# Uniform asymptotic preserving and well-balanced schemes for hyperbolic systems with source terms

E. Franck<sup>1</sup>, C. Buet<sup>2</sup>, B. Després <sup>3</sup> T.Leroy<sup>23</sup>, L. Mendoza <sup>4</sup>

Applied mathematics seminar, Nantes University

22 october 2015

 $^{1}/_{34}$ 

<sup>&</sup>lt;sup>1</sup>INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France

<sup>&</sup>lt;sup>2</sup>CEA DAM, Arpajon, France

<sup>&</sup>lt;sup>3</sup>LJLL, UPMC, France

<sup>&</sup>lt;sup>4</sup>IPP and TUM, Garching bei München, Germany

# Outline

Mathematical and physical context

AP scheme for the  $P_1$  model

Extension to the Euler model



E. Franck

Mathematic and physical context



## Stiff hyperbolic systems

Stiff hyperbolic system with source terms:

$$\partial_t \mathbf{U} + \frac{1}{\varepsilon} \partial_x F(\mathbf{U}) + \frac{1}{\varepsilon} \partial_y G(\mathbf{U}) = \frac{1}{\varepsilon} S(\mathbf{U}) - \frac{\sigma}{\varepsilon^2} R(\mathbf{U}), \ \mathbf{U} \in \mathbb{R}^n$$

with  $\varepsilon \in ]0,1]$  et  $\sigma > 0$ .

- Subset of solutions given by the balance between the source terms and the convective part:
  - □ **Diffusion solutions** for  $\varepsilon \to 0$  and  $S(\mathbf{U}) = 0$ :

$$\partial_t \mathbf{V} - \operatorname{div} (K(\nabla \mathbf{V}, \sigma)) = 0, \quad \mathbf{V} \in \operatorname{Ker} R.$$

 $\square$  **Steady-state** for  $\sigma=0$  et  $\varepsilon \to 0$  :

$$\partial_{\mathsf{x}} F(\mathsf{U}) + \partial_{\mathsf{y}} G(\mathsf{U}) = S(\mathsf{U}).$$

 Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative hydrodynamic (hydrodynamic + linear transport of photon).

WB and AP schemes

#### Notion of WB and AP schemes

Acoustic equation with damping and gravity:

$$\left\{ \begin{array}{ll} \partial_t p + \frac{1}{\varepsilon} \partial_x u = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p = -\frac{1}{\varepsilon} g - \frac{\sigma}{\varepsilon^2} u, \end{array} \right. \longrightarrow \partial_t p - \partial_x \left( \frac{1}{\sigma} (\partial_x p + g) \right) = 0.$$

- Steady-state: u = 0,  $\partial_x p = -g$ .
- **Godunov-type** schemes give an error homogeneous to  $O(\Delta x)$ .
- For nearly uniform flows, spurious velocities larger that physical velocity.
- Important deviation of the steady-state.
- WB scheme: discretize the steady-state exactly of with high accuracy.
- Ref: S. Jin, A steady-state capturing method for hyperbolic method with geometrical source terms.
- To construct WB and AP schemes: incorporate the source in the fluxes to capture the balance between source and convective terms.

- Consistency of **Godunov-type** schemes:  $O(\frac{\Delta x}{\varepsilon} + \Delta t)$ .
- CFL condition:  $\Delta t (\frac{1}{\Lambda_{X\varepsilon}} + \frac{\sigma}{\varepsilon^2}) \leq 1$ .
- Consistency of AP schemes:  $O(\Delta x + \Delta t)$ .
- CFL condition: degenerate on parabolic CFL at the limit.
- Ref: S. Jin, D. Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation.

# Reduced bibliography

| 1D asymptotic preserving schemes □ S. Jin, D. Levermore, <i>Numerical schemes for hyperbolic conservation laws with</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stiff relaxation terms, (1996).  C. Berthon, R. Turpault, Asymptotic preserving HLL schemes, (2011).  L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hyperbolic heat equations, (2002).  □ C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M₁ model of radiative transfer in two space dimensions, (2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>C. Chalons, M. Girardin, S. Kokh, Large time step asymptotic preserving numerical schemes for the gas dynamics equations with source terms, (2013).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Well balanced schemes for chemotaxis and Euler equations</li> <li>R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis, (2012).</li> <li>V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, A well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity, (2015).</li> <li>J. Greenberg, A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations, (1996).</li> <li>R. Kappeli, S. Mishra, Well-balanced schemes for the Euler equations with gravitation, (2013).</li> </ul> |
| <ul> <li>2D asymptotic preserving schemes</li> <li>A. Duran, F. Marche, R.Turpault, C. Berthon, Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes, (2015).</li> <li>C. Berthon, G. Moebs, C. Sarazin-Desbois and R. Turpault. An AP scheme for</li> </ul>                                                                                                                                                                                                                                                                                                                        |

loría

(2014)

systems of conservation laws with source terms on 2D unstructured meshes,

#### Exemple of AP and WB Godunov schemes

■ **Jin-Levermore (or Gosse-Toscani) scheme**. Plug the balance law  $\partial_x Ep = -\frac{\sigma}{\varepsilon}u + O(\varepsilon^2)$  in the fluxes. We write

$$p(x_j) = p(x_{j+\frac{1}{2}}) + (x_j - x_{j+\frac{1}{2}}) \partial_x p(x_{j+\frac{1}{2}})$$
  
$$p(x_j) = p(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} u(x_{j+\frac{1}{2}})$$

Coupling the previous relation (and the same for  $x_{i+1}$ ) with the fluxes

$$\left\{ \begin{array}{l} u_j + p_j = u_{j+\frac{1}{2}} + p_{j+\frac{1}{2}} + \frac{\sigma \Delta x}{2\varepsilon} u_{j+\frac{1}{2}}, \\ u_{j+1} - p_{j+1} = u_{j+\frac{1}{2}} - p_{j+\frac{1}{2}} + \frac{\sigma \Delta x}{2\varepsilon} u_{j+\frac{1}{2}}. \end{array} \right.$$

■ To finish, we take the following source term  $\frac{1}{2}(u_{j+\frac{1}{2}}+u_{j-\frac{1}{2}})$ .

#### Gosse-Toscani scheme:

$$\left\{ \begin{array}{l} \frac{p_{j}^{n+1}-p_{j}^{n}}{\Delta^{t}} + \frac{M}{2} \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2\varepsilon\Delta x} - \frac{M}{2} \frac{p_{j+1}^{n}-2p_{j}^{n}+p_{j-1}^{n}}{2\varepsilon\Delta x} = 0, \\ \frac{u_{j}^{n+1}-u_{j}^{n}}{2\varepsilon\Delta x} + \frac{M}{2} \frac{p_{j+1}^{n}-p_{j-1}^{n}}{2\varepsilon\Delta x} - \frac{M}{2} \frac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{2\varepsilon\Delta x} + \frac{M}{2} \frac{\sigma}{2} u_{i}^{n} = 0, \end{array} \right.$$

with  $M = \frac{2\varepsilon}{2\varepsilon + \sigma \Delta x}$ .

- Consistency error of the **Gosse-Toscani** scheme:  $O(\Delta x + \Delta t)$ .

  Explicit CFL:  $\Delta t \left(\frac{1}{\Delta x \epsilon}\right) \le 1$ , Semi-implicit CFL:  $\Delta t \left(\frac{1}{\Delta x \epsilon + \Delta x^2}\right) \le 1$ .
- (nria-

# Numerical example

**Validation test for the AP scheme**: the data are p(0,x) = G(x) with G(x) a Gaussian u(0, x) = 0 and  $\sigma = 1$ ,  $\varepsilon = 0.001$ .





| Scheme               | L <sup>1</sup> error | CPU time   |
|----------------------|----------------------|------------|
| Godunov, 10000 cells | 0.0366               | 1485m4.26s |
| Godunov, 500 cells   | 0.445                | 0m24.317s  |
| AP, 500 cells        | 0.0001               | 0m15.22s   |
| AP, 50 cells         | 0.0065               | 0m0.054s   |

# Schémas "Asymptotic preserving" 2D

Classical extension in 2D of the Jin-Levermore scheme: modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady-state in the fluxes.



lacksquare  $I_{jk}$  and  $oldsymbol{\mathbf{n}}_{jk}$  the normal and length associated with the edge  $\partial\Omega_{jk}$ .

## Asymptotic limit of the hyperbolic scheme:

$$\mid \Omega_j \mid \partial_t p_j(t) - \frac{1}{\sigma} \sum_k l_{jk} \frac{p_k^n - p_j^n}{d(\mathbf{x}_j, \mathbf{x}_k)} = 0.$$

- $||P_h^0 P_h|| \rightarrow 0$  only on strong geometrical conditions.
- Additional difficulty in 2D: The basic extension of AP schemes do not converge on 2D general meshes  $\forall \varepsilon$ .

Unita E. Franck WB and AP schemes

# Example of unstructured meshes

E. Franck





WB and AP schemes

AP scheme for the  $P_1$  model



E. Franck WB and AP schemes

#### Nodal scheme: linear case

■ Linear case: P<sub>1</sub> model

$$\left\{ \begin{array}{ll} \partial_t p + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u}) = 0, \\ \\ \partial_t \mathbf{u} + \frac{1}{\varepsilon} \nabla p = -\frac{\sigma}{\varepsilon^2} \mathbf{u}. \end{array} \right. \longrightarrow \partial_t p - \operatorname{div}\left(\frac{1}{\sigma} \nabla p\right) = 0.$$

#### Idea:

Nodal finite volume methods for  $P_1$  model + AP and WB method.

#### Nodal schemes:

The fluxes are localized at the nodes of the mesh (for the classical scheme this is at the edge).

- Nodal geometrical quantities  $\mathbf{C}_{jr} = \nabla_{\mathbf{x}_r} |\Omega_j|$ .

#### Notations



#### 2D AP schemes

#### Nodal AP schemes

$$\begin{cases} &|\Omega_j| \partial_t \rho_j(t) + \frac{1}{\varepsilon} \sum_r (\mathbf{u}_r, \mathbf{C}_{jr}) = 0, \\ &|\Omega_j| \partial_t \mathbf{u}_j(t) + \frac{1}{\varepsilon} \sum_r \mathbf{p} \mathbf{c}_{jr} = \mathbf{S}_j. \end{cases}$$

Classical nodal fluxes:

$$\left\{ \begin{array}{l} \mathbf{p} \mathbf{c}_{jr} - p_j \mathbf{C}_{jr} = \widehat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r), \\ \sum_j \mathbf{p} \mathbf{c}_{jr} = \mathbf{0}, \end{array} \right.$$

with  $\widehat{\alpha}_{jr} = \frac{\mathbf{c}_{jr} \otimes \mathbf{c}_{jr}}{\|\mathbf{c}_{jr}\|}$ .

• New fluxes obtained plugging steady-state  $\nabla p = -\frac{\sigma}{\varepsilon} \mathbf{u}$  in the fluxes:

$$\left\{ \begin{array}{l} \mathbf{p} \mathbf{c}_{jr} - p_j \mathbf{C}_{jr} = \widehat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r) - \frac{\sigma}{\varepsilon} \widehat{\beta}_{jr} \mathbf{u}_r, \\ \left( \sum_j \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon} \sum_j \widehat{\beta}_{jr} \right) \mathbf{u}_r = \sum_j p_j \mathbf{C}_{jr} + \sum_j \widehat{\alpha}_{jr} \mathbf{u}_j. \end{array} \right.$$

with  $\widehat{\beta}_{jr} = \mathbf{C}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j)$ .

- Source term: (1)  $\mathbf{S}_{i} = -\frac{\sigma}{c^{2}} |\Omega_{i}| \mathbf{u}_{i}$  ou (2)  $\mathbf{S}_{i} = -\frac{\sigma}{c^{2}} \sum_{r} \widehat{\beta}_{ir} \mathbf{u}_{r}, \sum_{r} \widehat{\beta}_{jr} = \widehat{I}_{d} |\Omega_{j}|.$
- Using the second source term and rewriting the scheme we obtain an local semi implicit scheme with a CFL independent of  $\varepsilon$ .

# Assumptions for the convergence proof

#### Geometrical assumptions

- $\qquad (\mathbf{u}, \left(\sum_{j} \frac{\mathbf{c}_{jr} \otimes \mathbf{c}_{jr}}{|\mathbf{c}_{ir}|}\right) \mathbf{u}) \geq \gamma h(\mathbf{u}, \mathbf{u}),$
- $(\mathbf{u}, (\sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_r \mathbf{x}_j)) \mathbf{u}) \geq \alpha h^2(\mathbf{u}, \mathbf{u}).$
- First and second assumptions: true on all non degenerated meshes.
- Last assumption: we have obtained sufficient but not necessary conditions on the meshes to satisfy this assumption.
- Example for triangles: all the angles must be larger that 12 degrees.

#### Assumption on regularity and initial data

- $\mathbf{u}(t=0,\mathbf{x})=-\frac{\varepsilon}{\sigma}\nabla\rho(t=0,\mathbf{x})$
- Regularity for exact data:  $V(t, x) \in H^4(\Omega)$
- Regularity for initial data of the scheme:  $V_h(t=0, x) \in L^2(\Omega)$

schemes 14/34

# Uniform convergence in space

- Naive convergence estimate :  $||P_b^{\varepsilon} P^{\varepsilon}||_{\text{naive}} \leq C\varepsilon^{-b}h^c$
- Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

$$||P_h^\varepsilon - P^\varepsilon||_{L^2} \leq \min(||P_h^\varepsilon - P^\varepsilon||_{\textit{naive}}, ||P_h^\varepsilon - P_h^0|| + ||P_h^0 - P^0|| + ||P^\varepsilon - P^0||)$$



We obtain:

$$||P^\varepsilon_h - P^\varepsilon||_{L^2} \leq C \min(\varepsilon^{-b} h^c, \varepsilon^a + h^d + \varepsilon^e))$$

Comparing  $\varepsilon$  and  $\varepsilon_{threshold} = h^{\frac{ac}{a+b}}$  we obtain the final estimation:

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \leq h^{\frac{ac}{a+b}}$$

Inria

E. Franck

#### Diffusion scheme

# Limit diffusion scheme $(P_h^0)$

$$\left\{ \begin{array}{l} \mid \Omega_{j} \mid \partial_{t} \rho_{j}(t) - \sum_{r} (\mathbf{u}_{r}, \mathbf{C}_{jr}) = 0, \\ \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{j} = \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{r}, \\ \sigma A_{r} \mathbf{u}_{r} = \sum_{j} \rho_{j} \mathbf{C}_{jr}, \quad A_{r} = - \sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_{r} - \mathbf{x}_{j}). \end{array} \right.$$



- **Problem**: estimate  $||P_h^{\varepsilon} P_h^0||$ .
- In practice, we have obtained  $||P_h^{\varepsilon} P_h^0|| \le C \frac{\varepsilon}{h}.$

#### Condition H:

The discrete Hessian of  $P_h^0$  can be bounded or the error estimate  $\|P_h^{\varepsilon} - P_h^0\|$  can be obtained independently of the discrete Hessian.

(nría-

#### Diffusion scheme

# Limit diffusion scheme $(P_h^0)$

$$\begin{cases} &|\Omega_{j}| \partial_{t} p_{j}(t) - \sum_{r} (\mathbf{u}_{r}, \mathbf{C}_{jr}) = 0, \\ &\sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{j} = \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{r}, \\ &\sigma A_{r} \mathbf{u}_{r} = \sum_{j} p_{j} \mathbf{C}_{jr}, \quad A_{r} = -\sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_{r} - \mathbf{x}_{j}). \end{cases}$$



- **Problem**: estimate  $||P_h^{\varepsilon} P_h^0||$ .
- In practice, we have obtained  $||P_h^{\varepsilon} P_h^0|| < C_{\overline{h}}^{\varepsilon}$ .
- Introduction of an intermediary diffusion scheme  $DA_h^{\varepsilon}$ .
- $DA_h^{\varepsilon}$ :  $P_h^{\varepsilon}$  scheme with  $\partial_t \mathbf{F}_j = \mathbf{0}$ .
- In the previous estimation we replace  $P_b^0$  by  $DA_b^{\varepsilon}$ .

#### Condition H:

The discrete Hessian of  $P_h^0$  can be bounded or the error estimate  $\|P_h^\varepsilon-P_h^0\|$  can be obtained independently of the discrete Hessian.

(nría-

#### Final results

#### Space result:

We assume that the assumptions are verified. There exist C(T) > 0 such that:

$$\|\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}\|_{L^{2}([0,T]\times\Omega)} \leq Cf(h,\varepsilon) \parallel p_{0} \parallel_{H^{4}(\Omega)} \leq Ch^{\frac{1}{4}} \parallel p_{0} \parallel_{H^{4}(\Omega)}$$

with

$$f(h, \varepsilon) = \min\left(\sqrt{\frac{h}{\varepsilon}}, \varepsilon \max\left(1, \sqrt{\frac{\varepsilon}{h}}\right) + h + (h + \varepsilon) + \varepsilon\right)$$

- Case  $\varepsilon \leq h$ :  $\|\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}\| \leq C_{1} \min(\sqrt{\frac{\varepsilon}{h}}, 1) \leq C_{1} h$
- Case  $\varepsilon \ge h$ :  $\|\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}\| \le C_{1} \min(\sqrt{\frac{h}{\varepsilon}}, \sqrt{\frac{\varepsilon^{3}}{h}})$
- Introducing  $\varepsilon_{thresh} = h^{\frac{1}{2}}$  we prove that the worst case is  $\|\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}\| \leq C_{2}h^{\frac{1}{4}}$ .

#### Space-time result:

Wa assume that the assumptions are verified. There exist C > 0 such that:

$$\|\mathbf{V}^{\varepsilon}(t_n) - \mathbf{V}_h^{\varepsilon}(t_n)\|_{L^2(\Omega)} \le C \left(f(h,\varepsilon) + \Delta t^2\right) \| p_0 \|_{H^4(\Omega)}$$

**Remark**: The condition H is not satisfied. The diffusion scheme used is  $DA_{\varepsilon}$ .

# Intermediary results I

#### Estimation of $||\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}||$ :

We assume that assumptions are verified. There exist C > 0 such that:

$$\|\mathbf{V}_h^\varepsilon - \mathbf{V}^\varepsilon\|_{L^\infty((0,T):L^2(\Omega))} \leq C\sqrt{\frac{h}{\varepsilon}}.$$

- Principle of proof:
  - $\Box$  Control the stability of the discrete quantities  $\mathbf{u}_r$  and  $\mathbf{u}_i$  by  $\varepsilon$
  - $\square$  We define the error  $E(t) = ||\mathbf{V}^{\varepsilon} \mathbf{V}_h^{\varepsilon}||_{L^2}$  and we estimate  $E^{'}(t)$  using Young and Cauchy-Schwartz inequalities, stability estimates and integration in time.

# Estimation of $||DA_h^{\varepsilon} - P^0||$ :

Wa assume that the assumptions are verified. There exist  $\mathcal{C}_1>0$  such that:

$$||\mathbf{V}_h^0 - \mathbf{V}^0||_{L^2(\Omega)} \le C_1(T)(h+\varepsilon), \qquad 0 < t \le T.$$

- Principle of proof:
  - $\Box$  Control the stability of the discrete quantities  $\nabla_r E$  and  $E_j$ .
  - ☐ Consistance study of Div and Grad discrete operators.
    - $\Box$   $L^2$  estimate using consistency error and Gronwall lemma.

# Intermediary results II

## Estimate $||P_h^{\varepsilon} - DA_h^{\varepsilon}||$ :

We assume that the assumptions are verified. There exist  $C_2(T) > 0$  such that:

$$||\mathbf{V}_h^\varepsilon - \mathbf{V}_h||_{L^2(\Omega)} \leq C_2(T)\varepsilon \max\left(1, \sqrt{\varepsilon h^{-1}}\right) + Ch, \qquad 0 < t \leq T.$$

## Estimate $||P^{\varepsilon} - P^{0}||$ :

We assume that the assumptions are verified. There exist  $C_3(T) > 0$  such that:

$$||\mathbf{V}^{\varepsilon} - \mathbf{V}^{0}||_{L^{2}(\Omega)} \leq C_{3}(T)\varepsilon, \qquad 0 < t \leq T.$$

- Principe of proof:
  - □ Write  $P^0 = P^{\varepsilon} + R$  (resp  $DA_h^{\varepsilon} = P_h^{\varepsilon} + R$ ) with R a residue.
  - $\Box$  Find a bound with  $\varepsilon$  of the residue.
  - $\ \square \ L^2$  estimate of the difference between the two models and between the two schemes

WB and AP schemes

## Analysis of AP schemes: modified equations

- To understand the behavior of the scheme, we use the modified equations method.
- The modified equation associated with the Upwind scheme is

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \partial_x u - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p - \frac{\Delta x}{2\varepsilon} \partial_{xx} u = -\frac{\sigma}{\varepsilon^2} u. \end{cases}$$

Plugging  $\varepsilon \partial_x p + O(\varepsilon^2) = -\sigma u$  in the first equation, we obtain the diffusion limit

$$\partial_t p - \frac{1}{\sigma} \partial_{xx} p - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0.$$

Conclusion: the regime is captured only on fine grids.  The modified equation associated to the Gosse-Toscani scheme is

$$\left\{ \begin{array}{l} \partial_t p + M \frac{1}{\varepsilon} \partial_x u - M \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + M \frac{1}{\varepsilon} \partial_x p - M \frac{\Delta x}{2\varepsilon} \partial_{xx} u = -M \frac{\sigma}{\varepsilon^2} u. \end{array} \right.$$

■ Plugging  $M\varepsilon\partial_x p + O(\varepsilon^2) = -M\sigma u$  in the first equation, we obtain the diffusion limit

$$\partial_t p - \frac{M}{\sigma} \partial_{xx} p - \frac{1 - M}{\sigma} \partial_{xx} p = 0$$

 Conclusion: the regime is capture only on all grids.

#### Construction of the AP scheme in 2D

- We must modify the viscosity to a consistent diffusion scheme with the good coefficient on coarse grids.
- We must also discretize correctly the source term and the gradient of pressure to obtain a consistent diffusion scheme on fine grids (WB schemes).

#### AP scheme vs classical scheme

Test case: heat fundamental solution. Results for different hyperbolic scheme with  $\varepsilon = 0.001$  on Kershaw mesh.



E. Franck

# Uniform convergence

- lacksquare condense periodic solution for the  $P_1$  model.
- $p(t, \mathbf{x}) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$
- Convergence study for  $\varepsilon = h^{\gamma}$  on random mesh.



- Numerical results show that the error is homogenous to  $O(h\varepsilon + h^2)$ .
- Theoretical estimate that we can hope:  $O((h\varepsilon)^{\frac{1}{2}} + h)$ .
- Non optimal estimation in the intermediary regime.

E. Franck

lnia

WB and AP schemes

# Uniform convergence

- lacksquare arepsilon dependent periodic solution for the  $P_1$  model.
- $p(t, \mathbf{x}) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$
- Convergence study for  $\varepsilon = h^{\gamma}$  on random mesh.



- Numerical results show that the error is homogenous to  $O(h\varepsilon + h^2)$ .
- Theoretical estimate that we can hope:  $O((h\varepsilon)^{\frac{1}{2}} + h)$ .
- Non optimal estimation in the intermediary regime.

lnría-

E. Franck

**Extension to the Euler model** 



E. Franck WB and AP schemes

## Euler equation with external forces

Euler equation with gravity and friction:

$$\left\{ \begin{array}{l} \partial_t \rho + \frac{1}{\varepsilon^\alpha} \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho \mathbf{u} + \frac{1}{\varepsilon^\alpha} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon^\alpha} \nabla \rho = -\frac{1}{\varepsilon^\alpha} (\rho \nabla \phi + \frac{\sigma}{\varepsilon^\beta} \rho \mathbf{u}), \\ \partial_t \rho e + \frac{1}{\varepsilon^\alpha} \operatorname{div}(\rho \mathbf{u} e) + \operatorname{div}(\rho \mathbf{u}) = -\frac{1}{\varepsilon^\alpha} (\rho (\nabla \phi, \mathbf{u}) + \frac{\sigma}{\varepsilon^\beta} \rho (\mathbf{u}, \mathbf{u})). \end{array} \right.$$

lacksquare with  $\phi$  the gravity potential,  $\sigma$  the friction coefficient.

#### Subset of solutions:

• Hydrostatic Steady-state ( $\alpha = 1$ ,  $\beta = 0$ ):

$$\left\{ \begin{array}{l} \mathbf{u}=\mathbf{0},\\ \nabla p=-\rho\nabla\phi. \end{array} \right.$$

- High friction limit ( $\alpha = 0$ ,  $\beta = 1$ ), no gravity:  $\mathbf{u} = \mathbf{0}$
- Diffusion limit ( $\alpha = 1$ ,  $\beta = 1$ ):

$$\left\{ \begin{array}{l} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho e + \operatorname{div}(\rho \mathbf{u} e) + \rho \operatorname{div} \mathbf{u} = 0, \\ \mathbf{u} = -\frac{1}{\sigma} \left( \nabla \phi + \frac{1}{\rho} \nabla \rho \right). \end{array} \right.$$

# Design of AP nodal scheme I

#### Idea:

Modify the Lagrange+remap classical scheme with the Jin-Levermore method

Classical Lagrange+remap scheme (LP scheme):

$$\left\{ \begin{array}{l} \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \frac{1}{\varepsilon^{\alpha}} \left( \sum_{R_{+}} \mathbf{u}_{jr}\rho_{j} + \sum_{R_{-}} \mathbf{u}_{jr}\rho_{k(r)} \right) = 0 \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j}\mathbf{u}_{j} + \frac{1}{\varepsilon^{\alpha}} \left( \sum_{R_{+}} \mathbf{u}_{jr}(\rho \mathbf{U})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho \mathbf{U})_{k(r)} + \sum_{r} \mathbf{p} \mathbf{C}_{jr} \right) = 0 \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j}\mathbf{e}_{j} + \frac{1}{\varepsilon^{\alpha}} \left( \sum_{R_{+}} \mathbf{u}_{jr}(\rho \mathbf{e})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho \mathbf{e})_{k(r)} + \sum_{r} (\mathbf{p} \mathbf{C}_{jr}, \mathbf{u}_{r}) \right) = 0 \end{array} \right.$$

with Lagrangian fluxes

$$\begin{cases}
\mathbf{G}_{jr} = p_j \mathbf{C}_{jr} + \rho_j c_j \hat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r) \\
\sum_{j} \rho_j c_j \hat{\alpha}_{jr} \mathbf{u}_r = \sum_{j} p_j \mathbf{C}_{jr} + \sum_{j} \rho_j c_j \hat{\alpha}_{jr} \mathbf{u}_j
\end{cases}$$

■ Advection fluxes:  $\mathbf{u}_{jr} = (\mathbf{C}_{jr}, \mathbf{u}_r), \ R_+ = (r/\mathbf{u}_{jr} > 0), \ R_- = (r/\mathbf{u}_{jr} < 0)$  et  $\rho_{k(r)} = \frac{\sum_{j/\mathbf{u}_{jr} > 0} \mathbf{u}_{jr} \rho_j}{\sum_{j/\mathbf{u}_{jr} > 0} \mathbf{u}_{jr}}.$ 

E. Franck WB and AP schemes

## Design of AP nodal scheme II

#### Jin Levermore method:

Plug the relation  $\nabla p + O(\varepsilon^2) = -\rho \nabla \phi - \frac{\sigma}{\varepsilon} \rho \mathbf{u}$  in the Lagrangian fluxes

The modified scheme is given by

$$\left\{ \begin{array}{l} \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \frac{1}{\varepsilon^{\alpha}} \left( \sum_{R_{+}} \mathbf{u}_{jr}\rho_{j} + \sum_{R_{-}} \mathbf{u}_{jr}\rho_{k(r)} \right) = 0 \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j}\mathbf{u}_{j} + \frac{1}{\varepsilon^{\alpha}} \left( \sum_{R_{+}} \mathbf{u}_{jr}(\rho\mathbf{u})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho\mathbf{u})_{k(r)} + \sum_{r} \mathbf{p}\mathbf{C}_{jr} \right) \\ = -\frac{1}{\varepsilon^{\alpha}} \left( \sum_{r} \hat{\beta}_{jr}(\rho\nabla\phi)_{r} + \frac{\sigma}{\varepsilon\beta} \sum_{r} \rho_{r} \hat{\beta}_{jr}\mathbf{u}_{r} \right) \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \frac{1}{\varepsilon^{\alpha}} \left( \sum_{R_{+}} \mathbf{u}_{jr}(\rho\mathbf{e})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho\mathbf{e})_{k(r)} + \sum_{r}(\mathbf{p}\mathbf{C}_{jr}, \mathbf{u}_{r}) \right) \\ = -\frac{1}{\varepsilon^{\alpha}} \left( \sum_{r} (\hat{\beta}_{jr}(\rho\nabla\phi)_{r}, \mathbf{u}_{r}) + \frac{\sigma}{\varepsilon\beta} \sum_{r} \rho_{r}(\mathbf{u}_{r}, \hat{\beta}_{jr}\mathbf{u}_{r}) \right) \end{array} \right.$$

with the new Lagrangian fluxes

$$\begin{cases} \mathbf{p}\mathbf{C}_{jr} = p_{j}\mathbf{C}_{jr} + \rho_{j}c_{j}\hat{\alpha}_{jr}(\mathbf{u}_{j} - \mathbf{u}_{r}) - \hat{\beta}_{jr}(\rho\nabla\phi)_{r} - \frac{\sigma}{\varepsilon^{\beta}}\rho_{r}\hat{\beta}_{jr}\mathbf{u}_{r} \\ \left(\sum_{j}\rho_{j}c_{j}\hat{\alpha}_{jr} + \frac{\sigma}{\varepsilon^{\beta}}\rho_{r}\sum_{j}\hat{\beta}_{jr}\right)\mathbf{u}_{r} = \sum_{j}\rho_{j}\mathbf{C}_{jr} + \sum_{j}\rho_{j}c_{j}\hat{\alpha}_{jr}\mathbf{u}_{j} - (\sum_{j}\hat{\beta}_{jr})(\rho\nabla\phi)_{r} \end{cases}$$

and  $(\rho \nabla \phi)_r$  a discretization of  $\rho \nabla \phi$  at the interface.

E. Franck

Caria-

WB and AP schemes

## **Properties**

#### Limit diffusion scheme:

If the local matrices are invertible then the LR-AP scheme tends to the following scheme

$$\begin{cases} & \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \left(\sum_{R_{+}}(\mathbf{C}_{jr}, \mathbf{u}_{r})\rho_{j} + \sum_{R_{-}}(\mathbf{C}_{jr}, \mathbf{u}_{r})\rho_{k(r)}\right) = 0 \\ & \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \left(\sum_{R_{+}}(\mathbf{C}_{jr}, \mathbf{u}_{r})(\rho e)_{j} + \sum_{R_{-}}(\mathbf{C}_{jr}, \mathbf{u}_{r})(\rho e)_{k(r)} + p_{j} \sum_{r}(\mathbf{C}_{jr}, \mathbf{u}_{r})\right) = 0 \\ & \sigma \rho_{r} \left(\sum_{j} \hat{\beta}_{jr}\right) \mathbf{u}_{r} = \sum_{j} p_{j} \mathbf{C}_{jr} - \left(\sum_{j} \hat{\beta}_{jr}\right) (\rho \nabla \phi)_{r} \end{cases}$$

- The nodal gradient formula  $\nabla_r p = \left(\sum_j \hat{\beta}_{jr}\right)^{-1} \left(\sum_j p_j \mathbf{C}_{jr}\right)$  is a consistent and convergent approximation of the gradient on unstructured meshes (Consistency study+Gronwall's lemma).
- For  $p = K\rho$ , numerically the schemes converge at the first scheme.
- If we use a second order advection scheme for the remap part. The full scheme converges with the second order.
- Open question: Verify this for a non isothermal pressure law as perfect gas law.

WB and AP schemes

## Well balanced property

#### Well balanced property

- We define the discrete gradient  $\nabla_r p = -(\sum_i \hat{\beta}_{ir})^{-1} \sum_i p_i \mathbf{C}_{ir}$  and  $\rho_r$  an average of  $\rho_i$ around  $x_r$ .
- If the initial data are given by the discrete steady-state  $\nabla_r p = -(\rho \nabla \phi)_r$ ,  $\rho_i^{n+1} = \rho_i^n$ ,  $\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} \text{ and } e_{i}^{n+1} = e_{i}^{n},$
- Remark: The spatial error for a steady-state is only governed by the error between discrete steady-state and the continuous steady-state

#### High order reconstruction of steady-state

- Aim: Conserve the stability property of the first order scheme, but discretize the steady-state with a high order accuracy or exactly.
- Method: design high order discrete steady-state
- The discrete steady-state is given  $(\sum_i \hat{\beta}_{jr})^{-1} \sum_i p_j \mathbf{C}_{jr} = -\rho_r (\sum_i \hat{\beta}_{jr})^{-1} \sum_i \phi_j \mathbf{C}_{jr}$ .
- If  $\rho_r$  is an arithmetic average around a node r, this discrete steady-state is a second order approximation of the continuous one.

WR and AP schemes E. Franck

# High order discretization of the steady-state

- To begin we consider the steady-state  $\nabla p = -\rho \nabla \phi$
- we integrate on the dual cell  $\Omega_r^*$  (volume  $V_r$ ) to obtain

$$V_r\left(\frac{1}{V_r}\int_{\Omega_r^*}\nabla\rho(\mathbf{x})\right) = -V_r\left(\frac{1}{V_r}\int_{\Omega_r^*}\rho(\mathbf{x})\nabla\phi(\mathbf{x})\right).$$

• We introduce 3 polynomials  $\overline{\rho}_r(\mathbf{x})$  (order q),  $\overline{\rho}_r(\mathbf{x})$  and  $\overline{\phi}_r(\mathbf{x})$  (q+1 order) with

$$\int_{\Omega_r^*} \overline{\rho}_r(\mathbf{x}) = \mid \Omega_I \mid \rho_I, \quad \int_{\Omega_r^*} \overline{\rho}_r(\mathbf{x}) = \mid \Omega_I \mid \rho_I, \quad \int_{\Omega_r^*} \overline{\phi}_r(\mathbf{x}) = \mid \Omega_I \mid \phi_I$$

- and  $l \in S(r)$  (S(r) a subset of cell around the node r).
- Now we incorporate this high-order reconstruction in the scheme. For this we need to have a pressure gradient which corresponds to the viscosity of the scheme.
- We obtain a *q*-order steady-state:

$$-\underbrace{\left(\sum_{j}\hat{\beta}_{jr}\right)^{-1}\sum_{j}\rho_{j}\mathbf{C}_{jr}}_{=-(\rho\nabla\phi)_{r}^{HO}}$$

with

$$(\rho \nabla \phi)_r^{HO} = \frac{1}{V_r} \left( \left( \int_{\Omega_r^*} \nabla \rho(\mathbf{x}) \right) + \left( \int_{\Omega_r^*} \rho(\mathbf{x}) \nabla \phi(\mathbf{x}) \right) \right) + \left( \sum_i \hat{\beta}_{jr} \right)^{-1} \sum_i \rho_j \mathbf{C}_{jr}$$

# Numerical result: large opacity

- Test case: sod problem with  $\sigma > 0$ ,  $\varepsilon = 1$  and  $\nabla \phi = 0$ .
- $\sigma = 1$

AP scheme,  $\rho$ 

non-AP scheme,  $\rho$ 



# Numerical result: large opacity

- Test case: sod problem with  $\sigma > 0$ ,  $\varepsilon = 1$  and  $\nabla \phi = 0$ .
- $\sigma = 10^6$



Urria E. Franck WB and AP schemes

#### Result for steady-state

- 1D Steady-state:  $\rho(t, x) = 3 + 2\sin(2\pi x)$ , u(t, x) = 0
- $p(t,x) = 3 + 3\sin(2\pi x) \frac{1}{2}\cos(4\pi x)$  and  $\phi(x) = -\sin(2\pi x)$ . Random 1D Grid.

| Г     | Cells | LR     |      | LR-AP(2) |      | LR-AP O(3) |      | LR-AP O(4) |      |
|-------|-------|--------|------|----------|------|------------|------|------------|------|
| Cells |       | Error  | q    | Error    | q    | Error      | q    | Error      | q    |
|       | 20    | 0.8335 | -    | 0.0102   | -    | 0.0079     | -    | 0.0067     | -    |
|       | 40    | 0.4010 | 1.05 | 0.0027   | 1.91 | 8.4E-4     | 3.23 | 1.5E-4     | 5.48 |
|       | 80    | 0.2065 | 0.96 | 7.0E-4   | 1.95 | 7.7E-5     | 3.45 | 4.1E-6     | 5.19 |
|       | 160   | 0.1014 | 1.02 | 1.7E-4   | 2.04 | 7.0E-6     | 3.46 | 1.0E-7     | 5.36 |

**2D Steady-state**:  $\rho(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$ ,  $u(t, \mathbf{x}) = 0$ ,  $p(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$  ans  $\phi = (\mathbf{x}, \mathbf{g})$ .

|           | Cells            | LR      |      | LR-AP O(2) |      | LR-AP O(3) |      |
|-----------|------------------|---------|------|------------|------|------------|------|
|           | Cells            | Error   | q    | Error      | q    | Error      | q    |
| Cartesian | $16 \times 16$   | 0.04132 | 1.07 | 0.00147    | 2.34 | 5.47E-6    | 3.8  |
| Mesh      | 32 × 32          | 0.02013 | 1.04 | 3.28E-4    | 2.16 | 3.67E-7    | 3.9  |
|           | $64 \times 64$   | 0.00993 | 1.02 | 7.65E-5    | 2.1  | 2.38E-8    | 3.95 |
|           | $128 \times 128$ | 0.00493 | 1.01 | 1.90E-5    | 2.1  | 1.52E-9    | 3.96 |
| Random    | $16 \times 16$   | 0.05465 | 0.86 | 0.00155    | 2.7  | 8.25E-6    | 3.47 |
| Cartesian | 32 × 32          | 0.02940 | 0.89 | 3.4E-4     | 2.18 | 7.55E-7    | 3.45 |
| Mesh      | $64 \times 64$   | 0.01488 | 0.98 | 7.98E-5    | 2.09 | 8.5E-8     | 3.15 |
|           | $128 \times 128$ | 0.00742 | 1.00 | 2.06E-5    | 1.95 | 2.37E-8    | 1.84 |

#### Result for steady-state

- **1D Steady-state**:  $\rho(t, x) = 3 + 2\sin(2\pi x)$ , u(t, x) = 0
- $p(t,x) = 3 + 3\sin(2\pi x) \frac{1}{2}\cos(4\pi x)$  and  $\phi(x) = -\sin(2\pi x)$ . Random 1D Grid.

| Cells | LR     | LR   |        | LR-AP(2) |        | LR-AP O(3) |        | LR-AP O(4) |  |
|-------|--------|------|--------|----------|--------|------------|--------|------------|--|
| Cells | Error  | q    | Error  | q        | Error  | q          | Error  | q          |  |
| 20    | 0.8335 | -    | 0.0102 | -        | 0.0079 | -          | 0.0067 | -          |  |
| 40    | 0.4010 | 1.05 | 0.0027 | 1.91     | 8.4E-4 | 3.23       | 1.5E-4 | 5.48       |  |
| 80    | 0.2065 | 0.96 | 7.0E-4 | 1.95     | 7.7E-5 | 3.45       | 4.1E-6 | 5.19       |  |
| 160   | 0.1014 | 1.02 | 1.7E-4 | 2.04     | 7.0E-6 | 3.46       | 1.0E-7 | 5.36       |  |

**2D Steady-state**:  $\rho(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$ ,  $u(t, \mathbf{x}) = 0$ ,  $p(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$  ans  $\phi = (\mathbf{x}, \mathbf{g})$ .

|         | Cells            | LR      |      | LR-AP O(2) |      | LR-AP O(3) |      |
|---------|------------------|---------|------|------------|------|------------|------|
|         | Cells            | Error   | q    | Error      | q    | Error      | q    |
| Collela | $16 \times 16$   | 0.08902 | 0.45 | 0.00197    | 2.44 | 2.97E-5    | 1.9  |
| Mesh    | $32 \times 32$   | 0.05725 | 0.63 | 5.9E-4     | 1.74 | 5.43E-6    | 2.45 |
|         | 64 × 64          | 0.03232 | 0.82 | 2 1.6E-4   | 1.88 | 5.93E-7    | 3.19 |
|         | $128 \times 128$ | 0.01711 | 0.92 | 4.5E-5     | 1.86 | 4.68E-8    | 3.66 |
| Kershaw | $16 \times 16$   | 0.08376 | 0.83 | 3.38E-4    | 2.36 | 6.13E-6    | 3.84 |
| Mesh    | $32 \times 32$   | 0.04253 | 0.98 | 7.29E-5    | 2.24 | 3.97E-7    | 3.95 |
|         | 64 × 64          | 0.02060 | 1.05 | 7.87E-5    | 2.13 | 2.03E-8    | 4.3  |
|         | 128 × 128        | 0.00988 | 1.06 | 4.34E-6    | 1.9  | 1.77E-9    | 3.52 |

# Conclusion and perspectives

| Co  | nclusion                                                                                                                                                                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $P_1$ model: First AP scheme on unstructured meshes (now other schemes have been developed).                                                                                              |
|     | $P_1$ <b>model</b> : Uniform proof of convergence on unstructured meshes in 1D and 2D for the implicit scheme.                                                                            |
|     | An extension for general Friedrich's systems have been also studied (algebraic micro-macro decomposition)                                                                                 |
|     | <b>Euler model with external force</b> : AP schemes for the high friction regime. <b>Euler model with external force</b> : new high-order reconstruction of the hydrostatic steady-state. |
|     |                                                                                                                                                                                           |
| Pos | ssible perspectives                                                                                                                                                                       |
|     | $P_1$ model: Theoretical study of the explicit and semi-implicit scheme (CFL independent of $\varepsilon$ ).                                                                              |
|     | <b>Euler model</b> : Entropy study for the AP-WB scheme.                                                                                                                                  |
|     | <b>Euler model</b> : Validate on analytic case the convergence of the diffusion scheme for nonlinear pressure law.                                                                        |
|     | Find a generic procedure to stabilize the nodal schemes (B. Després and E. Labourasse for the Lagrangian Euler equations).                                                                |

(nría-

## Stage CEA DAM

Project: "implicit scheme and preconditioning for radiative transfer" models" with Xavier Blanc, Emmanuel Labourasse + Master student?

## Transport equation (photonics neutronic):

 $\Box$  The distribution function  $f(t, \mathbf{x}, \Omega)$  with  $\Omega$  the direction, c the light speed satisfy

$$\partial_t f + c\mathbf{\Omega} \cdot \nabla f = c\sigma \left( \int_{S^2} f d\mathbf{\Omega} - f \right)$$

 $\square$  The kinetic equations are approximated by linear hyperbolic  $P_n$  systems:

$$\partial_t \mathbf{U} + cA_x \partial_x \mathbf{U} + cA_y \partial_y \mathbf{U} + cA_z \partial_z \mathbf{U} = -c\sigma R \mathbf{U}$$

- Important regimes: free transport regime  $(\sigma \to 0)$ : exact transport of the solution and diffusion regime  $(\sigma \to \infty)$ .
- Problems for explicit scheme: Very large and stiff hyperbolic systems. Stiff hyperbolic CFL for explicit schemes, Stiff parabolic CFL condition for the AP schemes.
- Problems for implicit scheme: the large hyperbolic system (bad structure) and the large ratio between wave velocities ( $\{\lambda_{min}c,....,\lambda_{max}c\}$  with  $\lambda_{min}\approx-1,\lambda_{max}\approx1$ ).
- **Aim**: Test a physic-based preconditioning + GMRES for the  $P_1$  model. Extend this preconditioning to the  $P_n$  models and the transport regime.

(India E. Franck WB and AP schemes

# **Thanks**

Thank you

