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Context and the Django code
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Physical context : MHD and ELM's

B |n the tokamak plasma instabilities can appear.

The simulation of these instabilities is an important
subject for ITER.

Examples of Instabilities in the tokamak : B ELM's Simulation

U Disruptions: Violent instabilities which can seriously
damage the tokamak.

0 Edge Localized Modes (ELM’s): Periodic edge

instabilities which can damage wall components due

to their extremely high energy transfer rate.

These instabilities are described by MHD models like

pdtu+pu-Vu+Vp=JxB-V-0

1 1
——0ip+ u-Vp+LpV-u+V-q
A A
= A2 (Vpe —1pe L) T : Vu+ |42
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wVxB=J, V-B=0 h
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Aim and principle of DJANGO project

Aim of DJANGO project

B Develop a library to test and validate the numerical methods which we use in the

MHD codes with

g more simple models,
' more simple geometries and meshes,
O more simple cases.

B Validate the future numerical heart for JOREK 3.0

| A

Numerical heart of DJANGO

B Full and reduced MHD with bi-fluids and diamagnetic terms.

B Arbitrary high-order and stable Splines on quadrangular and triangular meshes using
Bernstein formalism with refinement.

B New toroidal basis or flexible toroidal discretization.

B Adaptive preconditioning and Jacobian-free method.

Possible coupling with kinetic codes like Selalib.
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Models in DJANGO
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Models in Django
A model in Django is defined by

B The specific parameters of the model or the scheme.

B The weak forms (which depend also of the time scheme).
B The diagnostics computation (norm, energy, mass).
|

The algorithm to solve the problem which can solve successively some operators
(initialization, time loop or solving, diagnostics, etc).

4

Current models implemented in Django

B Elliptic models: 2D-3D Laplacian, 2D Grad-Div operator, 2D Bi-Laplacian and 2D
Grad-Shafranov

B Diffusion models: 2D diffusion equation, 3D anisotropic diffusion equation.

B Mixed hyperbolic-parabolic models: 2D Cartesian and cylindrical Current Hole, 2D
damped wave equations.

4

Future models to be implemented in Django

B Elliptic models: 2D or 3D stokes and stokes-MHD models.
B Hyperbolic models: 3D Maxwell equations, 2D Euler equations.
¥ Mixed hyperbolic-parabolic models: 3D full and reduced MHD (199 and 303 version),-\
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Spatial discretization and meshes in DJANGO
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Meshes and discretization in DJANGO

3D geometry

B Currently the code allows to use 3D geometries: cylinder or torus.

B Current strategy: Tensor product between 2D poloidal meshes and 1D toroidal
uniform meshes.

B Future strategies: Tensor product or real 3D triangular or quadrangular meshes.

y

2D poloidal Meshes

B Triangular or quadrangular meshes generated by CAID (code of A. Ratnani) based on
isoparametric and isogeometric approach.

B Currently the poloidal and toroidal discretization are separated.

B future works and researches: would be realized on the non-singular meshes in the
isoparametric or isogeometric context.
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Current discretization in DJANGO

Philosophy of the discretization

B |soparametric and isogeometric approachs: the physical function are represented with
the same basis functions of used to represent the geometry.

B These approaches allow to align and adapt the meshes to the physical flows (surfaces
aligned mesh).

4

Current discretization in Django

B Hermite Bezier finite element basis (used in JOREK) with different quadrature rules
implemented.

B B-Splines finite element basis with arbitrary order (1 to 5 actually) and regularity (C°
to CP71).

B Remark: the B-Splines on triangles and quadrangles are unified using Bernstein
formalism (A. Ratnani)

B Box-Splines finite element: Splines with quasi-interpolation on triangle used also in
Selalib for transport problems on Hexagonal meshes (L. Mendoza).

(o
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Results for B-Splines and Bezier elements in DJANGO

B Convergence of poloidal discretizations.

Cells

2D laplacian

2D Bi-Laplacian

2D-Wave

Err

Order

Err

Order

Err

Order

HBezier

16*16
32%32
64*64

2.9E-5
1.9E-6

3.9

3.4E-5
2.1E-6

4.0

2.8E-5
1.8E-6

3.95
3.9

B-S2 0

16*16
32%32
64*64

1.2E-7

4.0

1.6E-7

3.8

1.2E-7

B-S2 ¢!

16%16
32%32
64*64

B-S5 ¢

16*16
32%32
64*64

B-S5 ¢*

16%16
32%32
64*64

B Efficiency and conditioning of poloidal basis (Mesh 64*64).

Nb dof time solving
CU Cpfl CU Cpfl
BS p=3 | 36481 | 4225 = =
BS p=4 | 65205 | 4356 - -
Hezier 16384 - 4.4E-3 -
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Future poloidal discretization in DJANGO

B Arbitrary high-order and stable Splines on quadrangular and triangular mesh using
the Bernstein formalism with refinement.

Future works with new PhD student:

B B-Splines on quadrangular and triangular mesh using Bernstein formalism (A.
Ratnani)

B Refinement of the mesh, order and regularity for B-Splines (A. Ratnani, E. Franck +
PhD) also to construct low-order and adaptive preconditioning (next section).

B Compatible finite element using the DeRham sequence to obtain a stable
discretization for non-coercive problems or for problems with involutive constraints (A.
Ratnani, E. Franck, E. Sonnendriicker + PhD).

B Theoretical study of the stability and convergence of these elements (A. Ratnani, E.
Franck, E. Sonnendriicker + PhD).

B Stabilization for convective problems using Petrov-Galerkin methods (B. Nkonga).
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Future and current toroidal discretization in DJANGO

B New toroidal basis or flexible toroidal discretization. I

Current toroidal discretization in DJANGO:

B 1D B-splines (the 3D basis is obtained by tensor product).

B (Classical Fourier expansion.

y

Future toroidal discretization

B Two possibilities: find the more adapted basis (actually it is not clear) or propose
different toroidal discretizations and switch depending on the test case.

B Possible discretizations

0 3D B-Splines on triangular meshes.

0 3D B-Splines on mixed triangular-quadrangular (aligned ?) meshes.

0 Fourier method. Classical Fourier method (current JOREK method) or Mapped
Fourier method (H. Guillard)
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Preconditioning and solver in DJANGO
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Implicit scheme for wave equation

B Damping wave equation (baby problem used for Inertial fusion confinement)
dp+cV-u=0
diu+ cVp = eAu

B This problem is stiff in time for fast waves. CFL condition close to At < Clg.

B Simple way to solve this: implicit scheme but the model is ill-conditioned.

B Two sources of ill-conditioning: the stiff terms (which depend of €) and the hyperbolic
structure.

Philosophy : Divide, reformulate, approximate and solve

0 Divise: use splitting method to separate the full coupling system between simple
operators (advection, diffusion etc).

0 Reformulate: rewrite the coupling terms as second order operator simple to invert.

O Approximate: use approximations in the previous step to obtain well-posed and
well-conditioning simple operators.

[ Solve: solve the suitability of sub-systems to obtain an approximation of the solution.

15\
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Principle of the preconditioning

B The implicit system is given by
M U pn+1 B Rp
L D utl TR,

. . _f lg—cbeA O [ BcAtox gt
W|thM—Id,D—(0 Iy — cOeA )'L_<9cAt3y>andu_L'

B The solution of the system is given by

PN\ (1 MU M1 0 / 0 R,
S0 0 Pt —LMt Ry

with Pecpyr = D — LM~1U.
B Using the previous Schur decomposition, we can solve the implicit wave equation with
the algorithm:

Predictor : Mp* =R,
Velocity evolution :  Pu™! = (—Lp* + R,)
Corrector :  Mp"t! = Myp* — Uu,, 1

B with the matrices:
O P discretize the positive and symmetric operator :

Psenor = Iy — o0y — V(V - Ig) = Iy — cOeAly — c262A¢2 [ O o
dyx Oy r-\
16 /20
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Results for the PC with pressure Schur

B Results for classical Preconditioning (no diffusion).

Cells Jacobi ILU(2) ILU(4) ILU(8)
iter | Err | iter Err iter Err iter Err
16*16 - - 140 | 2.8E-1 55 4.8E-1 90 1.4E40
*
cAt=1 gi*gi - - - - - - 1?0 5.E_+0
16*%16 - - 88 2.4E-1 58 4.9E-1 88 1.4E40
cAt=100| 32*32 - - - - - - 110 5.6E+40
64*64 - - - - - - 2000 | 8.8E+1

B Results for the new preconditioning.

PB PEB,
Cells iter pErr iter Err

1 1616 4 [ 49ED2 | 3 | 68E2
32%32 2 | 922 | 1 | 12E1
64*64 2 | 4261 | 1 24
16%16 7 [ T1E1 | 8 | 45E1

S 32%32 6 | 5.3E-1 | 6 | 2.8E40
64%64 6 | LE+0 | - -

B For each sub-system we use a CG+Jacobi solver.
B Velocity Schur operator (coupled diffusion operator) not easy to invert and generate a
large additional cost.

B On fine grid we use CG+MG 2-cycle for velocity Schur operator. (17 \
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==
Some remarks

B Schur complement on the velocity since In fluid mechanics and plasma physics the
velocity couple all the other equations.
B Problem : Schur complement on the velocity not so well-conditioned.

B Wave problem of the hyperbolic problem :
O Pressure and (u,n) are propagated at the speed +c,
O (ux n) is propagated at the speed 0.

B |dea: split the propagation (static and non static waves) in the Schur complement
using the vorticity equation:

dru+cVp="Ff, = 0:(V xu)=V xf,

Predictor : Mp* =R,

Vorticity evolution :  w"! = R(R,)

Velocity evolution :  Pu""! = (aR(w""!) — Lp* + R,)
Corrector :  Mp"™1 = Myup* — Uu,.1

B with R the matrix of the curl operator, & = c?6?At? and Pscpyr = lg — (ec + &)A.

' The method, the propagation properties and the vorticity prediction can be
generalized for compressible fluid mechanics.
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Future solver in DJANGO

Adaptive and efficient preconditioning for mixte hyperbolic-parabolic problems and full or
reduced MHD with free-jacobian matrix.

Possible evolution to have more efficiency
|

The Mass Lumping: replace the mass matrix (in the PC) by diagonal matrix.

B Optimization: algorithm where the matrices are assembled together.

B Jacobian Free: use the jacobian free method for the full matrix and for the
subsystems of the PC when it is possible.

Additional Splitting: If an operator is to complex to invert we can use a operator
splitting to invert easier operators.

Geometric Multi-grid with B-Splines: to invert the subsystems in the PC.

4

Adaptive PC

B Some matrices of the PC cannot be written with Jacobian-Free method.
B |dea: use discretization in the PC with a low memory consumption.

B Possible Solution: Adaptive preconditioning where the order and the type of
discretization is different between the model and the PC.

2\
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==
Conlusion

B Basic models, discretizations and solvers are present and validated in the code.

B A basic MPI parallelization is present but lot of work must be realized to obtain a
efficient code.

B Coupling with JOREK: The following important step is the coupling of Django and
JOREK (using restart files) to validate the numerical method on realistic cases.

Peoples on Django for the new year

B An engineer (ADT Nice, 2 years): triangular Powell-Sabin finite element, Mapped
Fourier method and parallelization.

B An engineer (Bavarian founding in IPP 6 mouth): Jacobian Free method,
parallelization open-ACC.

® An PhD (IPP): Compatible B-Splines for Maxwell and MHD models, physic-based
preconditioning and adaptivity.

B An Post-doc (IPP) : On the meshes construction.

B All the current developers and perhaps new peoples if you are interested.
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