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Physical and mathematical context

Magnetic Confinement Fusion

@ Fusion DT: At sufficiently high
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Physical and mathematical context

Magnetic Confinement Fusion

@ Fusion DT: At sufficiently high
energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6
MeV of free energy are released. At
those energies, the atoms are ionized
forming a plasma.

@ Magnetic confinement: The charged
plasma particles can be confined in a
toroidal magnetic field configuration,
for instance a Tokamak.
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Figure: Tokamak
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Physical and mathematical context

Plasma instabilities

@ Edge localized modes (ELMs) are periodic instabilities occurring at the edge of
tokamak plasmas.

@ They are associated with strong heat and particle losses which could damage
wall components in ITER by large heat loads.

@ Aim: Detailed non-linear modeling and simulation (MHD models) can help to
understand and control ELMs better (pellet or massive gas injection).

@ |Initial Density @ Final Density
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Physical and mathematical context

Forewords: JOREK — Overview

@ Closed & open field lines domain, X-point geom.
e Cubic Finite Elements, flux aligned poloidal grid
e |soparametric: elements approaching geometry are
used to approach unknowns
e Fourier series in toroidal direction

e Non-linear reduced MHD in toroidal geometry & o o o
- ('} ‘ya\utstS
@ Time stepping, solver & parallelism ¢ . Pf’k E (1:;5
.
o fully implicit e. g. Crank-Nicholson b‘/ R N \ 3
e sparse matrices (PastiX) ~ 107 degrees of freedom \ L\. S~
e MPI/OpenMP over typically 256 — 1500 processors 7, K BN
o i \P
@ ELM simulations consumptions \l( o e
e At IRFM, we use 7 Millions CPUH /year T %
e Typical simulations: ~ 20’000 — 200’000 CPUH ¢ ™
e A JET simulation (n¢r = 0...10):

~ 100’000 — 200’000 CPUH
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Physical and mathematical context

Description of the JOREK code |

@ |Initialization

@ Determine the equilibrium
@ Define the boundary of the computational

domain.
@ Create a first grid which is used to compute

the aligned grid.
@ Compute (R, Z) in the new grid.

@ Compute equilibrium.
@ Solve the Grad-Shafranov equation:
1 2 F
Rl (L00) . 20 e O
OR \ROR 822 o oY
Figure: unaligned grid
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Physical and mathematical context

Description of the JOREK code Il

@ Computation of aligned grid
@ Identification of the magnetic flux surfaces.
@ Create the aligned grid (with X-point).
@ Interpolate (R, Z) in the new grid.

@ Recompute equilibrium of the new grid.

o
@ Perturbation of the equilibrium (small e \\\\\\\\"l////,I‘ ’/

L
perturbations of non principal harmonics).

R
N
‘§\}§\\\\t\\“§‘§ :
T ‘\;g;.

@ Time-stepping (full implicit):

7 ////;/{Z{I//

@ Construction of the matrix and some
profiles (diffusion tensors, sources terms).

@ Solve linear system.

@ Update solutions.

Figure: Aligned grid
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Hierarchy of models for plasmas

Vlasov equation

@ First model to describe a plasma : Two species Vlasov-Maxwell kinetic
equation.

@ We define fs(t,x,v) the distribution function associated with the species s.
x € Dy and v € R3.

Ocfe+v-Vaf+ 1= (E+v xB)-Vuh = G = > Ga,
s t

L0E—V x B = —pol,
9:B=—-V x E,
V-B=0, V-E=2Z.

€0

@ Derivation of two fluid model :
@ We apply this operator [3 g(v)(-) on the equation.
e g(v)s = 1, msv, ms|v|?.
@ Using
° va msvCssdv = 0, va mg|v|?>Cssdv = 0,
° va g(v)sCsrdv + va g(v):Csdv = 0.
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Hierarchy of models for plasmas

Two fluid model

@ Computing the moment of the Vlasov equations we obtain the following two
fluid model

Otns + V - (msnsus) = 0,
8t(’"snsus) + Vx - (msnsus ® Us) + Vxps + Vx - s = 0sE 4+ Js X B+ R,
Bt(msnsfs) + Vx (msnsusfs + Psus) + Vx - (|_| ‘Us + QS) =osE-us + QAS + Rs - ug,

L0E -V xB=—poJ,
8tB:—V><E,
V-B=0, V-E=2Z.

€0

@ ns = va fsdv the particle number , msnsus = va msvfsdv the momentum,

MsNs€s = va ms|v|?f;dv the energy.

@ The isotropic pressure are ps, [1s the stress tensors and gs the heat fluxes.

Rs and Qa, associated with the collision between two species.

@ The current is given by J = >"_Js = >__osus with o5 = gsns.
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Hierarchy of models for plasmas

Extended MHD: assumptions and generalized Ohm law

Extended MHD: assumptions

@ quasi neutrality assumption: n; = ne
@ Since me << mj therefore p = mjn; + mene =~ mjn;

H m;n;u;+Mmeneu
@ Since me << m; therefore u = % SATH

@ Magnetostatic assumption : V X B = uoJ

@ Taking the electronic density and momentum equations we obtain

me (Ot(neue) + V - (neueue)) + Vpe = —encE + Je X B — V - e + Re,

@ We multiply the previous equation by —e and we define Jo = —eneu., we obtain
m 1 1 1
—— (0tde + V- (Jeue)) = E+ue X B+ —Vpe + —V -Me — —R,
e?n, ene ene ene

@ Using the quasi neutrality, me << m; and R= —R. = fn%pJ, we obtain
E+uxB=n-"iv.Me+ ZyxB- "vp.. J
pe pe pe
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Hierarchy of models for plasmas

Extended MHD: model

@ Using the generalized Ohm's law and the different assumptions we obtain
Extended MHD
Otp+ V - (pu) =0,

potu+pu-Vu+Vp=JxB-V.II,

1 v
otp + u- Vp-i-ipv u+V-.q= ——J <Vpe—7pe—p)
—1 v—1 y—1ep p

—M:Vu+N.:V (;"/;J) +77|J|2’
81:B:7v>< E,

E:(wa+m—ﬂVWh—ﬂVm+@UxBO,
pe pe pe

V.-B=0, VxB=J.
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Hierarchy of models for plasmas

Extended MHD: energy conservation

@ The extended MHD satisfy a total energy conservation law.

The total energy for the MHD is given by

_ lup?

B|? 1
E=p +u

2 2 " y—1”

with p=pT and v = % The conservation law for the total energy is given by

2

OtE +V - {u(p&Jrip)f(uxB)xB}
2 =1

+V.{ﬂ ((J><B)><B—Vpe><B—V.He><B— leeJ—Jﬂe)}
pe —

Y
/

+V-q+V-(M-u)+nV-(JxB)=0.

@ Neglecting ohmic and viscous heating —I1: Vu + 1|J|? we obtain a dissipative
estimate energy.
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Hierarchy of models for plasmas

Extended MHD: Diamagnetic MHD |

@ In the Extended MHD case, The stress tensor is given by T =" 4 18",

@ The structure of the gyro-viscous tensor 18V is complicate. To simplify we use
the " gyro-viscous cancellation” (D.D. Schnack and Al, Physics of Plasmas
2006). For this we use ion velocity:

1 1 1

VP,’+ V- I'I,»f
nie nje nje

R:.

m:
ui=—-E+ j(atu; “+u; - Vu,-) =+

@ We define the perpendicular ion velocity u; | = % X uj. We obtain

ExB m;j B
L= B x (8uj + u; - Vu;) + ——— x (Vp; + V- TI; = R;).
Uil =TgE T oBE (Oru; +u; - Vu;) + nieB (Vpi + i—Ry)

@ Now we neglect the term which depend of d:u; 4+ u; - Vu;, V - 1; and the term
which depend of the friction term.
@ At the end we obtain the following decomposition of the full velocity

u:uE+u7+u”,

ExB m; BXVp;
e

with ug = TBIZ I the parallel ion velocity and u} = pe |BP2 the diamagnetic

ion velocity.
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Hierarchy of models for plasmas

Extended MHD: Diamagnetic MHD I

@ Momentum equation
potu+pu-Vu+Vp=JxB-V- -MN"—-V.N&.
@ Using the decomposition of the velocity we obtain

pO(ug +uy) + p(ug +uf +uy) - V(ug +uy)
+ pdeu; + p(ug +uf +uy)-Vui = -Vp+JIxB-V-N"-V.N&.

@ The " Gyro-viscous cancellation” gives
porul + p(ug +uf +uy) - Vul + V- N =~ Vyx — pu - Vu
with Vx << Vp.
Giro-viscous cancellation:

® pO:(ug +uy) + p(ug +uy) - V(ug +uy) + puj - Vug = =Vp +J x B=-V - 11"

@ Neglect the viscous heating linked to the gyro-viscous tensor in the pressure
equation.
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Hierarchy of models for plasmas

Reduced MHD: assumptions and principle of derivation

@ Aim: Reduce the number of variables and eliminate the fast waves in the
resistive MHD model (the two fluid effects, the viscous and resistive heating are
neglected).

@ We consider the cylindrical coordinate (R, Z, ¢) € Q X [0, 27]

Reduced MHD: Assumptions

F 1
B:—Oe¢+—vu‘)><e¢ u:—RVuXe(b—&—vHB
R R
with u the electrical potential, 1) the magnetic poloidal flux, v|| the parallel velocity.
Fo is constant.

@ To avoid high order operators we introduce the vorticity w = A, u and the
toroidal current j = A*¢ = R?V - (%Vpo/w).
@ Derivation: we plug B and u in the equations 4+ some computations. For the
equations on u and v we use the following projections
ey -V X R?(pdru+ pu-Vu+ Vp = J x B+ vAu)
and
B (pOtu + pu-Vu+ Vp=1J x B+ vAu).
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Hierarchy of models for plasmas

Reduced MHD without v|: simple model

@ Example of model: case where v|| = 0.

1
Octh = Rl u] = Fodgu+1(T)(J + 250550)

o 1 A . . Fo, .
RV - (pvpol(atu)) = E[RszpoluH2,p] + [Rsz7 U] + [vaJ] - ﬁoaqb./ - [R2,P]
+VRV - (Vpow)

1. 1
ﬁ] -V (ﬁvpo/w) =0

w—V - (Vpou) =0

Otp = Rlp, u] +2p0zu+V - (DVp)

T =R[T,ul+2(y—1)Tozu+V - (KVT)
with p = R?p.

@ D and K are anisotropic diffusion tensors (in the direction parallel to B).
@ 7(T) is the physical resistivity. v is the viscosity.
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Hierarchy of models for plasmas

Main result: energy estimate

Model with parallel velocity:
We assume that the boundary conditions are correctly chosen. The fields are defined
by B = %e¢ + %Vz;“) X eg and u = —RVu x eg + VHB‘ We have

d |Aa*ypf? 9gb 1 2
E/QE(T:):_/Q” R2 _/QW‘Vpo/(F” _/QV|APOIU‘

- _BE | W, 1
with E(t) = 5~ +p5 + 771P the total energy.

@ The implemented models conserve approximately the energy. For exact energy
conservation, some neglected terms must to be added.

@ Future work : Derivation and energy estimate for the Reduced Extended MHD

@ Theoretical and numerical stability for the reduced MHD models in JOREK
code, E. Franck, M. Holzl, A. Lessig, E. Sonnendriicker, submit.
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Nonlinear solvers and preconditioning

Time scheme in JOREK code

@ The model is 9:A(U) = B(U, t)
@ For time stepping we use a Crank Nicholson or Gear scheme :

(14 ¢Q)AU™L) — CA(U™) + CA(U™ L) = 0AtB(U™) 4 (1 — 6)AtB(U™).
@ Defining G(U) = (1 + ¢)A(U) — §AtB(U) and
b(U", U1y = (14 2¢)A(U") — CA(U™ 1) 4 (1 — 9)AtB(U™)
we obtain the nonlinear problem
G(U™ = p(un,u"t).

@ First order linearization

(2

) U™ = —G(U") + b(U",U""1) = R(UM),

with 6U" = U™ —U", and J, = ag{]un") the Jacobian matrix of G(U").
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Nonlinear solvers and preconditioning

Linear Solvers

Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.

@ Principle of the preconditioning step:
@ Replace the problem J6U, = R(U") by Pk(Pk_le)cSUk = R(U").
@ Solve the new system with two steps P dU; = R(U") and
(Pt Jk)0Uk = 5U%
@ If Py is easier to invert than Ji and Py = Ji the linear solving step is more
robust and efficient.

@ Construction and inversion of Py

@ Py: diagonal block matrix where the sub-matrices are associated with
each toroidal harmonic.

@ Inversion of P,: We use a LU factorization and invert exactly each
subsystem.

@ This preconditioning is based on the assumption that the coupling between the
toroidal harmonics is weak.

@ In practice for some test cases this coupling is strong in the nonlinear phase.
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Nonlinear solvers and preconditioning

Inexact Newton scheme

@ For nonlinear problem is not necessary to solve each linear system with high
accuracy.

@ Inexact Newton method: The convergence criterion for linear solver depends of
the nonlinear convergence. Minimization of the number of GMRES iteration for
each linear step.

@ We choose Uy = U” and ¢g.

@ Step k of the Newton procedure
@ We solve the linear system with GMRES

<M> SU, = R(Uy) = b(U", U1 — G(Uy)
Uy
and the following convergence criterion
[RUAI \*
1 (5 ) ue+ RN < el R e =
[IR(Uk—1)ll

@ We iterate with Uy = Uy + 6Uy.
@ We apply the convergence test (for example [|R(Uk)|| < €a + &/||R(U™)|])
@ If the Newton procedure stop we define U1 = U, 1.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05

le-10

le-15

normalized energy

le-20

le-25

E«(n=8)
1 1 1
0 500 1000 1500 2000 2500 3000 3500

1e-30 L L L

normalized time

Figure: Reference solution: kinetic and magnetic energies for At = 5 gives by
the Newton method.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05

le-10

le-15

normalized energy

1e-20

Eg(n=0) —+—

1e-25 Eg(n=8) ——
E(n=0) ——
E,(n=8)

1e-30 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500

normalized time

Figure: Kinetic and magnetic energies for Linearization method for At = 30.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05

le-10

Non convergence

le-15 |-

normalized energy

1e-20 |-

/ EB(nfo) —_—

le-25 |- Eg(n=8) —— o

1e-30 L L L L L L
0 500 1000 1500 2000 2500 3000 3500

normalized time

Figure: Kinetic and magnetic energies for Linearization method for At = 40.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05 - A -

1le-10 |- -

Non convergence

le-15 |-

normalized energy

1e-20 |-

/ E4(n=0) ——

le-25 |- Eg(n=8) —— |
E(n=0) ——
E(n=8)

1e-30 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500

normalized time

Figure: Kinetic and magnetic energies for Linearization method for At = 50.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05

le-10

le-15

normalized energy

1e-20

Eg(n=0) ——

Eg(n=8) ——
1e-25 | 8 8
€ E(n=0) ——
Ex(n=8)
1e-30 L L L L L L

0 500 1000 1500 2000 2500 3000 3500

normalized time

Figure: Kinetic and magnetic energies for Newton method for At = 30.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05

le-10

le-15

normalized energy

1e-20

/ E4(n=0) —+—

1e-25 Eg(n=8) ——
E (n=0) ——
E«(n=8)

1e-30 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500

normalized time

Figure: Kinetic and magnetic energies for Newton method for At = 40.
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Nonlinear solvers and preconditioning

First test case: model without parallel velocity

@ First test case: simplified equilibrium configuration for the reactor JET.
@ Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.

1e-05

1le-10

le-15

normalized energy

1e-20
/ Eg(n=0) ——
le-25 Eg(n=8) ———
E(n=0) ——
E,(n=8)
1e-30 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500

normalized time

Figure: Kinetic and magnetic energies for Newton method for At = 60.
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Nonlinear solvers and preconditioning

Second test case

@ Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.

@ Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.

1
1e-05 |- -
> le-10 - —
=4
[
2
3
B 1le1s | 8
N
©
13
S
S 1e-20 —
Eg(n=0) —+—
1le-25 |- Eg(n=8) ——
E(n=0) ——
E«(n=8)
1e-30 1 1 1 1
0 100 200 300 400 500

normalized time

Figure: Reference solution: kinetic and magnetic energies for At = 1 gives by
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Nonlinear solvers and preconditioning

Second test case

@ Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.

@ Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.

1
1e-05 /
> le-10 - -
s
[
g
5
B 1le1s —
N
g Non convergence
S
S 1e20 - —
o Eq(n=0) ——
le-25 Eg(n=8) — -
E(n=0) ——
E,(n=8)
1e-30 Il Il Il Il
0 100 200 300 400 500

normalized time

Figure: Kinetic and magnetic energies for Linearization method for At = 2.
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Nonlinear solvers and preconditioning

Second test case

@ Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.

@ Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.

1
1e-05 [ /\,_( B
> le-10 - -
s
[
g
5
B 1le1s —
N
3
£
S
S 1e20 - —
/”/ Eg(n=0) ——
1le-25 Eq(n=8) ——
E,(n=0) ——
E,(n=8)
1e-30 1 1 1 1

100 200 300 400 500

normalized time

Figure: Kinetic and magnetic energies for Newton method for initial At = 10.
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Nonlinear solvers and preconditioning

Preconditioning: Principle

@ An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive
Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.

@ Right preconditioning: We solve JkPk_lPk = R(Uy).

@ Aim: Find Py easy to invert with Py = P;l and more efficient in the nonlinear
phase as the preconditioning used.

@ lIdea: Operator splitting + parabolic formulation of the MHD + multigrid
methods.

@ Example
Oru = Oxv . u™l = " At vt
Otv = Oxu vl = yn 4 At utL
@ We obtain (1 — At?0)u"! = u" + Atdyv".

@ The matrix associated to (1 — At?0x) is a diagonally dominant matrix and well
conditioned.

@ This type of operator is easy to invert with algebraic preconditioning as
multigrid methods.
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Nonlinear solvers and preconditioning

Simple example: Low 3 model

@ We assume that the profile of p is given, the pressure is small, and the fields are
B= ey +LiViyxey, pu=—LVuxesandp=2
R TRVY ¢ P R @ pP= gz

@ The model is
Ot = R, u] + nA*Y — Fodyu
8l‘Apalu = %[RzApoluv u] + %[wv A*w] - %A*8¢¢ + VA%)OIU

with w = Ajqu and j = A*p.
@ In this formulation we separate the evolution and elliptic equations.
@ Time scheme: Cranck-Nicholson scheme.
@ The Jacobian associated with the evolution equations is
oG(U") <1n n M U n
W(SU = JpoU" = L D oU
with §U" = (69", du™)
@ M and D the matrices of the diffusion and advection operators for ¢ et Ay u.
@ L and U the matrices of the coupling operators between v and u.
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Nonlinear solvers and preconditioning

Preconditioning : Algorithm

@ The final system with Schur decomposition is given by

sU = JTIR(UT) = ( vy )_IR(U”)

(1 MU M~1 0 / 0 n
(o 1) b ) (s 7))

with Pepyr = D — LM~1U.
@ We obtain the following algorithm which solve JxdUx = R(U") + elliptic
equations:

Predictor :  Mdyp = Ry,

potential update :  Pscpy 0u” = (fLéwg + Ru))
Corrector :  Mo)" = M&'w;’ — Usu”

Current update : 6zj” = D*§y"

Vorticity update :  dw" = Dpodu”

@ with Ry, and Ry are the right hand side associated with the equations on 7 and
u. D* and D, the elliptic operators.
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Nonlinear solvers and preconditioning

An example of Schur complement approximation

@ To compute Py = D — LM~1U we must compute M1,

@ Solving the previous algorithm with an approximation of the Schur complement
gives the preconditioning P,.

@ "Small flow” approximation
@ In Py we assume that M—1 ~ At

Apoléu

1 1
Pechur = +pu".V(;Apo/du)+p5u~V(;Apo,u”)—GVAio,éu—92AtLU

* 9" .
@ Operator LU =B"- V(A (%B” -Véu)) + 577B" - V(%B” - Véu) with p = 2
B" - Véu = —L[v", du] + 229,0u,

u” . Véu = —R[éu,u"] et du-Vu" = —R[u", u].

@ Remark: the LU operator is the parabolization of coupling hyperbolic terms.
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Nonlinear solvers and preconditioning

LU operator: properties

@ The reduced model contains only the Alfvén waves (rigorous proof missing).
@ Idem for the LU operator introduced previously.

Properties of LU operator
@ We consider the L2 space. The operator LU is not positive for all du

10
p OYn

1
< LUSu,8u > 2= /p|V(7B”.V6u)\2 = (B".Véu)(B" .Viu)
P

@ The LU operator is not self-adjoint : < LUSu,dv >;27#< du, LUSV >,

LU approximation

@ We propose the following approximation LU2PPoX = B . V(A*(%B" - Véu))

@ The operator LUPP™¥ is positive an self-adjoint.

@ Remark in physical books and papers: the spectrums of LUPP™®* and LU are
essentially close (not rigorous proof).
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Semi implicit scheme

® We define f™*2 = %(f" + f"*1). The semi-implicit scheme is
Pl

YUy — Ry, w3 ] 4+ nAR Y — Fodgu s

B por (4" — ™)

— — %[R2W",u”+%] + %[wn’A*wnnL%] _ FOA a wn+2 +1/A20,u

Wn+1 — Apolun-Hv n+1 = A* wn-%—l

Energy dissipation J

2 2
We define E = fQ % + M. The scheme satisfy E"t1 — E" < 0

@ We can apply the previous preconditioning to the semi-implicit scheme
@ ”Small flow” approximation: M~! ~ At.

p0/5u

1
Pochur = +pdu-V(= Apo/u")—HVAf)O,du—é‘zAtB”~V(A*(;B”~V6u))

@ We obtain direct a positive and symmetric operator LU.
@ The Jacobian is more simple and the preconditioning use less approximations.
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Remark about radiative transfer

@ The preconditioning can be use for radiative problem as P; model:

{ Su+Lowv=0 . { uttl = yn — Aty yntl
v

Orv + 2Oxu = 7;% vitl — yn ?taxu”l - —GE%t vl

@ We obtain the following scheme on the v equation :
(1 i ﬁ) e SR LP !
e? €
@ Plugging this equation in the equation on u we obtain the preconditioning.

Preconditioning algorithm

At
u update: Pu™1 =" — (67) v’
2 + oAt

2 At
v update : vl = S > v — (75 g
e + oAt €2 + oAt

At?

with P = (1 -
2 + oAt

8XX) a well-conditioned operator.
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Current developing: JOREK-Django

JOREK-Django: experimental version of JOREK for numeric research and validation

@ Dedidacted for implementing and testing

@ Numerical schemes
@ Spatial discretization
@ Time stepping

@ HPC using MPI

Current work on numerical method in Django :

@ In the Poloidal plane
@ B splines of any order and regularity (A. Ratnani)
@ Box splines of any order, based on Hexa-meshes (L. S. Mendoza)
@ Spectral Elements (J. Vildes & B. Nkonga)
@ In the Toroidal direction
@ Fourier, B-splines (A. Ratnani, E. F.)
@ Domain Decomposition (A. Ratnani & B. Nkonga)
@ Coupling with Selalib (A. Ratnani & L. S. Mendoza)
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Current work on the model in Django

@ Poisson equation (A. Ratnani & B. Nkonga)

@ Grad-Shafranov equation (using 2 formulations + Picard/Newton)
@ Anisotropic Diffusion (A. Ratnani & B. Nkonga)

@ Low 3 reduced MHD like Current Hole (E. F.)

@ Reduced resistive and extended MHD (E. F )

Long term projects :
@ DeRham complex using B-splines (A. Ratnani)
@ Time Domain Maxwell solver
@ Fast Solvers based on Kronecker product
@ Physic based preconditioners (E. F & A. Ratnani)
@ Geometric Multigrid Method (A. Ratnani)
@ Full resistive and extended MHD (B. Nkonga)
@ Taylor-Galerkin stabilization (B. Nkonga)
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internship proposal

internship proposal:

@ Institut : IPP (Munich)

@ Supervisors : Eric Sonnendriicker, A. Ratnani

@ Subject : Study and implementation of H(curl) and H(div) spaces for the
Splines in Django JOREK. Application to Maxwell equations
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Conclusion and Outlook

Models

@ Results on models:

@ Formal derivation of hierarchy of fluid models for tokamak with the
energy estimates associated.
@ Rigorous derivation of single fluid reduced MHD and energy estimate.

@ Future works:
@ Rigorous derivation with an energy estimate of diamagnetic (generalized
Ohm'’s law) and two fluid extended reduced MHD.
@ Design of time schemes which preserve the energy estimates.

Nonlinear solvers:

@ Conclusion: nonlinear inexact Newton solver + adaptive time stepping allows to
capture easier the nonlinear phase and avoid some numerical instabilities.
@ Advantages : larger time step and efficient adaptive time stepping.

Possible future works: Globalization techniques to obtain more robust nonlinear
solvers.

al methods for JOREK code
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Conclusion and Outlook

Preconditioning:

@ Conclusion: preconditioning based on some approximations to the MHD
operators.

@ Question: new preconditioning more efficient than the old one in the nonlinear
phase where the coupling between harmonics is strong ?

@ Compatible with Jacobian-free method to reduce memory consumption and
increase scalability. This will allow to use higher grid resolutions and more
toroidal harmonics.

@ Future works: validate the algorithm for models without parallel velocity and
write the preconditioning for the single and bi-fluid models.
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Thanks

Thanks for your attention
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