Models and numerical methods for instabilities in the Tokamak

E. Franck¹, A. Ratnani², A. Lessig², B. Nkonga³, H. Guillard⁴.E. Sonnendrücker². M. Hölzl²

24 september 2015

Inria

¹INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France

²Max-Planck-Institut für Plasmaphysik, Garching, Germany

³University of Nice, France

⁴INRIA Sophia-Antipolis, Castor team, France

Outline

Mathematical context and JOREK code

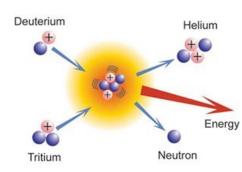
Numerical works

E. Franck

Mathematical context and JOREK code

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas is ionized and gives a plasma which can be controlled by magnetic and electric fields
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.



Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas is ionized and gives a plasma which can be controlled by magnetic and electric fields
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

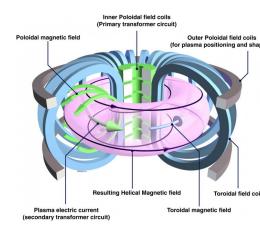
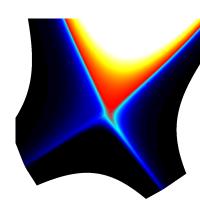


Figure: Tokamak

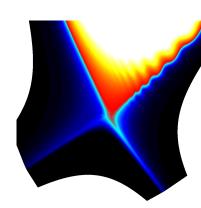
- In the tokamak some instabilities can appear in the plasma or at the edge of the plasma.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can damage the tokamak.
 - □ Edge Localized Modes (ELM's):
 - Periodic edge instabilities which can damage the Tokamak.
- For example the ELM's are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).



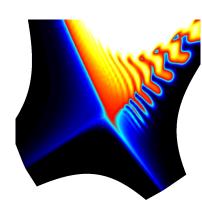
- In the tokamak some instabilities can appear in the plasma or at the edge of the plasma.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - □ **Disruptions**: Violent instabilities which can damage the tokamak.
 - Edge Localized Modes (ELM's):
 Periodic edge instabilities which can

damage the Tokamak.

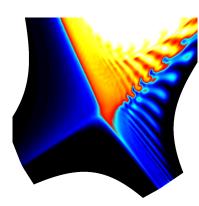
- For example the ELM's are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).



- In the tokamak some instabilities can appear in the plasma or at the edge of the plasma.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - ☐ **Disruptions**: Violent instabilities which can damage the tokamak.
 - Edge Localized Modes (ELM's):
 Periodic edge instabilities which can damage the Tokamak.
- For example the ELM's are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).



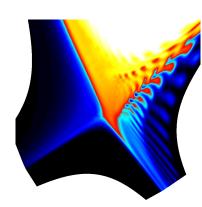
- In the tokamak some instabilities can appear in the plasma or at the edge of the plasma.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak:
 - **Disruptions**: Violent instabilities which can damage the tokamak.
 - ☐ Edge Localized Modes (ELM's):
 - Periodic edge instabilities which can damage the Tokamak.
- For example the ELM's are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).



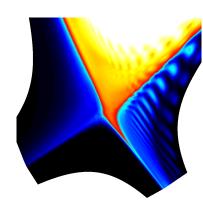
- In the tokamak some instabilities can appear in the plasma or at the edge of the plasma.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - ☐ **Disruptions**: Violent instabilities which can damage the tokamak.
 - ☐ Edge Localized Modes (ELM's):
 Periodic edge instabilities which can

damage the Tokamak.

- For example the ELM's are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).



- In the tokamak some instabilities can appear in the plasma or at the edge of the plasma.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - □ **Disruptions**: Violent instabilities which can damage the tokamak.
 - □ Edge Localized Modes (ELM's):
 - Periodic edge instabilities which can damage the Tokamak.
- For example the ELM's are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).



Vlasov equation

- First model to describe a plasma: Two species Vlasov-Maxwell kinetic equation.
- We define $f_s(t, \mathbf{x}, \mathbf{v})$ the distribution function associated with the species s. $\mathbf{x} \in D_{\mathbf{x}}$ and $\mathbf{v} \in \mathbb{R}^3$.

Two fluids Vlasov equation

$$\begin{cases} \text{ $\partial_t f_s + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_s = C_s = \sum_t C_{st}, \\ \frac{1}{c^2} \partial_t \mathbf{E} - \nabla \times \mathbf{B} = -\mu_0 \mathbf{J}, \\ \partial_t \mathbf{B} = -\nabla \times \mathbf{E}, \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \cdot \mathbf{E} = \frac{\sigma}{\varepsilon_0}. \end{cases}$$

- Derivation of two-fluid model:
 - \square We apply this operator $\int_{R^3} g(\mathbf{v})(\cdot)$ on the equation.
 - \square $g(\mathbf{v})_s = 1, m_s \mathbf{v}, m_s |\mathbf{v}|^2.$
- Using
 - $\begin{array}{ll} \Box & \int_{D_{\boldsymbol{v}}} m_s \boldsymbol{v} C_{ss} d\boldsymbol{v} = 0, \quad \int_{D_{\boldsymbol{v}}} m_s |\boldsymbol{v}|^2 C_{ss} d\boldsymbol{v} = 0, \\ \Box & \int_{D_{\boldsymbol{v}}} g(\boldsymbol{v})_s C_{st} d\boldsymbol{v} + \int_{D_{\boldsymbol{v}}} g(\boldsymbol{v})_t C_{ts} d\boldsymbol{v} = 0. \end{array}$

Two fluid model

Computing the moment of the Vlasov equations we obtain the two-fluid model

Two fluid moments

$$\begin{cases} & \partial_t n_s + \nabla_{\mathbf{x}} \cdot (m_s n_s \mathbf{u}_s) = 0, \\ & \partial_t (m_s n_s \mathbf{u}_s) + \nabla_{\mathbf{x}} \cdot (m_s n_s \mathbf{u}_s \otimes \mathbf{u}_s) + \nabla_{\mathbf{x}} p_s + \nabla_{\mathbf{x}} \cdot \overline{\overline{\Pi}}_s = \sigma_s \mathbf{E} + \mathbf{J}_s \times \mathbf{B} + \mathbf{R}_s, \\ & \partial_t (m_s n_s \varepsilon_s) + \nabla_{\mathbf{x}} \cdot (m_s n_s \mathbf{u}_s \varepsilon_s + p_s \mathbf{u}_s) + \nabla_{\mathbf{x}} \cdot \left(\overline{\overline{\Pi}}_s \cdot \mathbf{u}_s + \mathbf{q}_s\right) \\ & = \sigma_s \mathbf{E} \cdot \mathbf{u}_s + Q_s + \mathbf{R}_s \cdot \mathbf{u}_s, \\ & \frac{1}{\varepsilon^2} \partial_t \mathbf{E} - \nabla \times \mathbf{B} = -\mu_0 \mathbf{J}, \\ & \partial_t \mathbf{B} = -\nabla \times \mathbf{E}, \\ & \nabla \cdot \mathbf{B} = 0, \quad \nabla \cdot \mathbf{E} = \frac{\sigma}{\varepsilon_0}. \end{cases}$$

- $n_s=\int_{D_{f v}}f_sd{f v}$ the particle number , $n_s{f u}_s=\int_{D_{f v}}{f v}f_sd{f v}$ the momentum, ϵ_s the energy.
- The isotropic pressure are p_s , $\overline{\overline{\Pi}}_s$ the stress tensors and q_s the heat fluxes.
- \blacksquare R_s and Q_s associated with the interspecies collision (force and energy transfer).
- The current is given by $J = \sum_s J_s = \sum_s \sigma_s u_s$ with $\sigma_s = q_s n_s$.

Assumptions for MHD

- The characteristic velocity $V_0 << c$ which gives $\mu_0 \mathbf{J} = \nabla \times \mathbf{B} + O(\frac{V_0}{c})$.
- Quasi-neutrality $n_i = n_e$ which gives $\rho = \frac{m_i n_i}{m_i} + O(\frac{m_e}{m_i})$ and $\mathbf{u} = \mathbf{u}_i + O(\frac{m_e}{m_i})$

Extended MHD: assumptions and generalized Ohm law

■ Taking the electronic density and momentum equations we obtain

$$m_e\left(\partial_t(n_e\mathbf{u}_e) + \nabla\cdot(n_e\mathbf{u}_e\otimes\mathbf{u}_e)\right) + \nabla p_e = -en_e\mathbf{E} + \mathbf{J}_e\times\mathbf{B} - \nabla\cdot\overline{\overline{\mathbf{\Pi}}}_e + \mathbf{R}_e,$$

• We multiply the previous equation by -e and we define $\mathbf{J}_e = -en_e\mathbf{u}_e$, we obtain

$$\frac{\textit{m}_{e}}{\textit{e}^{2}\textit{n}_{e}}\left(\partial_{t}\textbf{J}_{e}+\nabla\cdot(\textbf{J}_{e}\otimes\textbf{u}_{e})\right)=\textbf{E}+\textbf{u}_{e}\times\textbf{B}+\frac{1}{\textit{en}_{e}}\nabla\textit{p}_{e}+\frac{1}{\textit{en}_{e}}\nabla\cdot\overline{\overline{\textbf{n}}}_{e}-\frac{1}{\textit{en}_{e}}\textbf{R}_{e},$$

■ Using the quasi neutrality, $m_e << m_i$ and $\mathbf{R} = -\mathbf{R}_e = -\eta \frac{e}{m_i} \rho \mathbf{J}$, we obtain

$$\mathbf{E} + \underbrace{\mathbf{u} \times \mathbf{B}}_{\text{drift velocity}} = \underbrace{\eta \mathbf{J}}_{\text{resistivity}} + \underbrace{\frac{m_i}{\rho e} \mathbf{J} \times \mathbf{B}}_{\text{hall term}} - \underbrace{\frac{m_i}{\rho e} \nabla \cdot \overline{\overline{\Pi}}_e - \frac{m_i}{\rho e} \nabla \rho_e}_{\text{pressure term}}.$$

and the the extended MHD:

$$\begin{cases} \begin{array}{l} \partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \rho \partial_{t}\mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = \mathbf{J} \times \mathbf{B} - \nabla \cdot \overline{\overline{\mathbf{n}}}, \\ \\ \partial_{t}\rho + \mathbf{u} \cdot \nabla \rho + \gamma \rho \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{q} = \frac{m_{i}}{e\rho} \mathbf{J} \cdot \left(\nabla p_{e} - \gamma p_{e} \frac{\nabla \rho}{\rho} \right) \\ -\overline{\overline{\mathbf{n}}} : \nabla \mathbf{u} + \overline{\overline{\mathbf{n}}}_{e} : \nabla \left(\frac{m_{i}}{e\rho} \mathbf{J} \right) + \eta |\mathbf{J}|^{2}, \\ \\ \partial_{t}\mathbf{B} = -\nabla \times \left(-\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} - \frac{m_{i}}{\rho e} \nabla \cdot \overline{\overline{\mathbf{n}}}_{e} - \frac{m_{i}}{\rho e} \nabla \rho_{e} + \frac{m_{i}}{\rho e} (\mathbf{J} \times \mathbf{B}) \right), \\ \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{B} = \mathbf{J}. \end{cases}$$

Open questions

- Physical simplification for two fluid plasma
 - The stress tensor: parallel, cross and perpendicular parts. Perp part neglected. Cross part complicate.
- Velocity decomposition

$$\mathbf{u} = (\mathbf{u}, \mathbf{B})\mathbf{B} + \mathbf{E} \times \mathbf{B} + \frac{m_i}{\rho e}\mathbf{B} \times \nabla p_i + O(\frac{p_i^*}{L})$$

- GyroViscous-Cancelation: use this decomposition to kill the cross tensor using the advection terms of the diamagnetic velocity.
- Problem: The energy conservation or dissipation is broken.
- Open-question: Find a simplified model with energy conservation.

- Model reduction using potential formulation
- Aim: Reduce the number of variables and eliminate the fast waves.
- Potential formulation:

$$\mathbf{B} = rac{F_0}{R} \mathbf{e}_{\phi} + rac{1}{R}
abla oldsymbol{\psi} imes \mathbf{e}_{\phi}$$

$$\mathbf{u} = -R\nabla \mathbf{u} \times \mathbf{e}_{\phi} + \mathbf{v}_{||}\mathbf{B} + \mathbf{\tau}_{IC}\frac{R}{\rho}\left(\mathbf{e}_{\phi} \times \nabla \mathbf{p}\right)$$

- **u** the electrical potential, ψ the magnetic poloidal flux, v_{\parallel} the parallel velocity.
- One fluid model: The reduceds model have the same energy estimate that full MHD (M2AN 2015).
- Two fluid model: open question.

Problem: low density limit

- In the low density limit the bi-fluid terms generated ill-conditioned Jacobian.
- Open question: find another formulation well-conditioned.

/16

Numerical works

JOREK-DJANGO

- JOREK is a large code of physics with complicate geometry, models and test cases.
 To validate the numeric tools is not a good code.
- JOREK-DJANGO : simplified version of JOREK for numerical studies.
- Developers: A. Ratnani (IPP), E. F., C Caldini-Queiros (IPP), L. Mendoza (IPP), B. Nkonga (Uni Nice)
- Future users and developers: E. Sonnendrücker (IPP), H. Guillard (INRIA), V. Grandgirard (CEA), G. Latu (CEA), M. Holzl (IPP)

Main properties

- ☐ Implicit Finite element code in toroidal geometry.
- Generic Splines in quadrangles and triangles (poloidal plane) and Fourier and Splines for Toroidal direction.
- Linear solvers and preconditioning based on PETSC and SPM (interface for spare Matrices).
- Models: 2D and 3d elliptic problems, 2D wave and diffusion equations, 2D and 3D current Hole, 2D Grad Safranov equation and 3D anisotropic diffusion.
- □ Possible coupling (not finish) with Selalib.

Compatible discretization

- For resistive and extended MHD the discretization chosen is
 - High-order isogeometric finite element method for poloidal plane: B-Splines
 - Fourier expansion or high-order finite element for toroidal direction.
- Advantages of the B-Splines
 - Isogeometry: Allows to describe with high accuracy the geometry and the function evaluate by the FE method.
 - Basis function with h and p-refinement (mesh and degree refinement).
 - k-refinement allows to adapt the regularity (matrices smaller, better-conditioned) and treat high-order operator.

	Nb dof		error		time solving	
	C^0	C^{p-1}	C ⁰	C^{p-1}	C^0	C^{p-1}
p=3	36481	4225	3.5E-8	1.1E-7	1.1E-2	9.6E-3
p=4	65205	4356	1.6E-10	1.9E-9	4.8E-2	2.3E-2

Comparison of different regularity for a Poisson problem solved with CG-Jacobi.

Future works

- Study the Compatible spaces (H(div)) and H(curl) and DeRham sequence for the B-Splines and apply this to
 - Maxwell equations
 - Stokes-Maxwell equations
 - Full MHD

Innia

Implicit scheme for wave equation

Damping wave equation (baby problem used for Inertial fusion confinement)

$$\left\{ \begin{array}{l} \partial_t p + c \nabla \cdot \mathbf{u} = 0 \\ \\ \partial_t \mathbf{u} + c \nabla p = \varepsilon \Delta \mathbf{u} \end{array} \right.$$

- This problem is stiff in time for fast waves. CFL condition closed to $\Delta t \leq C_1 rac{h}{c}$.
- Simple way to solve this: implicit scheme but the model is ill-conditioned.
- Two sources of ill-conditioning: the stiff terms (which depend of ε) and the hyperbolic structure.

Philosophy: Divise, reformulate, approximate and rule

- Divise: use splitting technic to separate the full coupling system between simple operators (advection, diffusion etc).
- Reformulate: rewrite the coupling terms as second order operator simple to invert.
- □ **Approximate**: use approximations in the previous step to obtain well-posed and well-conditioning simple operators.
- Rule: solve the suitability of sub-systems to obtain an approximation of the solution.

Principle of the preconditioning

The implicit system is given by

$$\left(\begin{array}{cc} M & U \\ L & D \end{array}\right) \left(\begin{array}{c} p^{n+1} \\ \mathbf{u}^{n+1} \end{array}\right) = \left(\begin{array}{c} R_p \\ R_{\mathbf{u}} \end{array}\right)$$

with
$$M=I_d$$
, $D=\left(\begin{array}{cc}I_d-c\theta\varepsilon\Delta&0\\0&I_d-c\theta\varepsilon\Delta\end{array}\right)$, $L=\left(\begin{array}{cc}\theta c\Delta t\partial_x\\\theta c\Delta t\partial_y\end{array}\right)$ and $U=L^t$.

The solution of the system is given

$$\left(\begin{array}{c} p^{n+1} \\ \mathbf{u^{n+1}} \end{array} \right) = \left(\begin{array}{cc} I & M^{-1} U \\ 0 & I \end{array} \right) \left(\begin{array}{cc} M^{-1} & \mathbf{0} \\ 0 & P_{schur}^{-1} \end{array} \right) \left(\begin{array}{cc} I & \mathbf{0} \\ -LM^{-1} & I \end{array} \right) \left(\begin{array}{c} R_p \\ R_\mathbf{u} \end{array} \right)$$

with $P_{schur} = D - LM^{-1}U$.

 Using the previous Schur decomposition we can solve the implicit wave equation with the algorithm.

$$\left\{ \begin{array}{ll} \operatorname{Predictor}: & Mp^* = R_p \\ \operatorname{Velocity evolution}: & P\mathbf{u}^{n+1} = (-Lp^* + R_\mathbf{u}) \\ \operatorname{Corrector}: & Mp^{n+1} = M_hp^* - U\mathbf{u}_{n+1} \end{array} \right.$$

- with the matrices:
 - □ P discretize the positive and symmetric operator :

$$P_{Schur} = I_d - c\varepsilon\theta\Delta I_d - \nabla(\nabla\cdot I_d) = I_d - c\theta\varepsilon\Delta I_d - c2\theta^2\Delta t^2 \begin{pmatrix} \partial_{xx} & \partial_{xy} \\ \partial_{yx} & \partial_{yy} \end{pmatrix}$$

Results for the PC with pressure Schur

Results for classical Preconditioning (no diffusion).

	Cells	Jacobi		ILU(2)		ILU(4)		ILU(8)	
	Cells	iter	Err	iter	Err	iter	Err	iter	Err
	16*16	-	-	140	2.8E-1	55	4.8E-1	90	1.4E+0
$c\Delta t{=}1$	32*32	-	-	-	-	-	-	180	5.E+0
	64*64	-	-	-	-	-	-	-	-
$c\Delta t$ =100	16*16	-	-	88	2.4E-1	58	4.9E-1	88	1.4E+0
	32*32	-	-	-	-	-	-	110	5.6E+0
	64*64	-	-	-	-	-	-	2000	8.8E+1

Results for the new preconditioning.

	Cells	PB_p		PB_u	
	Cells	iter	Err	iter	Err
$a\Delta t=1$	16*16	4	4.9E-2	3	6.8E-2
$a\Delta t=1$	32*32	2	9.2E-2	1	1.2E-1
	64*64	2	4.2E-1	1	24
$a\Delta t=100$	16*16	7	1.1E-1	8	4.5E-1
<i>a</i> Δι—100	32*32	6	5.3E-1	6	2.8E+0
	64*64	6	1.E+0	-	-

- For each sub-system we use a CG+Jacobi solver.
- Velocity Schur operator (coupled diffusion operator) not easy to invert and generate a large additional cost.
 - On fine grid we use CG+MG 2-cycle for velocity Schur operator.

Inria

Some remarks

- Schur complement on the velocity since In fluid mechanics and plasma physics the velocity couple all the other equations.
- **Problem**: Schur complement on the velocity not so well-conditioned.
- Wave problem of the hyperbolic problem :
 - \square Pressure and (\mathbf{u}, \mathbf{n}) propagate at the speed $\pm c$,
 - \square ($\mathbf{u} \times \mathbf{n}$) propagate at the speed $\mathbf{0}$.
- Idea: split the propagation (static and non static waves) in the Schur complement using the vorticity equation:

$$\begin{split} \partial_t \mathbf{u} + c \nabla p &= \mathbf{f}_u \Longrightarrow \partial_t (\nabla \times \mathbf{u}) = \nabla \times \mathbf{f}_u \\ \text{Predictor}: \quad M p^* &= R_p \\ \text{Vorticity evolution}: \quad \mathbf{w}^{n+1} &= R(R_\mathbf{u}) \\ \text{Velocity evolution}: \quad P \mathbf{u}^{n+1} &= \left(\alpha R(\mathbf{w}^{n+1}) - L p^* + R_\mathbf{u} \right) \\ \text{Corrector}: \quad M p^{n+1} &= M_h p^* - U \mathbf{u}_{n+1} \end{split}$$

• with R the matrix of the curl operator, $\alpha = c^2 \theta^2 \Delta t^2$ and $P_{Schur} = I_d - (\varepsilon c\theta + \alpha)\Delta$.

Remarks

- ☐ The method, the propagation properties and the vorticity prediction can be generalized for compressible fluid mechanics.
- Adaptivity: In the PC, we want use different discretization that for the full model (less order, other toroidal discretization etc).