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Mathematical context

Euler equations with friction and gravity

@ Euler equations with gravity and friction:

Op + %div(pu) =0,
depu+ L div(pu @ u) + 2Vp = L(pg — Zpu),
depe + £ div(pue) + div(pu) = 1(p(g,u) — Zp(u,u)).

Properties :

@ Entropy inequality: 9:pS + édiv(puS) >0.
@ Steady states :
{ u=0,
Vp = pg.
Otp + div(pu) = 0,

Otpe + div(pue) + pdivu = 0,
u= é (g = %Vp) 5

@ Diffusion limit:
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Mathematical context

Ap scheme
@ P; model:
Op+ Lou=0, 1
— Otp—Ox [ =0 =0.
{ 8tu+gaxp:_;%u7 tP “\ o 'x P
A h
p scheme @ Consistency Godunov-type schemes:
< 3 ion: 1
P P @ CFL condition: At(m + s%) <1.
@ Consistency AP schemes:
O (Ax + At).
kel h—0 @ CFL condition: At(ﬁ) <1
AXE+TX
@ AP vs non AP schemes: Important
P B? reduction of CPU cost.

e—0

@ Classical extension (1D fluxes in the normal direction) of AP schemes in 2D are not
convergent on general meshes Ve (limit diffusion scheme non convergent).
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Mathematical context

Well Balanced schemes

@ Discretization of physical steady states is important (Lack at rest for Shallow water
equations, hydrostatic equilibrium for astrophysical flows ..)

@ Classical scheme: the physical steady states or a good discretization of the steady
states are not the equilibrium of the schemes.

@ Consequence: Spurious numerical velocities larger than physical velocities for nearly or
exact uniform flows.

WB scheme: definitions

@ Exact Well-Balanced scheme: scheme exact for continuous steady states.

@ Well-Balanced scheme: scheme exact for discrete steady states at the
interfaces.

@ For shallow water model: in general the schemes are exact WB schemes.
@ For Euler model: in general the schemes are WB schemes.
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Linear case

Nodal scheme : principle for linear case

@ Linear case : P;:

Orp + édiv(u) =0, 1
— Orp — div (pr) =0.
8tu+éVp:7%u. 4

Notations
Idea: nodal Finite Volume method for the P e
model + AP method. J ‘

o calp

Nodal scheme: fluxes at the node and not at

the middle of the edge (Bruno talk).

Introduced for Lagrangian scheme. - \)
\./l

@ Geometrical quantities defined by Cj, = V||
("] Zj er = Zr er =0.
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Linear case

2D AP schemes

Nodal AP schemes:

{ | Q| 8epj(t) + 2 3, (ur, Cjr) =0,
| Q| Owui(t) + = 55, PCj, = S,

@ Classical nodal fluxes:
{ pC;, — piCjr = @jr(uj — ur),

Z] pcjr = 07
. ~ C;,®Cj,
with @, = J\Cj,\J .
@ Modified fluxes obtained plugging the balance equation Vp = —Zu:

pC;, — piCjr = &jr(u; — u,) — 2 Bjuy,
(Zj ajr + < Zj e3jr) ur = Zj piCir + Zj QrPj-

o la

with %, =Cj ® (xr — xj).
@ Sourceterm: S; = — % 5 fBiu,, >, B = 7d|Qj\.
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Linear case

Uniform convergence in space: idea of proof

@ Naive convergence estimate : ||Pf — P|| e < Ce™2he.
@ ldea: intermediary estimates and triangle inequalities (Jin-Levermore-Golse).

11Ph = PElli2 < min([1Pg = P llnaive [P — PRIl +[1P5 = Pl + 1P = POll)

P; =0 P;? @ Intermediary estimates :
o ||PS— Pl < G,
o [|PY— PO < Cyhd,
h—0 h=0 o ||P; — PY|| < Cee®,
@ d>c,e=a.
Pe PO
e—0

Final result:

We assume that some assumptions about regularity and meshes are
satisfied. There exist a constant C(T) > 0 such that:

IVE = Vil 20, T1x ) < € min <\/?,5max (1, \/é) +h+(h+e¢) +5> < Chi.
J €
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Euler equations with friction and gravity

Design of new finite volume nodal scheme |

Idea: Modify the classic one step Lagrangian+remap scheme with the Jin-Levermore
AP method J

@ The classic Lagrange+remap scheme (LR scheme) is

| 9 | Depj + 2 (Zm ujirpj + 2R uf‘rﬂk(r)) =0
|9 | Qepjuy + 2 (S, wielow)j + Xp_ wi(pu)egr) + 3, P, ) =0
|9 | depse + L (S, wirlpe)s + Sr_ wilpeds) + 3, (PCjrrur)) =0

with the Lagrangian fluxes

Gjr = pjcjr + pjcjajr(uj —uy)
D pigaiur =Y piCir+ Y pjcau;
J
@ Advection fluxes: uj, = (Cjr,u,), Ry = (r/uj >0), R_ = (r/uj, <0) and
ZJ/IJ >0 YjrPj
Zj/ .0 Uir
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Euler equations with friction and gravity

Design of new finite volume nodal scheme II

Jin Levermore method: plug the balance equation Vp + O(e?) = pg — Zpu in the
Lagrangian fluxes

@ The modified scheme is

|9 1 0eps + L (T, wiepj + L wirpk(r)) =0

|9 | Oepju + L (S, wirlpu)j + X wirlpwliy + 3, pC;,)
=L (Z, pBre— X peBy 2ur)

| Q| Opjej + L (Em ujr(pe); + X g uwir(pe)x(r) + 22, (PCjr, “f))
= L (S, or(Bru) = 25, pr(ur Byun))

with the new Lagrangian fluxes

~ = 0
PCjr = piCir + £ (u; —ur) + prBjrg — pr B —ur

Z pjcjajr + gpr Z ajr ur = Z pjcjr + Z chjajruj + Pr(z Bjr)g
j - J j Jj j
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Euler equations with friction and gravity

AP properties

Limit diffusion scheme: If the local matrices are invertibles then the scheme LR-AP
tends formally to the following diffusion scheme

| Q) | Oepj + (Zm ujrpj + 2R "jrpk(r)) =4
| Q; | Orpjej + (Z& uir(pe)j + > r_ ujr(pe)(r) + Pj Z,(er,ur)) =0
opr (ZJ ﬁjr) u, = Zj pjcjr + pr (ZJ Bjr) g

@ Remarks about limit diffusion scheme.
@ We obtain a nonlinear positive diffusion scheme.
@ For p = Kp, we observe that the scheme converge with the first order.

@ Open question: Verify these properties for the full Euler scheme.

@ Remarks about time scheme.
@ Another formulation gives a local source term for the momentum equation.

@ Using an implicit discretization of the local term source we verify numerically that
the CFL is independent of ¢.
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Euler equations with tion and gravity

WB properties

Result:
@ We define V.p = —(3; Bj,)*l >_; pj and pr a mean of p; around the node x;.

@ If the initial data are given by the discrete steady state V,p = p,g there are
preserved exactly by the time scheme.

Conclusion:

@ The numerical error is governed only by the error between discrete and
continuous steady states.

@ Question: what is the error between the discrete steady states and the real steady states
?

@ for p constant: the discrete steady state is exact.
@ for p variable: the discrete steady state is not exact, but the error is homogeneous
to O(h?).
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Euler equations with on and gravity

Numerical results : short time limit

@ Test case: Sod problem with o > 0, e =1 and g = 0 (short time limit).
@ o=1
AP scheme, p non-AP scheme, p

ZROR0e Sme
[
ER0R 0o Jme

AP scheme, ¢

o LN
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Euler equations with on and gravity

Numerical results : short time limit

@ Test case: Sod problem with o > 0, e =1 and g = 0 (short time limit).
@ o =10°
AP scheme, p non-AP scheme, p

ZROR0e Sme
[
ER0R 0o Jme

AP scheme, ¢ non-AP scheme, ¢




Euler equations with tion and gravity

Numerical results : long time limit

@ Test case: Sod problem with ¢ > 0, and g = 0 (non longer time limit).
@ Non AP scheme, € = 0.005, mesh 480 x 480
P Energy

IReRealze

p
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Euler equations with friction and gravity

Numerical results : long time limit

@ Test case: Sod problem with o > 0, and g = 0 (non longer time limit).
@ Non AP scheme, € = 0.005, mesh 480 x 480

2RERaeIR8

@ AP scheme, € = 0.005, mesh 60 x 60
p
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Euler equations with friction and gravity

Numerical results: WB properties

@ Validation of the Well-Balanced properties.
@ The gravity vector is g = (0, —1).

@ First test case is defined by p; =1, u; =0 and ¢ = ﬁ(xj,g) + C with C a constant.

| Schemes | LP-AP | LP ‘
| Meshes/cells | 40 80 160 | 40 80 160 |
Cartesian 5.9 x 1x10716 71 x | 0.00470 0.00239 0.00121
10717 10717
Random 1.1 x 15 X 3x10716 | 0.01519 0.00947 0.00526
10-16 10-16
Kershaw 1.4 X 2.2 x 3.2 x | 0.08503 0.050 0.02908
10716 10-16 10-16

@ Classical scheme: convergence with O(h).

@ AP scheme: preserve exactly the steady states.
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Euler equations with friction and gravity

Numerical results: WB properties

@ Validation of the Well-Balanced properties.

@ The gravity vector is g = (0, —1).

@ The initial data for the second test case are defined by p;(t,x) =y + b, uj =0 and
pi(t:x) = (5 + by)g.

| Schemes | LP-AP | LP ‘
| Meshes/cells | 80 160 320 | 80 160 320 |
Cartesian 2.3 X 9.4 X 3.4 x | 0.003407 0.00167 0.00008
10—15 10—15 10—14
Random 3.4x107%> 1x107° 2.8%x107°% | 0.00967 0.00529 0.00282
Kershaw 1.1x107% 1.8x10~7 2.6x10-8 | 0.03687 0.008363 0.00215

@ Classical scheme: convergence with O(h).

@ AP scheme: convergence with O(h?).
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Ongoing works and conclusion

Local Very high order scheme around equilibrium

@ Aim: converse the classical properties of stability associated with the first order
scheme and obtain a very high order discretization of the equilibrium.

@ Method : construct a very high order discrete steady state.

@ 1D Discrete steady state: pj 1 — pj = —ij+%(pg)j+% with (pg)j+% = %(ij +pj)g-

@ To begin we consider the following simple steady state

Oxp = —pg

@ Integrating on the diamond cell [x;, xj;1] we obtain

A ! /XMa (x) A - /Xj+1 (x)
X 1 xP(X) | = —8AX; 1 pLX
J+ Jt+

2 A)<j+% X 2 AXj+% X;
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Ongoing works and conclusion

Local Very high order scheme around equilibrium

@ Aim: converse the classical properties of stability associated with the first order
scheme and obtain a very high order discretization of the equilibrium.

@ Method : construct a very high order discrete steady state.

@ 1D Discrete steady state: pj 1 — pj = —AXj+%(pg)j+% with (pg)H% = %(pj+1 + pj)8-

@ We introduce two polynomials ﬁj+%(x) =>7_, nexk and ﬁH% (x) = ZZS prxk with
T X4l
/ 2 pj+ (X) = Axpy, / 2 pj+%(x) = Axip;
X X

and / € 5(j) (5(J) is a subset of cell around j). Using these polynomials we obtain the
new discrete steady states

1

/Xj+187 (x) 1 /Xj+17 (x)
AX. 1 xP; 1 X ——gAX 1 P 1(X
J+ A J+ J+ A J+
: X+t I : : Xi+t I :
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Ongoing works and conclusion

Local Very high order scheme around equilibrium

@ Aim: converse the classical properties of stability associated with the first order
scheme and obtain a very high order discretization of the equilibrium.

@ Method : construct a very high order discrete steady state.

@ 1D Discrete steady state: pj.1 —p; = —ij+%(pg)j+% with (pg)j+% = %(pj+1 +pj)8.

@ To obtain a scheme which preserves the discrete steady state, it is necessary to have the
numerical pressure viscosity is the discrete steady state.

@ We obtain following the g-order steady state:
. _p = — HO
Pj+1 — Pj = A)<j+%(pg)j+%

with

1 X1 1 o Pi+1 = P
Ho _ 05 100 ) + / (X)) | P TR
(pg)/+% Ax . </XJ XPJ+%( )) g A)(J+% . pj+%( ) AXJJr%
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Ongoing works and conclusion

Results for local Very high order WB scheme

@ Test case: p(x) = p(x) = e &, u(x) =0.
@ AP scheme with three order equilibrium

l Meshes | Cartesian | Random ‘
| cells [ error order[ error order‘
40 3x10°° 4.1 x10°°
80 5x 107 26 | 5x10°7 3
160 6.3 x 1078 3 6 x 108 3.1

@ AP scheme with fourth order equilibrium

l Meshes | Cartesian | Random ‘
| cells [ error order[ error orderl
40 1x 1077 8.74 x 1078
80 5.5 x 107° 417 | 46 x 1079 4.25
160 2.85x10710 425 | 2.6 x 10710 415
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Ongoing works and conclusion

Conclusion and future works

Conclusion:
@ P; model: AP nodal scheme on distorted meshes with CFL independent of ¢.

@ P; model: Uniform convergence for the semi discrete scheme on unstructured
meshes.

@ Euler equations with friction : AP scheme with a CFL independent to .

@ Euler equations with friction : Well-Balanced scheme which converges with the
second order.

@ All models : Spurious mods in few cases (Cartesian mesh + initial Dirac data).

Future works:

@ Validation of the LR-AP scheme with analytical test cases.
@ Analysis of the Euler AP discretization: entropy stability.

@ Local high order Well-Balanced scheme for hydrostatic equilibrium in 2D

@ Generic stabilization procedure for the nodal schemes.
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