Adaptive Physic-Based Preconditioning for
hyperbolic systems.

Applications to wave and MHD models

28 may 2015

IINRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France
2Max-Planck-Institut fiir Plasmaphysik, Garching, Germany

éw" ........ E. Franck Adaptive Preconditioning



Outline

&
\

1

E. Franck Adaptive Preconditioning



Mathematical context and JOREK code
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Physical context : MHD and ELM's

In the tokamak some instabilities can appear at the edge
of the plasmas.

The simulation to these instabilities is an important
subject for ITER.

e B ELM'’s Simulation
Exemple of Edge Instabilities in the tokamak :

U Disruptions: Violent edge instabilities which can
damage seriously the tokamak.

0 Edge Localized Modes (ELM’s): Periodic edge
instabilities which can damage the Tokamak.

These instabilities are described by MHD models like

90+ V- (pu) =0 -
pdru+pu-Vu+Vp=JxB-V-1
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Time scheme in JOREK code

B The model is 9:A(U) = B(U, t)

For the time stepping we use a Crank Nicholson or Gear scheme :
(1+ AU — CAU™) + ZA(U"1) = 0AtB(U™1) + (1 — 0)AtB(U").
B Defining G(U) = (1+)A(U) — 0AtB(U) and
b(U", U™ 1) = (14 20)A(U") — ZA(U" 1) + (1 - 0)AtB(U")
we obtain the nonlinear problem
G(U™1) = p(U", U™ 1),
B First order linearization

(5

) SU" = —G(U") +b(U",U™T) = R(U"),

with 6U" = U™ —U", and J, = a%{ﬂ") the Jacobian matrix of G(U").

B First order linearization can be replaced by Newton method (more robust).
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==
Linear Solvers

B | inear solver in JOREK: Preconditioning + GMRES iterative solver.

B Principle of the preconditioning (right) step:

O Replace the problem JdUy = R(U") by Py (P, Ji)oUy = R(U").
U Solve the new system with two steps PxdU; = R(U") and (P, 1J)oUy = 6U;

B |f Py is easier to invert than Ji, and Py = J; the linear solving step is more robust and
efficient.

B Preconditioning : algorithm to solve Pxx = b.

Physic-based Preconditioning of JOREK

O Extraction of the blocks which are associated with each toroidal harmonic (diagonal
block).

0 LU factorization of each block.
0 Solve exactly with LU decomposition each subsystem associated with a block.

U Reconstruction of the solution of P,x = b.

B Physic-based preconditioning interpretation: \We neglect in the Jacobian the physical
effects associated with the coupling between the Fourier mods (non diagonal block).
(¢/
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Advantages and defaults of the JOREK Preconditioning

Advantages of the Physic Based JOREK preconditioning

B Very efficient preconditioning in the linear phase.
B Efficient preconditioning for lot of test cases.

B Nice idea to construct a preconditioning using the knowledge of the physic and the
discretization.

Defaults of the Physic Based JOREK preconditioning

B Preconditioning less efficient for case with strong coupling between Fourier modes).

B [mportant CPU cost in the nonlinear phase (factorization is computed often).

B Very important memory consumption (storage of LU decomposition and the Jacobian).
B Not independent to the toroidal discretization.

Aim: design a preconditioning which is:

B efficient in the linear phase (less than the previous one) and in the nonlinear phase,

B independent in the principle to the discretization,
B not so greedy in memory (Compatible with free matrix methods),
]

adaptable to the difficulty of the test case.
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Physic based preconditioning for Waves equations
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Implicit scheme for Damped waves equations

B Damping wave equation (baby problem used for Inertial fusion confinement)
1
9tp+cV-u=0 Btp+gV~u:0
[ 1
diu+cVp cou deu+ EVP _ _gz“

B with o opacity, c light speed and ¢ ~ % = %

B When ¢ — 0 the model can be approximated by d¢p — V - (%Vp) =0.
B This problem is stiff in time. CFL condition is At < Cieh + Coe?.

B Simple way to solve this: implicit scheme but the model is ill-conditioned.
B Two sources of ill-conditioning: the stiff terms (which depend of €) and the hyperbolic
structure.

O allows to treat the stiffness using operator splitting and reformulation of the equations
(rewritting the hyperbolic system as a second order equation well-conditioned which
can be solved easily),

0 can be extend to the nonlinear hyperbolic system as MHD (and resistive MHD with
additional splitting steps).
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R R R R R R R RERERRERERREEE———SS———————
Construction of the preconditioning |

B First we implicit the equation

A A
pn+1 +9?tv . un+1 — pn _ (1 _ Q)th cu”
At Ato

At Ato
+1 +1 +1
u” +9€Vp” +6 2 u” 7u"—(1—9)8Vp"—(1—6) 2 u”
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R R R R R R R RERERRERERREEE———SS———————
Construction of the preconditioning |

B Secondly we rewrite the equation

"+1+9 - LY ur 7p"7(179)%v~u"
"+1+9 Loprtt = au"f(lf())—a?tv a(1—0) A1 o
2
&
| I e
with &2 + foAt
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R R R R R R R RERERRERERREEE———SS———————
Construction of the preconditioning |

B Secondly we rewrite the equation

"+1+9 - bY w 7p"7(179)%v~u"
"+1+9 Loprtt = au"f(lff))—a?tv a(1—0) A1 o
2
&
| I e
with & &2 + foAt

B The implicit system is given by
M U pn+1 B Rp
L D utl )T UR,

aega
withmM=1, D= " O ) u={ 92 Bty )andL= €
0 e e Y ega

B The solution of the system is given by
-1

pn+1 _ M U Rp
untl L D R

_ (1 MU M-t o I 0 Ry

A0 0 (o —LM7t Ru

with Pecpyr = D — LM™LU. r'\
10/1
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Principle of the preconditioning Il

B Using the previous Schur decomposition we can solve the implicit wave equation with
the algorithm.

Predictor : Myp* = R,
Velocity evolution :  Ppu™! = (—Lpp* + Ry,)
Corrector :  Mp"1 = Myup* — Upu, 1

B with the matrices:

' My the mass matrix which discretize the Identity operator
O Uy, discretize the operator U and Ly the discretization of the L operator.
0 Py, discretize the positive and symmetric operator :

_ _ 2“At2 axx axy
Pschur = 1a — 0 &2 ayx ayy

B Remark: in this case, there is no approximation in the Schur, but in many cases
(nonlinear models) we must use an approximation.

B The physic based preconditioning PB(x) solves the previous algorithm with :

0 The Conjugate Gradient with ¢ = 1072 for predictor and correction step.
U The Conjugate Gradient with ¢ = 10 for velocity update step.
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Algorithm of the PhyBas Preconditioning step

B Algorithm and implementation of the PB(x) preconditioning:

( GMRES method

Call preconditioning

Solve_PC(IN: R, OUT: X)

Reconstruction step Extraction step

Construction of sub-RHS:
- Rp (pressure term)
-Ry (velocity term)

Construction of so-
lution X using:

- xp (pressure sol.)

- xu (velocity sol.)

Solving step

-Predictor CG(9)
-Update CG(x)
-Corrector CG(9)

B |n this case we solve the sub-steps with a GC solver.
B We can use also Multi-grid (MG) methods or other methods efficient for symmetric

and diagonal dominant matrix. h
12/
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Results for Waves equation

B Comparison between iterative solver for test case in the diffusion limit o = 1.

Mesh / solvers GC | GC-PC | GMRES | GMRES-PC-Jacobi

. o [ X | X X 7
Mesh 4*4, ¢; iter | - B i o7

% cv X X X v

Mesh 16%16, €1 | jror | = | - - 15E-+4

. o | X [ X X 7
Mesh 4%4, &2 | jier | - | - - 21000
Mesh 16%16, ¢, | & | X | X X X

iter - - - -

B ¢ =10% and g, = 10710,

B The solver tolerance is 10710 for convergence and iter_max=100000. We compute the
average of ten time iterations.

B The GC solver is unstable and cannot solve this type of problem.

B The results show that it is necessary to use a good preconditioning + robust solver
(for general matrix).
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Results for Waves equation

B Comparison between GMRES method with different preconditioning

Mesh / solvers Jac ILU(0) | ILU(4) MG(2) | SOR PB
" cv v v v v v v/
Mesha*4, e | jier | 27 11 38 8 1
time | 72 E-4 | 1.3E-3 | 7.7E-3 | 1.5E-2 | 1.4E-3 | 2.1E-3
a*a s cv 4 4 v X v 4
1 e2 iter | 2.1E4+4 | 11 1 - 8 1
time | 3.6E-1 | 1.3E-3 | 7.7E-3 | - 1.5E-3 | 2.1E-3
" cv v v v v v v
16%16, &1 iter | 1.5E+4 | 18 9 140 20 1
time | 5.0E-0 | 2.3E-2 | 4.0E-1 | 5.0E-1 | 5.0E-2 | 2.1E-2
N cv x v v x v 7
LR iter | - 18 9 - 20 1
time | - 2.3E-2 | 40E-1 | - 5.0E-2 | 2.1E-2
" cv X X v X X v
64764, £ iter | - - 632 - N 1
time | - - 2.0E+1 | - - 4.2E-1

B |LU (Incomplete LU), MG (Multi-grids), SSOR, PB (our physic based PC).

B On fine grid our method is the fastest (and the implementation is not optimal).

11+
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Physic based preconditioning for MHD equations
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Current Hole and preconditioning associated

B Current Hole : reduced problem in cartesian coordinates.

B The model

ot = [, u] + Ay
9:Au = [Au, u] + [, Ap] + vA2u

with w = Au and j = Ayp.

B |n this formulation we split evolution and elliptic equations.

B For the time discretization we use a Cranck-Nicholson scheme and linearize the
nonlinear system to obtain

(7 5)(ah)=(%)

or

Iy — At[, u"] — AtA —A0[yp", -] syn R
[ o e ) ()= (%)
—AO[Y", A] — AtO[-, AP"] A — AtO([A-, u"] + [, Au”] + A2)
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Design of the preconditioning for reduced MHD

PB-PC for Current Hole

Predictor :  Mdpp = Ry

potential update :  Pecpyrdu” = (—LoYp + Ry))
Corrector :  Moy" = Méyy — Usu"”

Current update : 6z = Ady"

Vorticity update : Jdw"” = Adu”

B The schur complement is given by Pecp, = D — LM~1U

B Two approximations for M~

O Slow flow: M~ = At
U Arbitrary flow: find M* such that UM* ~ MU. Consequently

Pl=(D-LM*U)"t = M*(DM* - LU)™,

we obtain

potential update | :  (DM* — LU)éu™* = (—Loyp + Ry))
potential update Il :  du" = M*6u™*

B Last question : Computation of the operator LU (second order form of the coupling

hyperbolic operators). /\
17 /
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Approximation of the Schur complement |

B Computation of Schur complement for (slow flow approximation M~ = At)

Adu

Pschur = At

+u" - V(Adu) 4 du- V(Au") — BvA?5u — 02 AtLU

" Operator LU = B"- V(A(B" - Véu)) + 5580, - V(B Véu).

B B".Véu= —[¢",éu] and u" - Véu = —[6u, u"] et bu-Vu" = —[u",du].

B Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves (rigorous proof missing).

Properties of LU operator

O We consider the L? space. The operator LU is not positive for all du

aj"

< LUbu,6u>pp= [ V(8" Véu)l? - I

(Bl - Vou)(B" - Véu)

0 The LU operator is not self-adjoint : < LUdu,dv >;2#< du, LUSv >»

0 We propose the following approximation LU?PP™* = B" . V(A(B" - Véu)).

O The operator LU3PP™ is positive and self-adjoint.
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Solving the different steps of the PC

B Question How solve each step ?

B The first simple and efficient solver is to use the Multi-Grids methods (MG) efficient
for second order and advection operators.

B But perhaps it can be more efficient to split some terms in the sub-systems to use the
most adapted solver for each operator.

B Example for the Schur complement (L. Chacon paper) using a splitting and an
approximation:

.|
Schur solver | : Adu* = RHS
Schur solver Il : (% +u"- Vi — 61/A> ou™ = du*

Schur solver 11 : (% —B"-V(A(B"- Vld))) Sumtl = gu

U MG methods are adapted for advection diffusion problems.

0 GC is more adapted for symmetric and positive anisotropic operator (smoother for
MG are more complicated for anisotropic problem).

O L. Chacon remark: to replace B" - V(A(B" - Vly)) by A(B"-V(B"- V1))
generate noise.

‘19/1
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Algorithm of the PhyBas Preconditioning step

B Algorithm and implementation of the PB(x) preconditioning:

GMRES method

v

Call preconditioning

Solve_PC(IN: R, OUT: X)

Construction of so- Splitting RHS (de-
lution X using: pend of variables)
- xp (pressure sol.)

- xy (velocity sol.)
Solving step

-Predictor GR-MG
-Update GR-MG
~Corrector GR-MG

(

Slow Schur 1 ) ( Slow Schur 2 ) Arbitrary Schur 2

- All operators (GR-MG) - Coupling Operator (GC) - Coupling Operator (GC)
- Advection vorticity (Gr-MG)

- Advection vorticity (Gr-MG)
-Diffusion vorticity (GR-MG)

~Diffusion vorticity (GR-MG)
-Advection (GR-MG)

B |n the future we will replace GRMES-MG by MG solvers. p

0/
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Results for Current Hole Model

B Comparison between GMRES method with different preconditioning
B 50 time step in the linear phase (kink instability). tol = 1078, iter_max = 10000.

Mesh / solvers Jac | ILU(0) | ILU(4) MG(2) | SOR PB
% B cv X v v X 4 v
Mesh 1616 dt=05 | =¥ | = | 7, . ’ T .
time | - 1.2E-1 1.4E4+0 | - 1.8E-1 | 2.6E+40
% _ cv X v v X X v
Mesh 32*32 dt=1 ter ! 26 9 ! ! 1
time | - 6.8E-1 | 7.2E+0 | - - 9.8E+0

B On fine grid our method is robust (on finest grids it it necessary to increase k for
ILU(k) method).

B This is not optimal because :
O The matrices (7 in this case) are assembled one by one and not at the same time.
U The extraction and reconstruction are made one by one.
O The assembly of the matrices in Django are not optimal (PETSC configuration).
O We solve each sub-system with a GMRES-MG(2) and not just a MG solver.

B 90% of the solving time comes from to the construction of the sub-matrices. In the
future we will assume that it is possible to decrease this part by 10 or 20. h
21/
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Extension for other MHD Models

B The Preconditioning is extendable to the other MHD problems

Extension to full MHD problem

0 The matrix M contains advection and diffusion operators for p, T and B

0 To treat anisotropic operators splitting technics or adapted MG methods can be used.

0 The LU operator (called ideal MHD force operator in the book of Schnack) is given by
(LU)ov =BXxV XV X (ly xB)=JIXV x (Il xB)=V(lg-Vp+ypV - 1ly)] év

0 This positive and self-adjoint operator contains the waves of MHD.

O A possible step to separate the waves can be added to solve easily this operator (work
of S. Jardin)

[ Extension of the method for the generalized Ohm's law is present in the literature.

B The equivalent can be written for reduced MHD models.

‘22/1‘
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Physic based preconditioning for MHD equations
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Problem of memory and " Matrix free” GMRES solver

B An important problem of the PC implicit scheme is the memory consumption.

B |n the current JOREK version the PC implicit method prevent to use fine resolutions.

B First idea: used Free-Matrix method compatible with the previous PC algorithm.

Free Jacobian method

O In the iterative methods we replace JX (with J the Jacobian of G(U")) by

G(U" +€eX) — G(U™)
€

B With this method, it is not necessary to compute and store the full matrix.

U If the iterative method to solve the sub-steps of the PC is not compatible with " free
Jacobian” method, we must store some sub-matrices of the PC.

‘24/1
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Adaptive PhyBas preconditioning

B The PhyBas PC is based on physical approximations of the equations. We can also
add approximations of the discretization in space.

B |ndeed, we can use a less order approximation in the PC to reduce the size of the
matrices and the storage and keep a good efficiency.

Applications to MHD PC

B We can call the preconditioning with

U poloidal and toroidal orders of the B-Splines smaller than the orders used for the
full model.

U poloidal and toroidal regularity of the B-Splines different than the regularity used
for the full model.

O less Fourier harmonics than for the full model (we keep the coupling terms but
neglect harmonics).

B Some restriction and interpolation operators must be added in the "extraction” and
" reconstruction” steps.

B Remark: At the end, the user could choose the order and number of Harmonics for the
PC (different that for the model) and adapt these parameters during the simulation.

25 /
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Algorithm of the adaptive PhyBas Preconditioning step

B Algorithm and implementation of the APB(x) preconditioning:

. 3 N
Reconstruction variables ( GMRES method ) Extraction variables
-Reconstruction lModeI(n,pclﬁrder, n,tor,order)J = Epifiain (RS (k-

pend of variables)

of full solution

A\ 4
[ Call preconditioning ]

- )
Extraction poloidal
Solve_PC(IN: R,m_pol_order, wi
m_tor_order, OUT: X) if m_pol_order<n_pol_order
-Extraction of less

degree coefficients

Reconstruction poloidal

if m_pol_order<n_pol_order
-Reconstruction of high
degree coeffcients

Extraction step

Reconstruction
step

3 5 Extraction toroidal
Reconstruction toroidal

if m_tor_order<n_tor_order
-Extraction of less
degree coefficients

if m_tor_order<'n_tor_order
-Reconstruction of high
degree coeffcients

Solving step

- Slow flows approx.
- Arbitrary flows approx.

B |n the future, it will be important to perform the extraction and reconstruction parts.

‘26/1‘
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Conclusion

‘27/1

E. Franck Adaptive Preconditioning \ y




Conclusion

Conclusion:

B The idea to design a PC is to write the solving step as a suitability of simple operators
(easy to invert) using splitting and reformulation (second order formulation) methods.

B The possible approximations gives the PC algorithm.

B Problem: the proposed method is dependent of the problem and use lot a methods
(CG, MG, GMRES etc) = lot of work to treat all the models.

Possible approximations:

| A

Solving approximation: each sub step can be solve with a small accuracy.

Physical approximation: each subsystem can be simplified to obtain well-conditioned
operators (necessary in the MHD case).

Discretization approximation: the systems of the PC can be solved with less order
numerical methods or coarser grids (with extraction and reconstruction operator).

Multi-discretization approximation: the PC models and the model can be discretized
with different methods (finite element for PC and DG for the full system).

Others applications:

B Shallow water equations and ocean flows: Cemracs 2015 Project.
B Radiative transfer: project with CEA (DAM).

28
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Program of works

Program June-August:

B Add a parallel multigrid solver in DJANGO.

B Optimisation of the PC (big optimization for matrices construction and extraction).
B |mplementation of the PhyBas PC for the 2D and 3D cylindrical current Hole.

B |mplementation of the JOREK PC for the 3D current Hole and comparison.

Program middle 2015- middle 2016:

Implementation of the Free-Matrix methods.

u
\

Optimisation and OpenMp parallelization.
B Validation of the 199 model interfacing JOREK and Django with restart files.

B |mplementation of the adaptive PC (choice of the discretization can be different
between the PC and the full model).

B Extension to the model 303 and Diamagnetic MHD.
B |mplementation in JOREK (V 3.0 7 )

(>*/,
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Call for help

B 3D Current Hole model :

1 1 F .
atﬁ#’ = E[IP, u] — ﬁga¢“+ %J
1 1, . Fo. .
V- (3:Vport) = ﬁ[sz, u + .l ~ R%zx,,, +V - (VY porw)
W=V (Vpu), j=ANY

B We want compare the new preconditioning and the preconditioning of JOREK using
one of these model.

Find a test case

B Model: 3D Current Hole or 3D 199 model.

Initialization : Grad-Safranov with analytical RHS + perturbation toroidal mods.
Boundary condition : homogeneous Dirichlet.

Mesh : Circle or D-shape.

Physic : nonlinear coupling between the modes in the nonlinear phase.

(*/,
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______________________________________________________________________________________
Call for help
B 3D 199 model:
1 1 = )
¥ = gl ul - R*ga¢“+ %J
1

v (p\vpolatu) = 2R

+V- (UVPO/W)

pe 1. 1 1 i F .
[R?|V porul?, p] + E[psz' ul - E[sz pl+ ﬁﬁ/’d] - R%aqu

9¢p = R[o, u] +2p0zu

3:T =R[T,ul+2(y—1)Tdzu

w=V-(Vpqu), j=A"Y

B We want compare the new preconditioning and the preconditioning of JOREK using
one of these model.

Find a test case
B Model: 3D Current Hole or 3D 199 model.

B |nitialization : Grad-Safranov with analytical RHS + perturbation toroidal mods.
B Boundary condition : homogeneous Dirichlet.
B Mesh : Circle or D-shape.
B Physic : nonlinear coupling between the modes in the nonlinear phase.
i - [ 30/
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