsilon \frac{F_0}{R} \partial_{\phi} z_j - [R^2, \rho] \\ + \nabla . (R\nu(T) \nabla w) - \nu_n \nabla . (\nabla w) \end{pmatrix}$$

$$\frac{1}{R^2} z_j - \nabla . (\frac{1}{R^2} \nabla \Phi) \\ w - \nabla . (\nabla u) \\ R^2 [\rho, u] + 2R\rho \partial_Z u + \nabla . (D_{||} \nabla_{||} \rho + D_{\perp} \nabla_{\perp} \rho) + S_{\rho}(\Psi) \\ R^2 [T, u] + 2(\gamma - 1)RT \partial_Z u + \nabla . (K_{||} \nabla_{||} T + K_{\perp} \nabla_{\perp} T) + S_h(\Psi) \end{pmatrix}$$

with $\hat{\rho}=R^2\rho$ and $\partial_t A(\textbf{U})=\big(\frac{1}{R}\partial_t \Psi,\ R\nabla.(\hat{\rho}\nabla(\partial_t u)),\ 0,\ 0,\ R\partial_t \rho,\ R\partial_t T)\big).$

• Physical and numerical resistivity: η and η_n , viscosity coefficients: ν and ν_n .

Physical context and models

Jorek Code: description

Current works on the time discretization

Other way for the future

Conclusion

Jorek Code: description

Description of the jorek code I

- Jorek: code Fortran 90, parallel (MPI+OpenMP)
 + algebraic libraries (Pastix, MUMPS ...)
- Initialization
- Determinate the equilibrium
 - Define the boundary of the computational domain
 - Create a first grid which is used to compute the aligned grid
 - Compute $\psi(R, Z)$ in the new grid.
- Compute equilibrium
 - Solve the Grad-Shafranov equation

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial \Psi}{\partial R}\right) + \frac{\partial^2 \Psi}{\partial Z^2} = -R^2\frac{\partial p}{\partial \Psi} - F\frac{\partial F}{\partial \Psi}$$

Figure: unaligned grid

Description of the jorek code II

- Computation of aligned grid
 - Identification of the magnetic flux surfaces
 - Create the aligned grid (with x-point)
 - Interpolate $\psi(R,Z)$ in the new grid.
- Recompute equilibrium of the new grid.
- Time-stepping (restart)
 - Construction of the matrix and some profiles (diffusion tensors, sources terms)
 - Solve linear system
 - Update solutions
 - Plot kinetic magnetic energies and restart files.

Figure: Aligned grid

Spatial discretization

- The equation in the poloidal plane are discretized using finite element method.
 For the toroidal direction: Fourier expansion.
- Basis functions: Cubic Bezier elements
 - Generalization of cubic Hermite elements.
 - The generalization allows the local refinement of each element essential for adaptive mesh refinement.
 - 4 degrees of freedom by node to describe a function (9 for Lagrange cubic finite element).
 - With the isoparametric formulation (discretization of (R, Z) using the Bezier elements) the finite elements can be accurately aligned with the equilibrium flux surfaces.
 - The Cubic Bezier elements assure a C^1 polynomial reconstruction.
- Bezier surfaces and finite elements for MHD simulations, O. Czarny, G. Huysmans, JCP 2088.

Time scheme in Jorek code

- We recall the model $\partial_t A(\mathbf{U}) = B(\mathbf{U}, t)$
- For time stepping we use a Crank Nicholson or BDF2 scheme :

$$(1+\zeta)A(\mathbf{U}^{n+1})-\zeta A(\mathbf{U}^n)+\zeta A(\mathbf{U}^{n-1})=\theta \Delta t B(\mathbf{U}^{n+1})+(1-\theta)\Delta t B(\mathbf{U}^n)$$

• Defining $G(\mathbf{U}) = (1 + \zeta)A(\mathbf{U}) - \theta \Delta t B(\mathbf{U})$ and

$$b(\mathbf{U}^n, \mathbf{U}^{n-1}) = (1 + 2\zeta)A(\mathbf{U}^n) - \zeta A(\mathbf{U}^{n-1}) + (1 - \theta)\Delta tB(\mathbf{U}^n)$$

we obtain the non linear problem

$$G(\mathbf{U}^{n+1}) = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1})$$

First order linearization

$$\left(\frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}\right) \delta \mathbf{U}^n = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1})$$

with $\delta \mathbf{U}^n = \mathbf{U}^{n+1} - \mathbf{U}^n$ and $\frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}$ the Jacobian of $G(\mathbf{U}^n)$.

Time scheme in Jorek code

- Linear solver in Jorek:
 - Case 1: Direct solver using Pastix (using when $n_{tor} = 1$)
 - Case 2: Iterative solver
- Iterative Solver step 1: Preconditioning
 - Extraction of submatrices associated to each toroidal harmonics.
 - Factorization of each submatrix
 - We solve exactly (with Pastix) each subsystems.
 - We construct the initial vector of GMRES using the solutions of these systems.
- Iterative solver step 2: GMRES solver for the global matrix.
 - The matrix product vector is preconditioned with the solutions of each subsystems.
- Principle: Construction of initial GMRES data + right preconditioning with an approximation of the Jacobian where the coupling between the Fourier modes are neglected.
- In practice for some test cases this coupling is strongly nonlinear.

Jorek code: Non convergence

Problem:

- For some test cases the GMRES method does not converge in the nonlinear phase for large time step.
- Why ?
 - The preconditioning is not adapted to obtain a robust GMRES method ?
 - The spatial poloidal and toroidal discretizations is not adapted ?
 - The mesh is not adapted ?
 - The models are not stables ?

Numerical example

evolution of energy in time

Density

Numerical example

evolution of energy in time

Density

Numerical example

evolution of energy in time

Density

Physical context and models
Jorek Code: description
Current works on the time discretization
Other way for the future
Conclusion

Current works on the time discretization

Inexact Newton scheme

- At the time step n, we compute $b(\mathbf{U}^n, \mathbf{U}^{n-1})$, $G(\mathbf{U}^n)$
- We choose $\mathbf{U}_0 = \mathbf{U}^n$ and ε_0 .
- Step k of the Newton procedure
 - We compute $G(\mathbf{U}_k)$ and $\left(\frac{\partial G}{\partial \mathbf{U}_k}\right)$
 - We solve the linear system with GMRES

$$\left(\frac{\partial G(\mathbf{U}_k)}{\partial \mathbf{U}_k}\right) \delta \mathbf{U}_k = \tilde{G}(\mathbf{U}_k) = b(\mathbf{U}^n, \mathbf{U}^{n-1}) - G(\mathbf{U}_k)$$

and the following convergence criterion

$$\frac{||\left(\frac{\partial G}{\partial \mathbf{U}_k}\right) \delta \mathbf{U}_k + \tilde{G}(\mathbf{U}_k)||}{||\tilde{G}(\mathbf{U}_k)||} \le \varepsilon_k, \quad \varepsilon_k = \gamma \left(\frac{||\tilde{G}(\mathbf{U}_k)||}{||\tilde{G}(\mathbf{U}_{k-1})||}\right)^{\alpha}$$

- We iterate with $\mathbf{U}_{k+1} = \mathbf{U}_k + \delta \mathbf{U}_k$.
- We apply the convergence test (for example $||\tilde{G}(\mathbf{U}_k)|| < \varepsilon_a + \varepsilon_r ||\tilde{G}(\mathbf{U}^n)||$)
- If the newton procedure stop we define $\mathbf{U}^{n+1} = \mathbf{U}_{k+1}$.

Preconditioning idea I

- An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.
- Scalable parallel implicit solvers for 3D magnetohydrodynamics, L. Chacon, Journal of Phys. 2009.
- Aim: Construct an algorithm which give a good prediction of the solution and which is easy to solve.
 - The algorithm must give a solution of $A\delta \mathbf{U}^n = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1})$ with $A \approx \frac{\partial G(\mathbf{U}^n)}{\partial u^n}$.
 - A must be well-conditioned. Idea: parabolization of the coupled hyperbolic equations.
- Example

$$\left\{ \begin{array}{l} \partial_t u = \partial_x v \\ \partial_t v = \partial_x u \end{array} \right. \longrightarrow \left\{ \begin{array}{l} u^{n+1} = u^n + \Delta t \partial_x v^{n+1} \\ v^{n+1} = v^n + \Delta t \partial_x u^{n+1} \end{array} \right.$$

- We obtain $(1 \Delta t^2 \partial_{xx}) u^{n+1} = u^n + \Delta t \partial_x v^n$.
- The matrix associated to $(1 \Delta t^2 \partial_{xx})$ is diagonal dominant matrix.

Preconditioning idea II

- To apply easily this method for more complicated equations, we propose a other interpretation.
- We assume that the matrix associated to the previous linear system is

$$\left(\begin{array}{cc} D_1 & U \\ L & D_2 \end{array}\right)$$

Using a Schur decomposition we obtain

$$\begin{pmatrix} D_1 & U \\ L & D_2 \end{pmatrix} = \begin{pmatrix} I & UD_2^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} P_{schur} & 0 \\ 0 & D_2 \end{pmatrix} \begin{pmatrix} I & 0 \\ D_2^{-1}L & I \end{pmatrix}$$
$$\begin{pmatrix} I & -\Delta t \partial_x \\ -\Delta t \partial_x & I \end{pmatrix} = \begin{pmatrix} I & -\Delta t \partial_x \\ 0 & I \end{pmatrix} \begin{pmatrix} P_{schur} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ -\Delta t \partial_x & I \end{pmatrix}$$

- The first and third matrices are triangular and easily to invert.
- $P_{schur} = D_1 UD_2^{-1}L = (1 \Delta t^2 \partial_{xx})$ is diagonal dominant matrix.

Preconditioning with Schur decomposition for MHD

• We apply the Schur decomposition to the model 199. The system solved is

$$\frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n} \delta \mathbf{U}^n = \begin{pmatrix} D_{\psi} & 0 & D_{\psi,T} & D_{\psi,z_j} & 0 & U_{\psi,u} \\ 0 & D_{\rho} & 0 & 0 & 0 & U_{\rho,u} \\ 0 & 0 & D_{T} & 0 & 0 & U_{T,u} \\ D_{z_j,\psi} & 0 & 0 & D_{z_j} & 0 & 0 \\ 0 & 0 & 0 & D_{w} & D_{w,u} \\ L_{u,\psi} & L_{u,\rho} & L_{u,T} & L_{u,z} & L_{u,w} & D_{u} \end{pmatrix} \delta \mathbf{U}^n = \tilde{G}(\mathbf{U}^n)$$

with $\delta \mathbf{U}^n = (\delta \psi, \delta \rho, \delta T, \delta z_j, \delta w, \delta u)$ and $\tilde{G}(\mathbf{U}^n) = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1})$.

- The terms D contains advection and diffusion operators.
- ullet The terms L and U contains non linear coupling hyperbolic operators.
- We reduce the number on variable using the definition of w and z_j .

$$\frac{\partial G(\mathbf{U}^{n})}{\partial \mathbf{U}^{n}} \delta \mathbf{U}^{*} = \begin{pmatrix} D_{\psi}^{*} & 0 & D_{\psi,T}^{*} & U_{\psi,u} \\ 0 & D_{\rho} & 0 & U_{\rho,u} \\ 0 & 0 & D_{T} & U_{T,u} \\ L_{u,\psi}^{*} & L_{u,\rho}^{*} & L_{u,T}^{*} & D_{u}^{*} \end{pmatrix} \delta \mathbf{U}^{*}$$

with
$$\delta \mathbf{U} = (\delta \psi, \delta \rho, \delta T, \delta u)$$

Preconditioning: Algorithm

• The final system with Schur decomposition is given by

$$\delta \mathbf{U}^{n} = \frac{\partial G(\mathbf{U}^{n})}{\partial \mathbf{U}^{n}}^{-1} \tilde{G}(\mathbf{U}^{n}) = \begin{pmatrix} M & U \\ L & D_{u} \end{pmatrix}^{-1} \tilde{G}(\mathbf{U}^{n})$$
$$= \begin{pmatrix} I & M^{-1}U \\ 0 & I \end{pmatrix} \begin{pmatrix} M^{-1} & 0 \\ 0 & P_{schur}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -LM^{-1} & I \end{pmatrix} \tilde{G}(\mathbf{U}^{n})$$

with $P_{schur} = D_u^* - LM^{-1}U$.

• M, D_u^* are associated to the advection and diffusion operators. L, U are associated to the hyperbolic coupling operators.

Final PC-Algorithm

$$\left\{ \begin{array}{l} \text{Predictor}: \quad \textit{M}\delta \mathbf{v}_{p}^{n} = \left(-\textit{G}_{\mathbf{v}}^{n} + \textit{B}_{v}^{n}\right) \\ \text{potential update}: \quad \textit{P}_{schur}\delta u^{n} = \left(-\textit{L}\delta \mathbf{v}_{p}^{n} - \textit{G}_{u}^{n} + \textit{B}_{u}^{n}\right) \right) \\ \text{Corrector}: \quad \textit{M}\delta \mathbf{v}^{n} = \textit{M}\delta \mathbf{v}_{p}^{n} - \textit{U}\delta u^{n} \\ \text{diffusion, update}: \quad \textit{D}_{z_{j}}\delta z_{j}^{n} = \textit{D}_{z_{j},\psi}\delta \psi^{n} \quad \textit{D}_{w}\delta w^{n} = \textit{D}_{w,u}\delta u^{n} \end{array} \right.$$

with $\delta v_p = (\delta \Psi, \delta \rho, \delta T)$, G_v and B_v the right hand side associated to the equations on Ψ , ρ and T.

Preconditioning: Approximation of the Schur complement

- The Schur complement $P_{schur} = D_u^* LM^{-1}U$ necessity to known the matrix M^{-1} .
- ullet Consequently we must approximate P_{schur} . Two approximations:
- Small flow approximation (L. Chacon)
 - In P_{schur} we assume that $M^{-1} \approx \Delta t$
 - Mathematical problem: estimate the operator LU.
- Arbitrary flow approximation (L. Chacon).
 - We introduce a operator M_* (in *u*-space) with $UM_* \approx MU$.
 - Consequently $P_{Schur} = (D_u M_* L U) M_*^{-1}$ with L U given by the small flow approximation.
 - In this case the Potential udapte step in given by

```
 \left\{ \begin{array}{ll} \text{potential update I}: & (D_u M_* - L U) \delta u^{*,n} = \left( -L \delta \mathbf{v}_p^n - G_u^n + B_u^n \right) \right. \\ \text{potential update II}: & \delta u^n = M_* \delta u^{*,n} \end{array} \right.
```

- Mathematical problem: estimate the operator M_{*}.
- Other choices are possible to approximate the Schur complement.

Preconditioning V: Conclusion

- The PC preconditioning method use a prediction of the solution based on the approximation of the Schur complement.
- It is probable that this prediction of the solution is better than the previous method used in Jorek.
- However it possible that each step of the PC algorithm admit also a problem of conditioning. But since we have a parabolization of the equations and diagonal dominant matrices, add algebraic preconditioning as mutigrid methods can be performing.
- For the step where we solve diffusion and advection operator the previous preconditioning method can be used.

Physical context and models
Jorek Code: description
Current works on the time discretization
Other way for the future
Conclusion

Other way for the future

Extension for others reduced MHD and full MHD

- After the model 199, it will be important to extend the PC-algorithm for the models with parallel velocity and full MHD.
- For the models with parallel velocity the operators U and P_{Schur} are applied on u and $v_{||}$.
- For the full-MHD the operators U and P_{Schur} are applied on the complete velocity field.
- For the full-MHD we have

Helmholtz decomposition

$$\mathbf{v} = R \nabla \mathbf{u} \times \mathbf{e}_{\phi} + R \mathbf{w} \mathbf{e}_{\phi} + \frac{1}{R^2} \nabla_{\perp} \mathbf{\chi}$$

with u, w, χ scalar fluxes.

- u is associated mainly with the Alfven wave.
- w is associated mainly with the slow wave.
- \bullet χ is associated mainly with the fast wave.

Extension for others reduced MHD and full MHD

- In the model 199, the choice of the velocity field show the Alfven wave dominate.
- In the reduced MHD with parallel velocity and the full-MHD, the different types
 of waves are present.
- The ratio between the different waves can be very important. Consequently the conditioning is impacted by the ratio.
- If this problem impact the efficiency of the PC-algorithm we can use a method proposed by S. Jardin coupled with the previous algorithm.

Jardin method for Schur matrix

- This technic use projection operator to isolate the physics associated with the different wave types in different blocks in the matrix weakly coupled.
- Each submatrix are corrected conditioned.

AP schemes for anisotropic diffusion in Jorek

Anisotropic diffusion

$$\partial_t \rho - \nabla \cdot (D_{||} \nabla_{||} \rho + D_\perp \nabla_\perp \rho) = 0$$
 with $D_\perp / D_{||} << 1$

- It is known that the anisotropic diffusion operators are ill-conditioned.
- For instance the big problem of non convergence come from hyperbolic coupling. But it is possible the anisotropic diffusion can be give problem for some test case.
- In the PC-algorithm the anisotropic diffusion operators are contained in the matrix M
- The initial Preconditioning algorithm of Jorek is efficient to treat these terms but the CPU time associated with this algorithm is important.
- We propose:
 - Determinate if the conditioning of M (advection and diffusion terms) is mainly impacted by the anisotropic diffusion.
 - Use AP scheme for these terms to avoid to use a preconditioning and decrease the CPU time.

Anisotropic diffusion in jorek

Application in the jorek code. Diffusion operator :

$$-\nabla \cdot \left((D_{||} - D_{\perp}) \frac{\mathbf{B} \otimes \mathbf{B}}{||\mathbf{B}||^2} \nabla \rho + D_{\perp} \nabla \rho \right) = 0$$

with for example the constants $D_{||}=O(1),\,D_{\perp}^1=O(\varepsilon),\,D_{\perp}^2=O(1),\,D_{\perp}^3=O(1)$ and

$$D_{\perp} = D_{\perp}^1 \left(1 - D_{\perp}^2 + D_{\perp}^2 \left(0.5 - 0.5 \tanh(f(\Psi) - D_{\perp}^3)\right)\right)$$

• We define $\varepsilon=D^1_\perp$, $\nabla_{||}=\frac{\mathbf{B}}{||\mathbf{B}||}.(\frac{\mathbf{B}}{||\mathbf{B}||}.\nabla T)$ to obtain

$$-\nabla \cdot \left(\frac{1}{\varepsilon}A_{||}\nabla_{||}\rho + A_{\perp}\nabla_{\perp}\rho\right) = 0$$

with $A_{||} = \varepsilon D_{||}$ and $A_{\perp} = D_{\perp} = O(\varepsilon)$.

- In this formulation we can apply the AP scheme.
- Asymptotic-Preserving schemes. Modeling, simulation and mathematical analysis of magnetically confined plasmas, C. Negulescu.

Stabilization of reduced MHD Models

- Recently B. Després and R. Sart have proposed a more rigorous method to deduce the reduced MHD models (the moment method).
- \bullet The authors show that to obtain an energy estimate we must had a term on the poloidal magnetic flux ψ equation.
- ullet For the model 199 the equation ψ come from

$$\partial_t \frac{\Psi}{R} = [\Psi, u] - \epsilon \frac{F_0}{R} \partial_{\phi} u + \frac{\eta(T)}{R} (z_j - S_c(\Psi)) - \eta_n \nabla \cdot (\nabla z_j) + Q$$

with $\triangle Q = 0$.

- For the model 199 the stabilization term depends to the boundary conditions.
- For the models with parallel velocity the term Q satisfy $\triangle Q = b(F_0, v_{||}, \Psi)$.
- It will be interesting to add this term in jorek and study the stability of time schemes
- Derivation of hierarchies of reduced MHD models in Tokamak geometry, B. Després, Rémy Sart, 2013.

Physical context and models
Jorek Code: description
Current works on the time discretization
Other way for the future
Conclusion

Conclusion

Ongoing and future works

- Determinate the approximations of P_{Schur}
- ullet Finish the code of PC-algorithm for the different approximations of P_{Schur} .
- Analyze the conditioning of the matrix M.
- If the conditioning is impacted by the anisotropic diffusion operators, try to reduced the computational cost using AP schemes.
- Analyze the conditioning of the matrix P_{schur}.
- If this matrix is ill-conditioned, use classical method as ILU method or multigrid method in the "update velocity" step.
- Add the stabilization terms in the reduced MHD models with parallel velocity.
- Adapt the PC-algorithm for the reduced MHD models with parallel velocity.

