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Iter

Fusion DT: Reaction between
Deuterium and tritium which product
Helium and energy. The deuterium
and tritium form a plasma (ionized
gas).

Iter: International project to prove
the efficiency of controlled fusion as a
power source. Iter is an experimental
power plant using fusion.

Magnetic confinement: The plasma
obtained by the reaction is confined
in the center of the reactor (tokamak)
using a powerful magnetic field.

Tokamak: Toroidal room used for the
plasma confinement.
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Iter

Fusion DT: Reaction between
Deuterium and tritium which product
Helium and energy. The deuterium
and tritium form a plasma (ionized
gas).

Iter: International project to prove
the efficiency of controlled fusion as a
power source. Iter is an experimental
power plant using fusion.

Magnetic confinement: The plasma
obtained by the reaction is confined
in the center of the reactor (tokamak)
using a powerful magnetic field.

Tokamak: Toroidal room used for the
plasma confinement.

Figure: Tokamak
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Models for Iter

The dynamic of the plasmas in Iter is
a very difficult multiscale problem.

We have different models for the

different time and space scales :

Kinetic Vlasov-Maxwell
equation not used in pratice
(CPU cost very important).

Gyrokinetic approximation of
the Vlasov-Maxwell equation
used for the turbulence in the
core Tokamak.

MagnetoHydrodynamics fluids
models (resistive MHD, two
fluids MHD) used to simulate
the edge instabilities.

Figure: Spatial and time scales
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ELMs and instabilities

An edge-localized mode (”ELM’s”) is a disruptive instability occurring in the
edge region of a tokamak plasma.

The development of edge-localized modes poses an important challenge in
magnetic fusion research with tokamaks. Instabilities can damage wall
components due to their extremely high energy transfer rate.

Aim: simulate the ELM’s to estimate the amplitude of these instabilities and
understand how control these.

MHD stability in X-point Geometry: simulation of ELMs, G. Huysmans, O.
Czarny, Nuclear fusion, 2007.

Reduced magnetohydrodynamic simulation of toroidally and poloidally localized
edge localized modes, M. Hölzl and co-workers, Phys. of Plasmas, 2012.
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MHD model

The full - resistive MHD model is given by

∂tρ+∇.(ρv) = ∇.(D||∇||ρ+ D⊥∇⊥ρ) + Sp

ρ∂t v + ρv.∇v +∇(ρT ) = J× B + ν4v

ρ∂t T + ρv.∇T + (γ − 1)ρT∇v = ∇.(K||∇||T + K⊥∇⊥T ) + Sh

∂t B = ∇× (v × B)−∇× ηJ + Sc

∇.B = 0

(1)

with ρ the density, v the velocity, T the temperature, B the magnetic field and
J = ∇× B the current.

The terms D||, D⊥, K||, K⊥ are anisotropic diffusion tensors.

We add source terms. Sc correspond to the current source, Sh correspond to
the heat source, Sp correspond to the particle source.

Emmanuel Franck Max Planck Institute For Plasma Physics (Munich) Workshop Asymptotic and Multiscale methods PorquerollesNumerical issues for nonlinear MHD Jorek code



Physical context and models
Jorek Code: description

Current works on the time discretization
Future way for accuracy of the time scheme

Current works on the models
Conclusion

Reduced MHD: assumption and derivation

We consider the cylindric coordinate (R,Z , φ) ∈ Ω× [0, 2π].

(R,Z) correspond to the poloidal plan and φ the toroidal direction.

Reduced MHD: assumptions

B =
F0

R
eφ +

1

R
∇Ψ× eφ v = −R∇u × eφ + v||B

with u the electrical potential and ψ the poloidal magnetic flux.

For the reduced MHD the quantities are ρ, T , Ψ, u,v|| the parallel velocity, w
the vorticity and zj the toroidal current.

Derivation: Plug B and v in the density, magnetic and energy equations. For
the equations on u and v|| we use

eφ.∇× (ρ∂t v + ρv.∇v +∇(ρT ) = J× B + ν4v)

and
B. (ρ∂t v + ρv.∇v +∇(ρT ) = J× B + ν4v) .
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Basic Reduced MHD: model 199

With v|| = 0 we obtain the model 199 considered in this talk.

We solve ∂t A(U) = B(U, t) with

B(U) =



[Ψ, u]− ε
F0

R
∂φu +

η(T )

R
(zj − Sc (Ψ))− ηn∇.(∇zj )

1

2
[R2||∇u||2, ρ̂] + [R2ρ̂w , u] + [Ψ, zj ]− ε

F0

R
∂φzj − [R2, p]

+∇.(Rν(T )∇w)− νn∇.(∇w)

1

R2
zj −∇.(

1

R2
∇Φ)

w −∇.(∇u)

R2[ρ, u] + 2Rρ∂Z u +∇.(D||∇||ρ+ D⊥∇⊥ρ) + Sp(Ψ)

R2[T , u] + 2(γ − 1)RT∂Z u +∇.(K||∇||T + K⊥∇⊥T ) + Sh(Ψ)


with ρ̂ = R2ρ and ∂t A(U) =

(
1
R
∂t Ψ, R∇.(ρ̂∇(∂t u)), 0, 0, R∂tρ, R∂t T )

)
.

Physical and numerical resistivity: η and ηn, viscosity coefficients: ν and νn.
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Description of the jorek code I

Jorek: code Fortran 90, parallel (MPI+OpenMP)
+ algebraic libraries (Pastix, MUMPS ...)

Initialization

Determinate the equilibrium

Define the boundary of the computational
domain
Create a first grid which is used to compute
the aligned grid
Compute ψ(R,Z) in the new grid.

Compute equilibrium

Solve the Grad-Shafranov equation

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂Z 2
= −R2 ∂p

∂Ψ
− F

∂F

∂Ψ Figure: unaligned grid
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Description of the jorek code II

Computation of aligned grid

Identification of the magnetic flux surfaces
Create the aligned grid (with x-point)
Interpolate ψ(R,Z) in the new grid.

Recompute equilibrium of the new grid.

Time-stepping (restart)

Construction of the matrix and some
profiles (diffusion tensors, sources terms)
Solve linear system
Update solutions
Plot kinetic magnetic energies and restart
files.

Figure: Aligned grid
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Spatial discretization

The equation in the poloidal plane are discretized using finite element method.

For the toroidal direction: Fourier expansion.

Basis functions: Cubic Bezier elements

Generalization of cubic Hermite elements.
The generalization allows the local refinement of each element essential
for adaptive mesh refinement.
4 degrees of freedom by node to describe a function (9 for Lagrange cubic
finite element).
With the isoparametric formulation (discretization of (R,Z) using the
Bezier elements) the finite elements can be accurately aligned with the
equilibrium flux surfaces.
The Cubic Bezier elements assure a C 1 polynomial reconstruction.

Bezier surfaces and finite elements for MHD simulations, O. Czarny, G.
Huysmans, JCP 2088.
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Time scheme in Jorek code

We recall the model ∂t A(U) = B(U, t)

For time stepping we use a Crank Nicholson or BDF2 scheme :

(1 + ζ)A(Un+1)− ζA(Un) + ζA(Un−1) = θ∆tB(Un+1) + (1− θ)∆tB(Un)

Defining G(U) = (1 + ζ)A(U)− θ∆tB(U) and

b(Un,Un−1) = (1 + 2ζ)A(Un)− ζA(Un−1) + (1− θ)∆tB(Un)

we obtain the non linear problem

G(Un+1) = −G(Un) + b(Un,Un−1)

First order linearization(
∂G(Un)

∂Un

)
δUn = −G(Un) + b(Un,Un−1)

with δUn = Un+1 − Un and ∂G(Un)
∂Un the Jacobian of G(Un).
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Time scheme in Jorek code

Linear solver in Jorek:

Case 1: Direct solver using Pastix (using when ntor = 1)
Case 2: Iterative solver

Iterative Solver step 1: Preconditioning

Extraction of submatrices associated to each toroidal harmonics.
Factorization of each submatrix
We solve exactly (with Pastix) each subsystems.
We construct the initial vector of GMRES using the solutions of these
systems.

Iterative solver step 2: GMRES solver for the global matrix.

The matrix product vector is preconditioned with the solutions of each
subsystems.

Principle: Construction of initial GMRES data + right preconditioning with an
approximation of the Jacobian where the coupling between the Fourier
harmonics are neglected.

In practice for some test cases this coupling is strongly nonlinear.
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Jorek code: Non convergence

Problem:

For some test cases the GMRES method does not converge in the nonlinear

phase:

model 199: non convergence for large time step. With very small time
steps we obtain the convergence.
other models: in some case the GMRES method does not converge for
any time step.

Why ?

The preconditioning is not adapted to obtain a robust GMRES method ?
The spatial poloidal and toroidal discretizations is not adapted ?
The mesh is not adapted ?
The models are not stables or well-posed ?
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Numerical example

evolution of energy in time

Density
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Current works on the time discretization
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Inexact Newton scheme

At the time step n, we compute b(Un,Un−1), G(Un)

We choose U0 = Un and ε0.

Step k of the Newton procedure

We compute G(Uk ) and
(
∂G
∂Uk

)
We solve the linear system with GMRES(

∂G(Uk )

∂Uk

)
δUk = G̃(Uk ) = b(Un,Un−1)− G(Uk )

and the following convergence criterion

||
(
∂G
∂Uk

)
δUk + G̃(Uk )||

||G̃(Uk )||
≤ εk , εk = γ

(
||G̃(Uk )||
||G̃(Uk−1)||

)α
We iterate with Uk+1 = Uk + δUk .
We apply the convergence test (for example ||G̃(Uk )|| < εa + εr ||G̃(Un)||)

If the newton procedure stop we define Un+1 = Uk+1.
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Preconditioning idea I

Aim: Construct an algorithm which give a good prediction of the solution and

which is easy to solve.
The algorithm must give a solution of AδUn = −G(Un) + b(Un,Un−1)

with A ≈ ∂G(Un)
∂Un .

A must be well-conditioned. Idea: parabolization of the coupled
hyperbolic equations.

Example {
∂t u = ∂x v
∂t v = ∂x u

−→
{

un+1 = un + ∆t∂x vn+1

vn+1 = vn + ∆t∂x un+1

We obtain (1−∆t2∂xx )un+1 = un + ∆t∂x vn.
The matrix associated to (1−∆t2∂xx ) is diagonal dominant matrix.

An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive
Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.

Scalable parallel implicit solvers for 3D magnetohydrodynamics, L. Chacon,
Journal of Phys. 2009.
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Preconditioning idea II

To apply easily this method for more complicated equations, we propose a other
interpretation.

We assume that the matrix associated to the previous linear system is(
D1 U
L D2

)
Using a Schur decomposition we obtain(

D1 U
L D2

)
=

(
I UD−1

2
0 I

)(
Pschur 0
0 D2

)(
I 0

D−1
2 L I

)
(

I −∆t∂x

−∆t∂x I

)
=

(
I −∆t∂x

0 I

)(
Pschur 0
0 I

)(
I 0
−∆t∂x I

)
All the matrices are triangular or diagonal and easily to invert.

Pschur = D1 − UD−1
2 L = (1−∆t2∂xx ) is diagonal dominant matrix.
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Preconditioning with Schur decomposition for MHD

We apply the Schur decomposition to the model 199. The system solved is

∂G(Un)

∂Un
δUn =



Dψ 0 Dψ,T Dψ,zj
0 Uψ,u

0 Dρ 0 0 0 Uρ,u
0 0 DT 0 0 UT ,u

Dzj ,ψ 0 0 Dzj 0 0

0 0 0 0 Dw Dw,u

Lu,ψ Lu,ρ Lu,T Lu,z Lu,w Du

 δUn = G̃(Un)

with δUn = (δψ, δρ, δT , δzj , δw , δu) and G̃(Un) = −G(Un) + b(Un,Un−1).
The terms D contains advection and diffusion operators.
The terms L and U contains non linear coupling hyperbolic operators.
We reduce the number on variable using the definition of w and zj .

∂G(Un)

∂Un
δU∗ =


D∗ψ 0 D∗ψ,T Uψ,u
0 Dρ 0 Uρ,u
0 0 DT UT ,u

L∗u,ψ L∗u,ρ L∗u,T D∗u

 δU∗

with δU = (δψ, δρ, δT , δu)
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Preconditioning : Algorithm

The final system with Schur decomposition is given by

δUn =
∂G(Un)

∂Un

−1

G̃(Un) =

(
M U
L Du

)−1

G̃(Un)

=

(
I M−1U
0 I

)(
M−1 0

0 P−1
schur

)(
I 0
−LM−1 I

)
G̃(Un)

with Pschur = D∗u − LM−1U.
M, D∗u are associated to the advection and diffusion operators. L, U are
associated to the hyperbolic coupling operators.

Final PC-Algorithm
Predictor : Mδvn

p = (−G n
v + Bn

v )
potential update : Pschur δun =

(
−Lδvn

p − G n
u + Bn

u )
)

Corrector : Mδvn = Mδvn
p − Uδun

diffusion, update : Dzj δzn
j = Dzj ,ψδψ

n Dw δwn = Dw,uδun

with δvp = (δΨ, δρ, δT ), Gv and Bv the right hand side for the equations on Ψ, ρ and
T .
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Preconditioning : Approximation of the Schur complement

The Schur complement Pschur = D∗u − LM−1U necessity to known the matrix
M−1.

We must approximate Pschur . Exemple of approximations:

First example of approximation :

In Pschur we assume that M−1 ≈ ∆t
Mathematical problem: estimate the operator LU.

Second example of approximation:

We introduce a operator M∗ (in u-space) with UM∗ ≈ MU.

PSchur = (DuM∗ − LU)M−1
∗ with LU given by the small flow

approximation.
In this case the Potential udapte step in given by{

potential update I : (DuM∗ − LU)δu∗,n =
(
−Lδvn

p − G n
u + Bn

u )
)

potential update II : δun = M∗δu∗,n

Mathematical problem: estimate the operator M∗.
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Preconditioning V: Conclusion

The PC preconditioning method use a prediction of the solution based on the
approximation of the Schur complement.

It is possible that this prediction of the solution is better than the previous
method used in Jorek.

However it possible that each step of the PC algorithm admit also a problem of
conditioning. But since we have a parabolization of the equations and diagonal
dominant matrices, add algebraic preconditioning as mutigrid methods can be
performing.

For the step where we solve diffusion and advection operators the previous
preconditioning method can be used.
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Future way for the time scheme
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AP schemes for anisotropic diffusion in Jorek

Anisotropic diffusion

∂tρ−∇.(D||∇||ρ+ D⊥∇⊥ρ) = 0 with D⊥/D|| << 1

It is known that the anisotropic diffusion operators are ill-conditioned.

Big problem of conditioning come from to the hyperbolic coupling terms. But
the anisotropic diffusion operators contained in the matrix M can be generate
problems for some test cases.

The initial Preconditioning algorithm of Jorek is efficient to treat these terms
but the CPU time associated is important.

We propose:

Determinate if the conditioning of M (advection and diffusion terms) is
mainly impacted by the anisotropic diffusion.
Use AP scheme for these terms to avoid to use a preconditioning and
decrease the CPU time.
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Anisotropic diffusion in jorek

Application in the jorek code. Exemple of diffusion operator :

−∇.
(

(D|| − D⊥)
B⊗ B

||B||2
∇ρ+ D⊥∇ρ

)
= 0

with for example the constants D|| = O(1), D1
⊥ = O(ε), D2

⊥ = O(1),

D3
⊥ = O(1) and

D⊥ = D1
⊥
(
1− D2

⊥ + D2
⊥
(
0.5− 0.5 tanh(f (Ψ)− D3

⊥
))

We define ε = D1
⊥, ∇|| = B

||B|| .(
B
||B|| .∇ρ) to obtain

−∇.
(

1

ε
A||∇||ρ+ A⊥∇⊥ρ

)
= 0

with A|| = εD|| and A⊥ = D⊥ = O(ε).

In this formulation we can apply the AP scheme.

Asymptotic-Preserving schemes. Modeling, simulation and mathematical
analysis of magnetically confined plasmas, C. Negulescu.
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Extension for others reduced MHD and full MHD

It will be important to extend the PC-algorithm for the models with parallel
velocity and full MHD.

For the models with parallel velocity the operators U and PSchur are applied on
u and v||.

For the full-MHD the operators U and PSchur are applied on the complete
velocity field.

For the full-MHD we have

Helmholtz decomposition

v = R∇u × eφ + Rweφ +
1

R2
∇⊥χ

with u, w , χ scalar fluxes.

u is associated mainly with the Alfven wave.
w is associated mainly with the slow wave.
χ is associated mainly with the fast wave.
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Extension for others reduced MHD and full MHD

In the model 199, the choice of the velocity field show the Alfven wave
dominate.

In the reduced MHD with parallel velocity and the full-MHD, the different types
of waves are present.

The ratio between the different waves is very important. Consequently the
conditioning is impacted by the ratio.

If this problem impact the efficiency of the PC-algorithm we can use a method
proposed by S. Jardin coupled with the previous algorithm.

Jardin method for Schur matrix

Use projection operator to isolate the physics associated with the different wave
types in different blocks weakly coupled.

Each submatrix are corrected conditioned.
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Current works on the models
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Stabilization of reduced MHD Models

Recently B. Després and R. Sart have proposed a more rigorous method to
deduce the reduced MHD models (moment method).

To obtain an energy balanced estimate we must had a term on the poloidal
magnetic flux equation.

For all the models the equation ψ come from

∂t
Ψ

R
= [Ψ, u]− ε

F0

R
∂φu +

η(T )

R
(zj − Sc (Ψ))− ηn∇.(∇zj ) + Q

For the model 199 the term Q satisfy 4∗Q = 0.

For the models with parallel velocity the term Q satisfy 4∗Q = b(F0, v||,Ψ).

Work: add this term in Jorek and study the stability of time schemes

Derivation of hierarchies of reduced MHD models in Tokamak geometry, B.
Després, Rémy Sart, 2013.
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Ongoing and future works

Time discretization

Finish the PC-algorithm (model 199) and analyze the different
approximations of PSchur .

Analyze the conditioning of the matrix Pschur .

If this matrix is ill-conditioned, use classical method as ILU method or
multigrid method in the ”update velocity” step.

Analyze the conditioning of the matrix M.

If the conditioning is impacted by the anisotropic diffusion, try to reduced
the computational cost using AP schemes.

Adapt the PC-algorithm for the reduced MHD models with parallel
velocity.
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Ongoing and future works

Stability of the models

Add the stabilization terms in the reduced models with parallel velocity.

Analyze the impact of these terms on the numerical methods.

Spatial discreization and mesh generation

Spatial discretization using general Splines with different types of
refinement (A. Rathani).

Mesh generation using generic Splines and isoGeometric analysis (A.
Rathani).

Stabilization of Galerkin method (B. Nkonga).

Use Splines to discretize the toroidal direction (B. Nkonga).
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