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Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. A neutron and 17.6 MeV of
free energy are released. At those
energies, the atoms are ionized forming
a plasma.

Plasma: For very high temperature, the
gas is ionized and gives a plasma which
can be controlled by magnetic and
electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source.
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Iter Project

B Fusion DT: At sufficiently high energies, [Py Hmetormson sl
deu.tenum and tritium can fuse to Poloidal magnetic field Outer Poloidal field coils
Helium. A neutron and 17.6 MeV of _ (for plasma positioning and sha
free energy are released. At those
energies, the atoms are ionized forming

a plasma.

B Plasma: For very high temperature, the
gas is ionized and gives a plasma which
can be controlled by magnetic and
electric fields.

B Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields. Resulting Helical Magnetic field Toroidal field coi

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

B |TER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source. Figure: Tokamak
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Physical context : MHD and ELM's

B |n the tokamak some instabilities can appear
in the plasma or at the edge of the plasma. B ELM'’s simulation

B The simulation to these instabilities is an
important subject for ITER.

B Exemple of Instabilities in the tokamak :

O Disruptions: Violent instabilities which
can damage the tokamak.

U Edge Localized Modes (ELM’s):
Periodic edge instabilities which can
damage the Tokamak.

B For example the ELM's are linked to the
very large gradient of pressure and very
large current at the edge.

B These instabilities are described by fluid
models (MHD resistive and diamagnetic or
extended).
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Vlasov equation

B First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.

B We define f;(t,x, v) the distribution function associated with the species s. x € Dx
and v € R3.

Two fluids Vlasov equation

duf+v- Vs + 2= (E+vXB)-Vuf = G = ¥ G,
s t
50,E—V x B =—pol,

9B = -V X,
V-B=0
V~E:£.

B Derivation of two-fluid model:
O We apply this operator [gs g(v)(-) on the equation.
O g(v)s = 1, mgv, mg|v|?.
B Using
m] va msvCssdv = 0, va ms|v|? Cssdv = 0,
O va g(v)sCordv + va g(v)¢Csdv = 0.
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Two fluid model

B Computing the moment of the Vlasov equations we obtain the two-fluid model

Two fluid moments

9¢ns + Vyx - (msnsus) =0, .
at(msnsus) + V- (msnsus ® us) + Vxps + VL ﬁs =0sE+Js x B+Rs,

at(msnses) + V- (msnsuses + Psus) + V- (ns cus + QS)
:USE'US“FQSJFRS'US,

19E—~V xB=—pol,
d:B = -V XE,
V-B=0, V-E=Z

€0 "

B p = va fsdv the particle number , ngus = va vfsdv the momentum, €5 the energy.

B The isotropic pressure are ps, ﬁs the stress tensors and s the heat fluxes.
B R, and Qs associated with the interspecies collision (force and energy transfer).
B The current is given by J =Y o Js = Y osus with 05 = gsns.

Assumptions for MHD

B The characteristic velocity Vo << ¢ which gives o) =V x B + O(?).

B Quasi-neutrality n; = ne which gives p = mjn; + O(%T) and u=u; + O('r’;—f)

| (4
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Extended MHD: assumptions and generalized Ohm law

B Taking the electronic density and momentum equations we obtain

me (0t (neue) + V- (neue @ ue)) + Vpe = —encE+Je x B -V M. +R.,

B We multiply the previous equation by —e and we define Jo = —eneu., we obtain
m, 1 1 = 1
5 (0tde + V- (Je®ue)) =E+u. xB+ Vpe + V-Me — —R,,
e%ne ene ene ene

B Using the quasi neutrality, me << m; and R = —R. = —1=-pJ, we obtain
1

m; m: — m;
E+ uxB = 5J +—JxB—-—'V-M.— —Vp..
drift velocity resistivity
hall term pressure term

B and the the extended MHD:
9:p+ V- (pu) =0, N
potu+pu-Vu+Vp=JxB-V-TI,

i \Y
dtp+u-Vp+ypV-u+V-q= Z?J' (Vpe—we%v
—M:Vu+M.:V (ﬂJ) +7J)2,

ep

3B =-Vx(—uxB+np—"v. M, — "Vp, + (g x B)),
pe pe pe

V-B=0, VxB=J. ()
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Open questions

B Physical simplification for two fluid plasma

B The stress tensor: parallel, cross and
perpendicular parts. Perp part neglected.
Cross part complicate.

B Velocity decomposition
u=(u,B)B+ExB+ B x Vp+0(F)

B GyroViscous-Cancelation : use this
decomposition to kill the cross tensor using
the advection terms of the diamagnetic
velocity.

B Problem: The energy conservation or
dissipation is broken.

B Open-question: Find a simplified model
with energy conservation.

Problem : low density limit

B Model reduction using potential formulation

Aim: Reduce the number of variables and
eliminate the fast waves.

Potential formulation:
Fo

1
B:Fe,P—i-Elexe[p

R
u=—RVux e¢+VHB+TIC; (e¢ X Vp)

u the electrical potential, i the magnetic
poloidal flux, v the parallel velocity.

One fluid model: The reduceds model have
the same energy estimate that full MHD
(M2AN 2015).

Two fluid model: open question.

B |n the low density limit the bi-fluid terms generated ill-conditioned Jacobian.

B QOpen question: find another formulation well-conditioned.
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Numerical works
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JOREK-DJANGO

B JOREK is a large code of physics with complicate geometry, models and test cases.
To validate the numeric tools is not a good code.

B JOREK-DJANGO : simplified version of JOREK for numerical studies.

B Developers : A. Ratnani (IPP), E. F., C Caldini-Queiros (IPP), L. Mendoza (IPP), B.
Nkonga (Uni Nice)

B Future users and developers : E. Sonnendriicker (IPP), H. Guillard (INRIA), V.
Grandgirard (CEA), G. Latu (CEA), M. Holzl (IPP)

Main properties

O Implicit Finite element code in toroidal geometry.

0 Generic Splines in quadrangles and triangles (poloidal plane) and Fourier and Splines
for Toroidal direction.

O Linear solvers and preconditioning based on PETSC and SPM (interface for spare
Matrices).

U Models : 2D and 3d elliptic problems, 2D wave and diffusion equations, 2D and 3D
current Hole, 2D Grad Safranov equation and 3D anisotropic diffusion.

0 Possible coupling (not finish) with Selalib.

(/16
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Compatible discretization

B For resistive and extended MHD the discretization chosen is
O High-order isogeometric finite element method for poloidal plane: B-Splines
U Fourier expansion or high-order finite element for toroidal direction.

B Advantages of the B-Splines

U Isogeometry: Allows to describe with high accuracy the geometry and the function
evaluate by the FE method.
Basis function with h and p-refinement (mesh and degree refinement).

k-refinement allows to adapt the regularity (matrices smaller, better-conditioned)
and treat high-order operator.

O
[}

Nb dof error time solving
CO cp T CO cpP T CO cp T
p=3 | 36481 | 4225 3.5E-8 | 1.1E-7 | 1.1E-2 | 9.6E-3
p=4 | 65205 | 4356 | 1.6E-10 | 1.9E-9 | 48E-2 | 2.3E-2

B Comparison of different regularity for a Poisson problem solved with CG-Jacobi.

0 Study the Compatible spaces (H(div) and H(curl)) and DeRham sequence for the
B-Splines and apply this to

B Maxwell equations
B Stokes-Maxwell equations
B Full - MHD

12 /
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Implicit scheme for wave equation

B Damping wave equation (baby problem used for Inertial fusion confinement)
dp+cV-u=0
diu+ cVp = eAu

B This problem is stiff in time for fast waves. CFL condition closed to At < Clg.

B Simple way to solve this: implicit scheme but the model is ill-conditioned.

B Two sources of ill-conditioning: the stiff terms (which depend of €) and the hyperbolic
structure.

Philosophy : Divise, reformulate, approximate and rule

0 Divise: use splitting technic to separate the full coupling system between simple
operators (advection, diffusion etc).

0 Reformulate: rewrite the coupling terms as second order operator simple to invert.

O Approximate: use approximations in the previous step to obtain well-posed and
well-conditioning simple operators.

0 Rule: solve the suitability of sub-systems to obtain an approximation of the solution.

13\
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Principle of the preconditioning

B The implicit system is given by
M U pn+1 B Rp
L D utl TR,

. . _f lg—cbeA O [ BcAtox gt
W|thM—Id,D—(0 Iy — cOeA )'L_<9cAt3y>andu_L'

B The solution of the system is given

PN\ (1 MU M1 0 / 0 R,
S0 0 Pt —LMt Ry

with Pecpyr = D — LM~1U.
B Using the previous Schur decomposition we can solve the implicit wave equation with
the algorithm.

Predictor : Mp* =R,
Velocity evolution :  Pu™! = (—Lp* + R,)
Corrector :  Mp"t! = Myp* — Uu,, 1

B with the matrices:
O P discretize the positive and symmetric operator :

Psenor = Iy — o0y — V(V - Ig) = Iy — cOeAly — c262A¢2 [ O o
dyx Oy r-\
14/16
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Results for the PC with pressure Schur

B Results for classical Preconditioning (no diffusion).

Cells Jacobi ILU(2) ILU(4) ILU(8)
iter | Err | iter Err iter Err iter Err
16*16 - - 140 | 2.8E-1 55 4.8E-1 90 1.4E40
*
cAt=1 gi*gi - - - - - - 1?0 5.E_+0
16*%16 - - 88 2.4E-1 58 4.9E-1 88 1.4E40
cAt=100| 32*32 - - - - - - 110 5.6E+40
64*64 - - - - - - 2000 | 8.8E+1

B Results for the new preconditioning.

PB PEB,
Cells iter pErr iter Err

1 1616 4 [ 49ED2 | 3 | 68E2
32%32 2 | 922 | 1 | 12E1
64*64 2 | 4261 | 1 24
16%16 7 [ T1E1 | 8 | 45E1

S 32%32 6 | 5.3E-1 | 6 | 2.8E40
64%64 6 | LE+0 | - -

B For each sub-system we use a CG+Jacobi solver.
B Velocity Schur operator (coupled diffusion operator) not easy to invert and generate a
large additional cost.

B On fine grid we use CG+MG 2-cycle for velocity Schur operator. (15 \
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==
Some remarks

Schur complement on the velocity since In fluid mechanics and plasma physics the
velocity couple all the other equations.
Problem : Schur complement on the velocity not so well-conditioned.

Wave problem of the hyperbolic problem :

U Pressure and (u,n) propagate at the speed *+c,

O (u X n) propagate at the speed 0.

Idea: split the propagation (static and non static waves) in the Schur complement
using the vorticity equation:

oru+cVp=1Ff, = 9:(V xu)=Vxf,

Predictor : Mp* =R,

Vorticity evolution :  w"! = R(R,)

Velocity evolution :  Pu""! = (aR(w""!) — Lp* + R,)
Corrector :  Mp"t! = Mup* — Uu, 1

with R the matrix of the curl operator, & = c?0?At? and Pscpyr = Iy — (ecO + a)A.

The method, the propagation properties and the vorticity prediction can be
generalized for compressible fluid mechanics.

Adaptivity : In the PC, we want use different discretization that for the full model
(less order, other toroidal discretization etc).
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