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Magnetic Confinement Fusion

Fusion DT: At sufficiently high
energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6
MeV of free energy are released. At
those energies, the atoms are ionized
forming a plasma.

Magnetic confinement: The charged
plasma particles can be confined in a
toroidal magnetic field configuration,
for instance a Tokamak.
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Magnetic Confinement Fusion

Fusion DT: At sufficiently high
energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6
MeV of free energy are released. At
those energies, the atoms are ionized
forming a plasma.

Magnetic confinement: The charged
plasma particles can be confined in a
toroidal magnetic field configuration,
for instance a Tokamak. Figure: Tokamak
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Plasma instabilities

Edge localized modes (ELMs) are periodic instabilities occurring at the edge of
tokamak plasmas.

They are associated with strong heat and particle losses which could damage
wall components in ITER by large heat loads.

Aim: Detailed non-linear modeling and simulation (MHD models) can help to
understand and control ELMs better (pellet or massive gas injection).

Initial Density Final Density
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Forewords: JOREK – Overview

Closed & open field lines domain, X-point geom.

• Cubic Finite Elements, flux aligned poloidal grid
• Isoparametric: elements approaching geometry are

used to approach unknowns
• Fourier series in toroidal direction
• Non-linear reduced MHD in toroidal geometry

Time stepping, solver & parallelism

• fully implicit e. g. Crank-Nicholson
• sparse matrices (PastiX): ∼ 107 degrees of freedom
• MPI/OpenMP over typically 256− 1500 processors

ELM simulations consumptions

• At IRFM, we use 7 Millions CPUH/year
• Typical simulations: ∼ 20′000− 200′000 CPUH
• A JET simulation (ntor = 0...10):
∼ 100′000− 200′000 CPUH

E. Franck and al. Fluid models and numerical methods for JOREK code
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Description of the JOREK code I

Initialization

Determine the equilibrium

Define the boundary of the computational
domain.
Create a first grid which is used to compute
the aligned grid.
Compute ψ(R,Z) in the new grid.

Compute equilibrium.

Solve the Grad-Shafranov equation:

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −R2 ∂p

∂ψ
− F

∂F

∂ψ

Figure: unaligned grid
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Description of the JOREK code II

Computation of aligned grid

Identification of the magnetic flux surfaces.
Create the aligned grid (with X-point).
Interpolate ψ(R,Z) in the new grid.

Recompute equilibrium of the new grid.

Perturbation of the equilibrium (small
perturbations of non principal harmonics).

Time-stepping (full implicit):

Construction of the matrix and some
profiles (diffusion tensors, sources terms).
Solve linear system.
Update solutions.

Figure: Aligned grid
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Vlasov equation

First model to describe a plasma : Two species Vlasov-Maxwell kinetic
equation.

We define fs(t, x, v) the distribution function associated with the species s.
x ∈ Dx and v ∈ R3.


∂t fs + v · ∇xfs +

qs

ms
(E + v × B) · ∇vfs = Cs =

∑
t

Cst ,

1
c2 ∂tE−∇× B = −µ0J,
∂tB = −∇× E,
∇ · B = 0, ∇ · E = σ

ε0
.

Derivation of two fluid model :

We apply this operator
∫
R3 g(v)(·) on the equation.

g(v)s = 1,msv,ms |v|2.

Using ∫
Dv

msvCssdv = 0,
∫
Dv

ms |v|2Cssdv = 0,∫
Dv

g(v)sCstdv +
∫
Dv

g(v)tCtsdv = 0.
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Two fluid model

Computing the moment of the Vlasov equations we obtain the following two
fluid model



∂tns +∇ · (msnsus) = 0,
∂t(msnsus) +∇x · (msnsus ⊗ us) +∇xps +∇x · Πs = σsE + Js × B + Rs ,
∂t(msnsεs) +∇x · (msnsusεs + psus) +∇x · (Π · us + qs) = σsE · us + Q∆s + Rs · us ,

1
c2 ∂tE−∇× B = −µ0J,
∂tB = −∇× E,
∇ · B = 0, ∇ · E = σ

ε0
.

ns =
∫
Dv

fsdv the particle number , msnsus =
∫
Dv

msvfsdv the momentum,

msnsεs =
∫
Dv

ms |v|2fsdv the energy.

The isotropic pressure are ps , Πs the stress tensors and qs the heat fluxes.

Rs and Q∆s associated with the collision between two species.

The current is given by J =
∑

s Js =
∑

s σsus with σs = qsns .

E. Franck and al. Fluid models and numerical methods for JOREK code
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Extended MHD: assumptions and generalized Ohm law

Extended MHD: assumptions

quasi neutrality assumption: ni = ne

Since me << mi therefore ρ = mini + mene ≈ mini
Since me << mi therefore u = mi niui+meneue

ρ
≈ ui

Magnetostatic assumption : ∇× B = µ0J

Taking the electronic density and momentum equations we obtain

me (∂t(neue) +∇ · (neueue)) +∇pe = −eneE + Je × B−∇ · Πe + Re ,

We multiply the previous equation by −e and we define Je = −eneue , we obtain

me

e2ne
(∂tJe +∇ · (Jeue)) = E + ue × B +

1

ene
∇pe +

1

ene
∇ · Πe −

1

ene
Re ,

Using the quasi neutrality, me << mi and R = −Re = −η e
mi
ρJ, we obtain

E + u× B = ηJ−
mi

ρe
∇ · Πe +

mi

ρe
J× B−

mi

ρe
∇pe .
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Extended MHD: model

Using the generalized Ohm’s law and the different assumptions we obtain

Extended MHD

∂tρ+∇ · (ρu) = 0,

ρ∂tu + ρu · ∇u +∇p = J× B−∇ · Π,

1

γ − 1
∂tp +

1

γ − 1
u · ∇p +

γ

γ − 1
p∇ · u +∇ · q =

1

γ − 1

mi

eρ
J ·
(
∇pe − γpe

∇ρ
ρ

)
−Π : ∇u + Πe : ∇

(
mi
eρ

J
)

+ η|J|2,

∂tB = −∇× E,

E =

(
−u× B + ηJ−

mi

ρe
∇ · Πe −

mi

ρe
∇pe +

mi

ρe
(J× B)

)
,

∇ · B = 0, ∇× B = J.
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Extended MHD: energy conservation

The extended MHD satisfy a total energy conservation law.

The total energy for the MHD is given by

E = ρ
|u|2

2
+
|B|2

2
+

1

γ − 1
p.

with p = ρT and γ = 5
3

. The conservation law for the total energy is given by

∂tE +∇ ·
[

u

(
ρ
|u|2

2
+

γ

γ − 1
p

)
− (u× B)× B

]
+∇ ·

[
mi

ρe

(
(J× B)× B−∇pe × B−∇ · Πe × B−

γ

γ − 1
peJ− J · Πe

)]
+∇ · q +∇ · (Π · u) + η∇ · (J× B) = 0.

Neglecting ohmic and viscous heating −Π : ∇u + η|J|2 we obtain a dissipative
estimate energy.
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Extended MHD: Diamagnetic MHD I

In the Extended MHD case, The stress tensor is given by Π = Πv + Πgv .

The structure of the gyro-viscous tensor Πgv is complicate. To simplify we use
the ”gyro-viscous cancellation” (D.D. Schnack and Al, Physics of Plasmas
2006). For this we use ion velocity:

ui = −E +
mi

e
(∂tui + ui · ∇ui ) +

1

nie
∇pi +

1

nie
∇ · Πi −

1

nie
Ri .

We define the perpendicular ion velocity ui,⊥ = B
|B|2 × ui . We obtain

ui,⊥ =
E× B

|B|2
+

mi

e|B|2
B× (∂tui + ui · ∇ui ) +

B

nie|B|2
× (∇pi +∇ · Πi − Ri ).

Now we neglect the term which depend of ∂tui + ui · ∇ui , ∇ · Πi and the term
which depend of the friction term.

At the end we obtain the following decomposition of the full velocity

u = uE + u∗i + u‖,

with uE = E×B
|B|2 , u‖ the parallel ion velocity and u∗i = mi

ρe
B×∇pi
|B|2 the diamagnetic

ion velocity.

E. Franck and al. Fluid models and numerical methods for JOREK code
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Extended MHD: Diamagnetic MHD II

Momentum equation

ρ∂tu + ρu · ∇u +∇p = J× B−∇ · Πv −∇ · Πgv .

Using the decomposition of the velocity we obtain

ρ∂t(uE + u‖) + ρ(uE + u∗i + u‖) · ∇(uE + u‖)

+ ρ∂tu
∗
i + ρ(uE + u∗i + u‖) · ∇u∗i = −∇p + J× B−∇ · Πv −∇ · Πgv .

The ”Gyro-viscous cancellation” gives

ρ∂tu
∗
i + ρ(uE + u∗i + u‖) · ∇u∗i +∇ · Πgv ≈ ∇χ− ρu∗i · ∇u‖

with ∇χ << ∇p.

Giro-viscous cancellation:

ρ∂t(uE + u‖) + ρ(uE + u‖) · ∇(uE + u‖) + ρu∗i · ∇uE = −∇p + J× B−∇ · Πv

Neglect the viscous heating linked to the gyro-viscous tensor in the pressure
equation.

E. Franck and al. Fluid models and numerical methods for JOREK code
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Reduced MHD: assumptions and principle of derivation

Aim: Reduce the number of variables and eliminate the fast waves in the
resistive MHD model (the two fluid effects, the viscous and resistive heating are
neglected).

We consider the cylindrical coordinate (R,Z , φ) ∈ Ω× [0, 2π]

Reduced MHD: Assumptions

B =
F0

R
eφ +

1

R
∇ψ × eφ u = −R∇u × eφ + v||B

with u the electrical potential, ψ the magnetic poloidal flux, v|| the parallel velocity.
F0 is constant.

To avoid high order operators we introduce the vorticity w = 4polu and the

toroidal current j = 4∗ψ = R2∇ · ( 1
R2∇polψ).

Derivation: we plug B and u in the equations + some computations. For the
equations on u and v|| we use the following projections

eφ · ∇ × R2 (ρ∂tu + ρu · ∇u +∇p = J× B + ν4u)

and
B· (ρ∂tu + ρu · ∇u +∇p = J× B + ν4u) .

E. Franck and al. Fluid models and numerical methods for JOREK code
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Reduced MHD without v||: simple model

Example of model: case where v|| = 0.

∂tψ = R[ψ, u]− F0∂φu + η(T )( j +
1

R2
∂φφψ)

R∇ · (ρ̂∇pol (∂tu)) =
1

2
[R2||∇polu||2, ρ̂] + [R2ρ̂w , u] + [ψ, j]−

F0

R
∂φj − [R2, p]

+νR∇ · (∇polw)

1

R2
j −∇ · (

1

R2
∇polψ) = 0

w −∇ · (∇polu) = 0

∂tρ = R[ρ, u] + 2ρ∂Zu +∇ · (D∇ρ)

∂tT = R[T , u] + 2(γ − 1)T∂Zu +∇ · (K∇T )

with ρ̂ = R2ρ.

D and K are anisotropic diffusion tensors (in the direction parallel to B).

η(T ) is the physical resistivity. ν is the viscosity.

E. Franck and al. Fluid models and numerical methods for JOREK code
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Main result: energy estimate

Model with parallel velocity:
We assume that the boundary conditions are correctly chosen. The fields are defined
by B = F0

R
eφ + 1

R
∇ψ × eφ and u = −R∇u × eφ + v||B. We have

d

dt

∫
Ω
E (t) = −

∫
Ω
η
|4∗ψ|2

R2
−
∫

Ω
η|∇pol (

∂φψ

R2
)|2 −

∫
Ω
ν|4polu|2

with E(t) = |B|2
2

+ ρ
|u|2

2
+ 1
γ−1

P the total energy.

The implemented models conserve approximately the energy. For exact energy
conservation, some neglected terms must to be added.

Future work : Derivation and energy estimate for the Reduced Extended MHD

Theoretical and numerical stability for the reduced MHD models in JOREK
code, E. Franck, M. Hölzl, A. Lessig, E. Sonnendrücker, submit.
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Time scheme in JOREK code

The model is ∂tA(U) = B(U, t)

For time stepping we use a Crank Nicholson or Gear scheme :

(1 + ζ)A(Un+1)− ζA(Un) + ζA(Un−1) = θ∆tB(Un+1) + (1− θ)∆tB(Un).

Defining G(U) = (1 + ζ)A(U)− θ∆tB(U) and

b(Un,Un−1) = (1 + 2ζ)A(Un)− ζA(Un−1) + (1− θ)∆tB(Un)

we obtain the nonlinear problem

G(Un+1) = b(Un,Un−1).

First order linearization(
∂G(Un)

∂Un

)
δUn = −G(Un) + b(Un,Un−1) = R(Un),

with δUn = Un+1 − Un, and Jn = ∂G(Un)
∂Un the Jacobian matrix of G(Un).

E. Franck and al. Fluid models and numerical methods for JOREK code
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Linear Solvers

Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.

Principle of the preconditioning step:

Replace the problem JkδUk = R(Un) by Pk (P−1
k Jk )δUk = R(Un).

Solve the new system with two steps PkδU∗k = R(Un) and

(P−1
k Jk )δUk = δU∗k

If Pk is easier to invert than Jk and Pk ≈ Jk the linear solving step is more
robust and efficient.

Construction and inversion of Pk

Pk : diagonal block matrix where the sub-matrices are associated with
each toroidal harmonic.
Inversion of Pk : We use a LU factorization and invert exactly each
subsystem.

This preconditioning is based on the assumption that the coupling between the
toroidal harmonics is weak.

In practice for some test cases this coupling is strong in the nonlinear phase.

E. Franck and al. Fluid models and numerical methods for JOREK code
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Inexact Newton scheme

For nonlinear problem is not necessary to solve each linear system with high
accuracy.

Inexact Newton method: The convergence criterion for linear solver depends of
the nonlinear convergence. Minimization of the number of GMRES iteration for
each linear step.

We choose U0 = Un and ε0.

Step k of the Newton procedure
We solve the linear system with GMRES(

∂G(Uk )

∂Uk

)
δUk = R(Uk ) = b(Un,Un−1)− G(Uk )

and the following convergence criterion

||
(
∂G

∂Uk

)
δUk + R(Uk )|| ≤ εk ||R(Uk )||, εk = γ

(
||R(Uk )||
||R(Uk−1)||

)α
We iterate with Uk+1 = Uk + δUk .
We apply the convergence test (for example ||R(Uk )|| < εa + εr ||R(Un)||)

If the Newton procedure stop we define Un+1 = Uk+1.

E. Franck and al. Fluid models and numerical methods for JOREK code
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure: Reference solution: kinetic and magnetic energies for ∆t = 5 gives by
the Newton method.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure: Kinetic and magnetic energies for Linearization method for ∆t = 30.

E. Franck and al. Fluid models and numerical methods for JOREK code



Physical and mathematical context
Hierarchy of models for plasmas

Nonlinear solvers and preconditioning
Other numerical studies and conclusion

First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure: Kinetic and magnetic energies for Linearization method for ∆t = 40.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure: Kinetic and magnetic energies for Linearization method for ∆t = 50.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure: Kinetic and magnetic energies for Newton method for ∆t = 30.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 500 1000 1500 2000 2500 3000 3500

no
rm

al
iz

ed
 e

ne
rg

y

normalized time

EB(n=0)
EB(n=8)
EK(n=0)
EK(n=8)

Figure: Kinetic and magnetic energies for Newton method for ∆t = 40.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure: Kinetic and magnetic energies for Newton method for ∆t = 60.
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Second test case

Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.
Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.
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Figure: Reference solution: kinetic and magnetic energies for ∆t = 1 gives by
the Linearization method.
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Second test case

Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.
Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.
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Figure: Kinetic and magnetic energies for Linearization method for ∆t = 2.
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Second test case

Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.
Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.
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Figure: Kinetic and magnetic energies for Newton method for initial ∆t = 10.
Final time step around 2.
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Preconditioning: Principle

An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive
Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.

Right preconditioning: We solve JkP
−1
k Pk = R(Uk ).

Aim: Find Pk easy to invert with Pk ≈ P−1
k and more efficient in the nonlinear

phase as the preconditioning used.

Idea: Operator splitting + parabolic formulation of the MHD + multigrid
methods.

Example {
∂tu = ∂xv
∂tv = ∂xu

−→
{

un+1 = un + ∆t∂xvn+1

vn+1 = vn + ∆t∂xun+1

We obtain (1−∆t2∂xx )un+1 = un + ∆t∂xvn.

The matrix associated to (1−∆t2∂xx ) is a diagonally dominant matrix and well
conditioned.

This type of operator is easy to invert with algebraic preconditioning as
multigrid methods.
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Simple example: Low β model

We assume that the profile of ρ is given, the pressure is small, and the fields are
B = F0

R
eφ + 1

R
∇ψ × eφ, ρu = − 1

R
∇u × eφ and ρ = 1

R2 .

The model is
∂tψ = R[ψ, u] + η4∗ψ − F0∂φu

∂t4polu = 1
R

[R24polu, u] + 1
R

[ψ,4∗ψ]− F0
R24∗∂φψ + ν42

polu

with w = 4polu and j = 4∗ψ.

In this formulation we separate the evolution and elliptic equations.

Time scheme: Cranck-Nicholson scheme.

The Jacobian associated with the evolution equations is

∂G(Un)

∂Un
δUn = JnδUn =

(
M U
L D

)
δUn

with δUn = (δψn, δun)

M and D the matrices of the diffusion and advection operators for ψ et 4polu.

L and U the matrices of the coupling operators between ψ and u.
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Preconditioning : Algorithm

The final system with Schur decomposition is given by

δUn = J−1
k R(Un) =

(
M U
L D

)−1

R(Un)

=

(
I M−1U
0 I

)(
M−1 0

0 P−1
schur

)(
I 0
−LM−1 I

)
R(Un)

with Pschur = D − LM−1U.

We obtain the following algorithm which solve JkδUk = R(Un) + elliptic
equations:


Predictor : Mδψn

p = Rψ
potential update : Pschur δu

n =
(
−Lδψn

p + Ru)
)

Corrector : Mδψn = Mδψn
p − Uδun

Current update : δznj = D∗δψn

Vorticity update : δwn = Dpolδu
n

with Rψ and Ru are the right hand side associated with the equations on ψ and
u. D∗ and Dpol the elliptic operators.
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An example of Schur complement approximation

To compute Pschur = D − LM−1U we must compute M−1.

Solving the previous algorithm with an approximation of the Schur complement
gives the preconditioning Pn.

”Small flow” approximation

In Pschur we assume that M−1 ≈ ∆t

Pschur =
4polδu

∆t
+ρun·∇(

1

ρ
4polδu)+ρδu·∇(

1

ρ
4polu

n)−θν42
polδu−θ

2∆tLU

Operator LU = Bn · ∇(4∗( 1
ρ

Bn · ∇δu)) + ∂jn

∂ψn Bn
⊥ · ∇( 1

ρ
Bn · ∇δu) with ρ = 1

R2

Bn · ∇δu = − 1
R

[ψn, δu] + F0
R
∂φδu,

un · ∇δu = −R[δu, un] et δu · ∇un = −R[un, δu].

Remark: the LU operator is the parabolization of coupling hyperbolic terms.
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LU operator: properties

The reduced model contains only the Alfvén waves (rigorous proof missing).
Idem for the LU operator introduced previously.

Properties of LU operator

We consider the L2 space. The operator LU is not positive for all δu

< LUδu, δu >L2 =

∫
ρ|∇(

1

ρ
Bn.∇δu)|2 −

∫
1

ρ

∂jn

∂ψn
(Bn
⊥.∇δu)(Bn .∇δu)

The LU operator is not self-adjoint : < LUδu, δv >L2 6=< δu, LUδv >L2

LU approximation

We propose the following approximation LUapprox = Bn · ∇(4∗( 1
ρ

Bn · ∇δu))

The operator LUapprox is positive an self-adjoint.

Remark in physical books and papers: the spectrums of LUapprox and LU are
essentially close (not rigorous proof).
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Semi implicit scheme

We define f n+ 1
2 = 1

2
(f n + f n+1). The semi-implicit scheme is

ψn+1−ψn

∆t
ψ = R[ψn, un+ 1

2 ] + η4∗ψn+ 1
2 − F0∂φu

n+ 1
2

4pol (u
n+1−un)

∆t
= 1

R
[R2wn, un+ 1

2 ] + 1
R

[ψn,4∗ψn+ 1
2 ]− F0

R24∗∂φψn+ 1
2 + ν42

polu
n+ 1

2

wn+1 = 4polu
n+1, jn+1 = 4∗ψn+1

Energy dissipation

We define E =
∫

Ω

|∇polψ|2

2R2 +
|∇polu|2

2
. The scheme satisfy En+1 − En ≤ 0

We can apply the previous preconditioning to the semi-implicit scheme

”Small flow” approximation: M−1 ≈ ∆t.

Pschur =
4polδu

∆t
+ρδu ·∇(

1

ρ
4polu

n)−θν42
polδu−θ

2∆tBn ·∇(4∗(
1

ρ
Bn ·∇δu))

We obtain direct a positive and symmetric operator LU.

The Jacobian is more simple and the preconditioning use less approximations.
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Remark about radiative transfer

The preconditioning can be use for radiative problem as P1 model:{
∂tu + 1

ε
∂xv = 0

∂tv + 1
ε
∂xu = − σ

ε2 v
−→

{
un+1 = un − ∆t

ε
∂xvn+1

vn+1 = vn − ∆t
ε
∂xun+1 − σ∆t

ε2 vn+1

We obtain the following scheme on the v equation :(
1 +

σ∆t

ε2

)
vn+1 = vn −

∆t

ε
∂xu

n+1

Plugging this equation in the equation on u we obtain the preconditioning.

Preconditioning algorithm
u update: Pun+1 = un −

(
ε∆t

ε2 + σ∆t

)
vn

v update : vn+1 =

(
ε2

ε2 + σ∆t

)
vn −

(
ε∆t

ε2 + σ∆t

)
un+1

with P =

(
1−

∆t2

ε2 + σ∆t
∂xx

)
a well-conditioned operator.
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Other numerical studies and conclusion
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Current developing: JOREK-Django

JOREK-Django: experimental version of JOREK for numeric research and validation

Dedidacted for implementing and testing

Numerical schemes
Spatial discretization
Time stepping

HPC using MPI

Current work on numerical method in Django :

In the Poloidal plane

B splines of any order and regularity (A. Ratnani)
Box splines of any order, based on Hexa-meshes (L. S. Mendoza)
Spectral Elements (J. Vildes & B. Nkonga)

In the Toroidal direction

Fourier, B-splines (A. Ratnani, E. F.)

Domain Decomposition (A. Ratnani & B. Nkonga)

Coupling with Selalib (A. Ratnani & L. S. Mendoza)
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Current work on the model in Django

Poisson equation (A. Ratnani & B. Nkonga)

Grad-Shafranov equation (using 2 formulations + Picard/Newton)

Anisotropic Diffusion (A. Ratnani & B. Nkonga)

Low β reduced MHD like Current Hole (E. F.)

Reduced resistive and extended MHD (E. F )

Long term projects :

DeRham complex using B-splines (A. Ratnani)

Time Domain Maxwell solver

Fast Solvers based on Kronecker product

Physic based preconditioners (E. F & A. Ratnani)

Geometric Multigrid Method (A. Ratnani)

Full resistive and extended MHD (B. Nkonga)

Taylor-Galerkin stabilization (B. Nkonga)
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internship proposal

internship proposal:

Institut : IPP (Munich)

Supervisors : Eric Sonnendrücker, A. Ratnani

Subject : Study and implementation of H(curl) and H(div) spaces for the
Splines in Django JOREK. Application to Maxwell equations
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Conclusion and Outlook

Models

Results on models:

Formal derivation of hierarchy of fluid models for tokamak with the
energy estimates associated.
Rigorous derivation of single fluid reduced MHD and energy estimate.

Future works:

Rigorous derivation with an energy estimate of diamagnetic (generalized
Ohm’s law) and two fluid extended reduced MHD.
Design of time schemes which preserve the energy estimates.

Nonlinear solvers:

Conclusion: nonlinear inexact Newton solver + adaptive time stepping allows to
capture easier the nonlinear phase and avoid some numerical instabilities.

Advantages : larger time step and efficient adaptive time stepping.

Possible future works: Globalization techniques to obtain more robust nonlinear
solvers.
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Conclusion and Outlook

Preconditioning:

Conclusion: preconditioning based on some approximations to the MHD
operators.

Question: new preconditioning more efficient than the old one in the nonlinear
phase where the coupling between harmonics is strong ?

Compatible with Jacobian-free method to reduce memory consumption and
increase scalability. This will allow to use higher grid resolutions and more
toroidal harmonics.

Future works: validate the algorithm for models without parallel velocity and
write the preconditioning for the single and bi-fluid models.
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Thanks

Thanks for your attention
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