Uniform asymptotic preserving and well-balanced schemes for hyperbolic systems with source terms E. Franck¹, C. Buet², B. Després ³ T.Leroy²³, L. Mendoza ⁴ Applied mathematics seminar, Nantes University 22 october 2015 $^{1}/_{34}$ ¹INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France ²CEA DAM, Arpajon, France ³LJLL, UPMC, France ⁴IPP and TUM, Garching bei München, Germany # Outline Mathematical and physical context AP scheme for the P_1 model Extension to the Euler model E. Franck Mathematic and physical context ## Stiff hyperbolic systems Stiff hyperbolic system with source terms: $$\partial_t \mathbf{U} + \frac{1}{\varepsilon} \partial_x F(\mathbf{U}) + \frac{1}{\varepsilon} \partial_y G(\mathbf{U}) = \frac{1}{\varepsilon} S(\mathbf{U}) - \frac{\sigma}{\varepsilon^2} R(\mathbf{U}), \ \mathbf{U} \in \mathbb{R}^n$$ with $\varepsilon \in]0,1]$ et $\sigma > 0$. - Subset of solutions given by the balance between the source terms and the convective part: - □ **Diffusion solutions** for $\varepsilon \to 0$ and $S(\mathbf{U}) = 0$: $$\partial_t \mathbf{V} - \operatorname{div} (K(\nabla \mathbf{V}, \sigma)) = 0, \quad \mathbf{V} \in \operatorname{Ker} R.$$ \square **Steady-state** for $\sigma=0$ et $\varepsilon \to 0$: $$\partial_{\mathsf{x}} F(\mathsf{U}) + \partial_{\mathsf{y}} G(\mathsf{U}) = S(\mathsf{U}).$$ Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative hydrodynamic (hydrodynamic + linear transport of photon). WB and AP schemes #### Notion of WB and AP schemes Acoustic equation with damping and gravity: $$\left\{ \begin{array}{ll} \partial_t p + \frac{1}{\varepsilon} \partial_x u = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p = -\frac{1}{\varepsilon} g - \frac{\sigma}{\varepsilon^2} u, \end{array} \right. \longrightarrow \partial_t p - \partial_x \left(\frac{1}{\sigma} (\partial_x p + g) \right) = 0.$$ - Steady-state: u = 0, $\partial_x p = -g$. - **Godunov-type** schemes give an error homogeneous to $O(\Delta x)$. - For nearly uniform flows, spurious velocities larger that physical velocity. - Important deviation of the steady-state. - WB scheme: discretize the steady-state exactly of with high accuracy. - Ref: S. Jin, A steady-state capturing method for hyperbolic method with geometrical source terms. - To construct WB and AP schemes: incorporate the source in the fluxes to capture the balance between source and convective terms. - Consistency of **Godunov-type** schemes: $O(\frac{\Delta x}{\varepsilon} + \Delta t)$. - CFL condition: $\Delta t (\frac{1}{\Lambda_{X\varepsilon}} + \frac{\sigma}{\varepsilon^2}) \leq 1$. - Consistency of AP schemes: $O(\Delta x + \Delta t)$. - CFL condition: degenerate on parabolic CFL at the limit. - Ref: S. Jin, D. Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation. # Reduced bibliography | 1D asymptotic preserving schemes □ S. Jin, D. Levermore, <i>Numerical schemes for hyperbolic conservation laws with</i> | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | stiff relaxation terms, (1996). C. Berthon, R. Turpault, Asymptotic preserving HLL schemes, (2011). L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the | | hyperbolic heat equations, (2002). □ C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M₁ model of radiative transfer in two space dimensions, (2007). | | C. Chalons, M. Girardin, S. Kokh, Large time step asymptotic preserving numerical schemes for the gas dynamics equations with source terms, (2013). | | Well balanced schemes for chemotaxis and Euler equations R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis, (2012). V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, A well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity, (2015). J. Greenberg, A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations, (1996). R. Kappeli, S. Mishra, Well-balanced schemes for the Euler equations with gravitation, (2013). | | 2D asymptotic preserving schemes A. Duran, F. Marche, R.Turpault, C. Berthon, Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes, (2015). C. Berthon, G. Moebs, C. Sarazin-Desbois and R. Turpault. An AP scheme for | loría (2014) systems of conservation laws with source terms on 2D unstructured meshes, #### Exemple of AP and WB Godunov schemes ■ **Jin-Levermore (or Gosse-Toscani) scheme**. Plug the balance law $\partial_x Ep = -\frac{\sigma}{\varepsilon}u + O(\varepsilon^2)$ in the fluxes. We write $$p(x_j) = p(x_{j+\frac{1}{2}}) + (x_j - x_{j+\frac{1}{2}}) \partial_x p(x_{j+\frac{1}{2}})$$ $$p(x_j) = p(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} u(x_{j+\frac{1}{2}})$$ Coupling the previous relation (and the same for x_{i+1}) with the fluxes $$\left\{ \begin{array}{l} u_j + p_j = u_{j+\frac{1}{2}} + p_{j+\frac{1}{2}} + \frac{\sigma \Delta x}{2\varepsilon} u_{j+\frac{1}{2}}, \\ u_{j+1} - p_{j+1} = u_{j+\frac{1}{2}} - p_{j+\frac{1}{2}} + \frac{\sigma \Delta x}{2\varepsilon} u_{j+\frac{1}{2}}. \end{array} \right.$$ ■ To finish, we take the following source term $\frac{1}{2}(u_{j+\frac{1}{2}}+u_{j-\frac{1}{2}})$. #### Gosse-Toscani scheme: $$\left\{ \begin{array}{l} \frac{p_{j}^{n+1}-p_{j}^{n}}{\Delta^{t}} + \frac{M}{2} \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2\varepsilon\Delta x} - \frac{M}{2} \frac{p_{j+1}^{n}-2p_{j}^{n}+p_{j-1}^{n}}{2\varepsilon\Delta x} = 0, \\ \frac{u_{j}^{n+1}-u_{j}^{n}}{2\varepsilon\Delta x} + \frac{M}{2} \frac{p_{j+1}^{n}-p_{j-1}^{n}}{2\varepsilon\Delta x} - \frac{M}{2} \frac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{2\varepsilon\Delta x} + \frac{M}{2} \frac{\sigma}{2} u_{i}^{n} = 0, \end{array} \right.$$ with $M = \frac{2\varepsilon}{2\varepsilon + \sigma \Delta x}$. - Consistency error of the **Gosse-Toscani** scheme: $O(\Delta x + \Delta t)$. Explicit CFL: $\Delta t \left(\frac{1}{\Delta x \epsilon}\right) \le 1$, Semi-implicit CFL: $\Delta t \left(\frac{1}{\Delta x \epsilon + \Delta x^2}\right) \le 1$. - (nria- # Numerical example **Validation test for the AP scheme**: the data are p(0,x) = G(x) with G(x) a Gaussian u(0, x) = 0 and $\sigma = 1$, $\varepsilon = 0.001$. | Scheme | L ¹ error | CPU time | |----------------------|----------------------|------------| | Godunov, 10000 cells | 0.0366 | 1485m4.26s | | Godunov, 500 cells | 0.445 | 0m24.317s | | AP, 500 cells | 0.0001 | 0m15.22s | | AP, 50 cells | 0.0065 | 0m0.054s | # Schémas "Asymptotic preserving" 2D Classical extension in 2D of the Jin-Levermore scheme: modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady-state in the fluxes. lacksquare I_{jk} and $oldsymbol{\mathbf{n}}_{jk}$ the normal and length associated with the edge $\partial\Omega_{jk}$. ## Asymptotic limit of the hyperbolic scheme: $$\mid \Omega_j \mid \partial_t p_j(t) - \frac{1}{\sigma} \sum_k l_{jk} \frac{p_k^n - p_j^n}{d(\mathbf{x}_j, \mathbf{x}_k)} = 0.$$ - $||P_h^0 P_h|| \rightarrow 0$ only on strong geometrical conditions. - Additional difficulty in 2D: The basic extension of AP schemes do not converge on 2D general meshes $\forall \varepsilon$. Unita E. Franck WB and AP schemes # Example of unstructured meshes E. Franck WB and AP schemes AP scheme for the P_1 model E. Franck WB and AP schemes #### Nodal scheme: linear case ■ Linear case: P₁ model $$\left\{ \begin{array}{ll} \partial_t p + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u}) = 0, \\ \\ \partial_t \mathbf{u} + \frac{1}{\varepsilon} \nabla p = -\frac{\sigma}{\varepsilon^2} \mathbf{u}. \end{array} \right. \longrightarrow \partial_t p - \operatorname{div}\left(\frac{1}{\sigma} \nabla p\right) = 0.$$ #### Idea: Nodal finite volume methods for P_1 model + AP and WB method. #### Nodal schemes: The fluxes are localized at the nodes of the mesh (for the classical scheme this is at the edge). - Nodal geometrical quantities $\mathbf{C}_{jr} = \nabla_{\mathbf{x}_r} |\Omega_j|$. #### Notations #### 2D AP schemes #### Nodal AP schemes $$\begin{cases} &|\Omega_j| \partial_t \rho_j(t) + \frac{1}{\varepsilon} \sum_r (\mathbf{u}_r, \mathbf{C}_{jr}) = 0, \\ &|\Omega_j| \partial_t \mathbf{u}_j(t) + \frac{1}{\varepsilon} \sum_r \mathbf{p} \mathbf{c}_{jr} = \mathbf{S}_j. \end{cases}$$ Classical nodal fluxes: $$\left\{ \begin{array}{l} \mathbf{p} \mathbf{c}_{jr} - p_j \mathbf{C}_{jr} = \widehat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r), \\ \sum_j \mathbf{p} \mathbf{c}_{jr} = \mathbf{0}, \end{array} \right.$$ with $\widehat{\alpha}_{jr} = \frac{\mathbf{c}_{jr} \otimes \mathbf{c}_{jr}}{\|\mathbf{c}_{jr}\|}$. • New fluxes obtained plugging steady-state $\nabla p = -\frac{\sigma}{\varepsilon} \mathbf{u}$ in the fluxes: $$\left\{ \begin{array}{l} \mathbf{p} \mathbf{c}_{jr} - p_j \mathbf{C}_{jr} = \widehat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r) - \frac{\sigma}{\varepsilon} \widehat{\beta}_{jr} \mathbf{u}_r, \\ \left(\sum_j \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon} \sum_j \widehat{\beta}_{jr} \right) \mathbf{u}_r = \sum_j p_j \mathbf{C}_{jr} + \sum_j \widehat{\alpha}_{jr} \mathbf{u}_j. \end{array} \right.$$ with $\widehat{\beta}_{jr} = \mathbf{C}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j)$. - Source term: (1) $\mathbf{S}_{i} = -\frac{\sigma}{c^{2}} |\Omega_{i}| \mathbf{u}_{i}$ ou (2) $\mathbf{S}_{i} = -\frac{\sigma}{c^{2}} \sum_{r} \widehat{\beta}_{ir} \mathbf{u}_{r}, \sum_{r} \widehat{\beta}_{jr} = \widehat{I}_{d} |\Omega_{j}|.$ - Using the second source term and rewriting the scheme we obtain an local semi implicit scheme with a CFL independent of ε . # Assumptions for the convergence proof #### Geometrical assumptions - $\qquad (\mathbf{u}, \left(\sum_{j} \frac{\mathbf{c}_{jr} \otimes \mathbf{c}_{jr}}{|\mathbf{c}_{ir}|}\right) \mathbf{u}) \geq \gamma h(\mathbf{u}, \mathbf{u}),$ - $(\mathbf{u}, (\sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_r \mathbf{x}_j)) \mathbf{u}) \geq \alpha h^2(\mathbf{u}, \mathbf{u}).$ - First and second assumptions: true on all non degenerated meshes. - Last assumption: we have obtained sufficient but not necessary conditions on the meshes to satisfy this assumption. - Example for triangles: all the angles must be larger that 12 degrees. #### Assumption on regularity and initial data - $\mathbf{u}(t=0,\mathbf{x})=-\frac{\varepsilon}{\sigma}\nabla\rho(t=0,\mathbf{x})$ - Regularity for exact data: $V(t, x) \in H^4(\Omega)$ - Regularity for initial data of the scheme: $V_h(t=0, x) \in L^2(\Omega)$ schemes 14/34 # Uniform convergence in space - Naive convergence estimate : $||P_b^{\varepsilon} P^{\varepsilon}||_{\text{naive}} \leq C\varepsilon^{-b}h^c$ - Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse). $$||P_h^\varepsilon - P^\varepsilon||_{L^2} \leq \min(||P_h^\varepsilon - P^\varepsilon||_{\textit{naive}}, ||P_h^\varepsilon - P_h^0|| + ||P_h^0 - P^0|| + ||P^\varepsilon - P^0||)$$ We obtain: $$||P^\varepsilon_h - P^\varepsilon||_{L^2} \leq C \min(\varepsilon^{-b} h^c, \varepsilon^a + h^d + \varepsilon^e))$$ Comparing ε and $\varepsilon_{threshold} = h^{\frac{ac}{a+b}}$ we obtain the final estimation: $$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \leq h^{\frac{ac}{a+b}}$$ Inria E. Franck #### Diffusion scheme # Limit diffusion scheme (P_h^0) $$\left\{ \begin{array}{l} \mid \Omega_{j} \mid \partial_{t} \rho_{j}(t) - \sum_{r} (\mathbf{u}_{r}, \mathbf{C}_{jr}) = 0, \\ \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{j} = \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{r}, \\ \sigma A_{r} \mathbf{u}_{r} = \sum_{j} \rho_{j} \mathbf{C}_{jr}, \quad A_{r} = - \sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_{r} - \mathbf{x}_{j}). \end{array} \right.$$ - **Problem**: estimate $||P_h^{\varepsilon} P_h^0||$. - In practice, we have obtained $||P_h^{\varepsilon} P_h^0|| \le C \frac{\varepsilon}{h}.$ #### Condition H: The discrete Hessian of P_h^0 can be bounded or the error estimate $\|P_h^{\varepsilon} - P_h^0\|$ can be obtained independently of the discrete Hessian. (nría- #### Diffusion scheme # Limit diffusion scheme (P_h^0) $$\begin{cases} &|\Omega_{j}| \partial_{t} p_{j}(t) - \sum_{r} (\mathbf{u}_{r}, \mathbf{C}_{jr}) = 0, \\ &\sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{j} = \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{r}, \\ &\sigma A_{r} \mathbf{u}_{r} = \sum_{j} p_{j} \mathbf{C}_{jr}, \quad A_{r} = -\sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_{r} - \mathbf{x}_{j}). \end{cases}$$ - **Problem**: estimate $||P_h^{\varepsilon} P_h^0||$. - In practice, we have obtained $||P_h^{\varepsilon} P_h^0|| < C_{\overline{h}}^{\varepsilon}$. - Introduction of an intermediary diffusion scheme DA_h^{ε} . - DA_h^{ε} : P_h^{ε} scheme with $\partial_t \mathbf{F}_j = \mathbf{0}$. - In the previous estimation we replace P_b^0 by DA_b^{ε} . #### Condition H: The discrete Hessian of P_h^0 can be bounded or the error estimate $\|P_h^\varepsilon-P_h^0\|$ can be obtained independently of the discrete Hessian. (nría- #### Final results #### Space result: We assume that the assumptions are verified. There exist C(T) > 0 such that: $$\|\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}\|_{L^{2}([0,T]\times\Omega)} \leq Cf(h,\varepsilon) \parallel p_{0} \parallel_{H^{4}(\Omega)} \leq Ch^{\frac{1}{4}} \parallel p_{0} \parallel_{H^{4}(\Omega)}$$ with $$f(h, \varepsilon) = \min\left(\sqrt{\frac{h}{\varepsilon}}, \varepsilon \max\left(1, \sqrt{\frac{\varepsilon}{h}}\right) + h + (h + \varepsilon) + \varepsilon\right)$$ - Case $\varepsilon \leq h$: $\|\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}\| \leq C_{1} \min(\sqrt{\frac{\varepsilon}{h}}, 1) \leq C_{1} h$ - Case $\varepsilon \ge h$: $\|\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}\| \le C_{1} \min(\sqrt{\frac{h}{\varepsilon}}, \sqrt{\frac{\varepsilon^{3}}{h}})$ - Introducing $\varepsilon_{thresh} = h^{\frac{1}{2}}$ we prove that the worst case is $\|\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}\| \leq C_{2}h^{\frac{1}{4}}$. #### Space-time result: Wa assume that the assumptions are verified. There exist C > 0 such that: $$\|\mathbf{V}^{\varepsilon}(t_n) - \mathbf{V}_h^{\varepsilon}(t_n)\|_{L^2(\Omega)} \le C \left(f(h,\varepsilon) + \Delta t^2\right) \| p_0 \|_{H^4(\Omega)}$$ **Remark**: The condition H is not satisfied. The diffusion scheme used is DA_{ε} . # Intermediary results I #### Estimation of $||\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}||$: We assume that assumptions are verified. There exist C > 0 such that: $$\|\mathbf{V}_h^\varepsilon - \mathbf{V}^\varepsilon\|_{L^\infty((0,T):L^2(\Omega))} \leq C\sqrt{\frac{h}{\varepsilon}}.$$ - Principle of proof: - \Box Control the stability of the discrete quantities \mathbf{u}_r and \mathbf{u}_i by ε - \square We define the error $E(t) = ||\mathbf{V}^{\varepsilon} \mathbf{V}_h^{\varepsilon}||_{L^2}$ and we estimate $E^{'}(t)$ using Young and Cauchy-Schwartz inequalities, stability estimates and integration in time. # Estimation of $||DA_h^{\varepsilon} - P^0||$: Wa assume that the assumptions are verified. There exist $\mathcal{C}_1>0$ such that: $$||\mathbf{V}_h^0 - \mathbf{V}^0||_{L^2(\Omega)} \le C_1(T)(h+\varepsilon), \qquad 0 < t \le T.$$ - Principle of proof: - \Box Control the stability of the discrete quantities $\nabla_r E$ and E_j . - ☐ Consistance study of Div and Grad discrete operators. - \Box L^2 estimate using consistency error and Gronwall lemma. # Intermediary results II ## Estimate $||P_h^{\varepsilon} - DA_h^{\varepsilon}||$: We assume that the assumptions are verified. There exist $C_2(T) > 0$ such that: $$||\mathbf{V}_h^\varepsilon - \mathbf{V}_h||_{L^2(\Omega)} \leq C_2(T)\varepsilon \max\left(1, \sqrt{\varepsilon h^{-1}}\right) + Ch, \qquad 0 < t \leq T.$$ ## Estimate $||P^{\varepsilon} - P^{0}||$: We assume that the assumptions are verified. There exist $C_3(T) > 0$ such that: $$||\mathbf{V}^{\varepsilon} - \mathbf{V}^{0}||_{L^{2}(\Omega)} \leq C_{3}(T)\varepsilon, \qquad 0 < t \leq T.$$ - Principe of proof: - □ Write $P^0 = P^{\varepsilon} + R$ (resp $DA_h^{\varepsilon} = P_h^{\varepsilon} + R$) with R a residue. - \Box Find a bound with ε of the residue. - $\ \square \ L^2$ estimate of the difference between the two models and between the two schemes WB and AP schemes ## Analysis of AP schemes: modified equations - To understand the behavior of the scheme, we use the modified equations method. - The modified equation associated with the Upwind scheme is $$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \partial_x u - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p - \frac{\Delta x}{2\varepsilon} \partial_{xx} u = -\frac{\sigma}{\varepsilon^2} u. \end{cases}$$ Plugging $\varepsilon \partial_x p + O(\varepsilon^2) = -\sigma u$ in the first equation, we obtain the diffusion limit $$\partial_t p - \frac{1}{\sigma} \partial_{xx} p - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0.$$ Conclusion: the regime is captured only on fine grids. The modified equation associated to the Gosse-Toscani scheme is $$\left\{ \begin{array}{l} \partial_t p + M \frac{1}{\varepsilon} \partial_x u - M \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + M \frac{1}{\varepsilon} \partial_x p - M \frac{\Delta x}{2\varepsilon} \partial_{xx} u = -M \frac{\sigma}{\varepsilon^2} u. \end{array} \right.$$ ■ Plugging $M\varepsilon\partial_x p + O(\varepsilon^2) = -M\sigma u$ in the first equation, we obtain the diffusion limit $$\partial_t p - \frac{M}{\sigma} \partial_{xx} p - \frac{1 - M}{\sigma} \partial_{xx} p = 0$$ Conclusion: the regime is capture only on all grids. #### Construction of the AP scheme in 2D - We must modify the viscosity to a consistent diffusion scheme with the good coefficient on coarse grids. - We must also discretize correctly the source term and the gradient of pressure to obtain a consistent diffusion scheme on fine grids (WB schemes). #### AP scheme vs classical scheme Test case: heat fundamental solution. Results for different hyperbolic scheme with $\varepsilon = 0.001$ on Kershaw mesh. E. Franck # Uniform convergence - lacksquare condense periodic solution for the P_1 model. - $p(t, \mathbf{x}) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$ - Convergence study for $\varepsilon = h^{\gamma}$ on random mesh. - Numerical results show that the error is homogenous to $O(h\varepsilon + h^2)$. - Theoretical estimate that we can hope: $O((h\varepsilon)^{\frac{1}{2}} + h)$. - Non optimal estimation in the intermediary regime. E. Franck lnia WB and AP schemes # Uniform convergence - lacksquare arepsilon dependent periodic solution for the P_1 model. - $p(t, \mathbf{x}) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$ - Convergence study for $\varepsilon = h^{\gamma}$ on random mesh. - Numerical results show that the error is homogenous to $O(h\varepsilon + h^2)$. - Theoretical estimate that we can hope: $O((h\varepsilon)^{\frac{1}{2}} + h)$. - Non optimal estimation in the intermediary regime. lnría- E. Franck **Extension to the Euler model** E. Franck WB and AP schemes ## Euler equation with external forces Euler equation with gravity and friction: $$\left\{ \begin{array}{l} \partial_t \rho + \frac{1}{\varepsilon^\alpha} \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho \mathbf{u} + \frac{1}{\varepsilon^\alpha} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon^\alpha} \nabla \rho = -\frac{1}{\varepsilon^\alpha} (\rho \nabla \phi + \frac{\sigma}{\varepsilon^\beta} \rho \mathbf{u}), \\ \partial_t \rho e + \frac{1}{\varepsilon^\alpha} \operatorname{div}(\rho \mathbf{u} e) + \operatorname{div}(\rho \mathbf{u}) = -\frac{1}{\varepsilon^\alpha} (\rho (\nabla \phi, \mathbf{u}) + \frac{\sigma}{\varepsilon^\beta} \rho (\mathbf{u}, \mathbf{u})). \end{array} \right.$$ lacksquare with ϕ the gravity potential, σ the friction coefficient. #### Subset of solutions: • Hydrostatic Steady-state ($\alpha = 1$, $\beta = 0$): $$\left\{ \begin{array}{l} \mathbf{u}=\mathbf{0},\\ \nabla p=-\rho\nabla\phi. \end{array} \right.$$ - High friction limit ($\alpha = 0$, $\beta = 1$), no gravity: $\mathbf{u} = \mathbf{0}$ - Diffusion limit ($\alpha = 1$, $\beta = 1$): $$\left\{ \begin{array}{l} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho e + \operatorname{div}(\rho \mathbf{u} e) + \rho \operatorname{div} \mathbf{u} = 0, \\ \mathbf{u} = -\frac{1}{\sigma} \left(\nabla \phi + \frac{1}{\rho} \nabla \rho \right). \end{array} \right.$$ # Design of AP nodal scheme I #### Idea: Modify the Lagrange+remap classical scheme with the Jin-Levermore method Classical Lagrange+remap scheme (LP scheme): $$\left\{ \begin{array}{l} \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \frac{1}{\varepsilon^{\alpha}} \left(\sum_{R_{+}} \mathbf{u}_{jr}\rho_{j} + \sum_{R_{-}} \mathbf{u}_{jr}\rho_{k(r)} \right) = 0 \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j}\mathbf{u}_{j} + \frac{1}{\varepsilon^{\alpha}} \left(\sum_{R_{+}} \mathbf{u}_{jr}(\rho \mathbf{U})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho \mathbf{U})_{k(r)} + \sum_{r} \mathbf{p} \mathbf{C}_{jr} \right) = 0 \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j}\mathbf{e}_{j} + \frac{1}{\varepsilon^{\alpha}} \left(\sum_{R_{+}} \mathbf{u}_{jr}(\rho \mathbf{e})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho \mathbf{e})_{k(r)} + \sum_{r} (\mathbf{p} \mathbf{C}_{jr}, \mathbf{u}_{r}) \right) = 0 \end{array} \right.$$ with Lagrangian fluxes $$\begin{cases} \mathbf{G}_{jr} = p_j \mathbf{C}_{jr} + \rho_j c_j \hat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r) \\ \sum_{j} \rho_j c_j \hat{\alpha}_{jr} \mathbf{u}_r = \sum_{j} p_j \mathbf{C}_{jr} + \sum_{j} \rho_j c_j \hat{\alpha}_{jr} \mathbf{u}_j \end{cases}$$ ■ Advection fluxes: $\mathbf{u}_{jr} = (\mathbf{C}_{jr}, \mathbf{u}_r), \ R_+ = (r/\mathbf{u}_{jr} > 0), \ R_- = (r/\mathbf{u}_{jr} < 0)$ et $\rho_{k(r)} = \frac{\sum_{j/\mathbf{u}_{jr} > 0} \mathbf{u}_{jr} \rho_j}{\sum_{j/\mathbf{u}_{jr} > 0} \mathbf{u}_{jr}}.$ E. Franck WB and AP schemes ## Design of AP nodal scheme II #### Jin Levermore method: Plug the relation $\nabla p + O(\varepsilon^2) = -\rho \nabla \phi - \frac{\sigma}{\varepsilon} \rho \mathbf{u}$ in the Lagrangian fluxes The modified scheme is given by $$\left\{ \begin{array}{l} \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \frac{1}{\varepsilon^{\alpha}} \left(\sum_{R_{+}} \mathbf{u}_{jr}\rho_{j} + \sum_{R_{-}} \mathbf{u}_{jr}\rho_{k(r)} \right) = 0 \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j}\mathbf{u}_{j} + \frac{1}{\varepsilon^{\alpha}} \left(\sum_{R_{+}} \mathbf{u}_{jr}(\rho\mathbf{u})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho\mathbf{u})_{k(r)} + \sum_{r} \mathbf{p}\mathbf{C}_{jr} \right) \\ = -\frac{1}{\varepsilon^{\alpha}} \left(\sum_{r} \hat{\beta}_{jr}(\rho\nabla\phi)_{r} + \frac{\sigma}{\varepsilon\beta} \sum_{r} \rho_{r} \hat{\beta}_{jr}\mathbf{u}_{r} \right) \\ \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \frac{1}{\varepsilon^{\alpha}} \left(\sum_{R_{+}} \mathbf{u}_{jr}(\rho\mathbf{e})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho\mathbf{e})_{k(r)} + \sum_{r}(\mathbf{p}\mathbf{C}_{jr}, \mathbf{u}_{r}) \right) \\ = -\frac{1}{\varepsilon^{\alpha}} \left(\sum_{r} (\hat{\beta}_{jr}(\rho\nabla\phi)_{r}, \mathbf{u}_{r}) + \frac{\sigma}{\varepsilon\beta} \sum_{r} \rho_{r}(\mathbf{u}_{r}, \hat{\beta}_{jr}\mathbf{u}_{r}) \right) \end{array} \right.$$ with the new Lagrangian fluxes $$\begin{cases} \mathbf{p}\mathbf{C}_{jr} = p_{j}\mathbf{C}_{jr} + \rho_{j}c_{j}\hat{\alpha}_{jr}(\mathbf{u}_{j} - \mathbf{u}_{r}) - \hat{\beta}_{jr}(\rho\nabla\phi)_{r} - \frac{\sigma}{\varepsilon^{\beta}}\rho_{r}\hat{\beta}_{jr}\mathbf{u}_{r} \\ \left(\sum_{j}\rho_{j}c_{j}\hat{\alpha}_{jr} + \frac{\sigma}{\varepsilon^{\beta}}\rho_{r}\sum_{j}\hat{\beta}_{jr}\right)\mathbf{u}_{r} = \sum_{j}\rho_{j}\mathbf{C}_{jr} + \sum_{j}\rho_{j}c_{j}\hat{\alpha}_{jr}\mathbf{u}_{j} - (\sum_{j}\hat{\beta}_{jr})(\rho\nabla\phi)_{r} \end{cases}$$ and $(\rho \nabla \phi)_r$ a discretization of $\rho \nabla \phi$ at the interface. E. Franck Caria- WB and AP schemes ## **Properties** #### Limit diffusion scheme: If the local matrices are invertible then the LR-AP scheme tends to the following scheme $$\begin{cases} & \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \left(\sum_{R_{+}}(\mathbf{C}_{jr}, \mathbf{u}_{r})\rho_{j} + \sum_{R_{-}}(\mathbf{C}_{jr}, \mathbf{u}_{r})\rho_{k(r)}\right) = 0 \\ & \mid \Omega_{j} \mid \partial_{t}\rho_{j} + \left(\sum_{R_{+}}(\mathbf{C}_{jr}, \mathbf{u}_{r})(\rho e)_{j} + \sum_{R_{-}}(\mathbf{C}_{jr}, \mathbf{u}_{r})(\rho e)_{k(r)} + p_{j} \sum_{r}(\mathbf{C}_{jr}, \mathbf{u}_{r})\right) = 0 \\ & \sigma \rho_{r} \left(\sum_{j} \hat{\beta}_{jr}\right) \mathbf{u}_{r} = \sum_{j} p_{j} \mathbf{C}_{jr} - \left(\sum_{j} \hat{\beta}_{jr}\right) (\rho \nabla \phi)_{r} \end{cases}$$ - The nodal gradient formula $\nabla_r p = \left(\sum_j \hat{\beta}_{jr}\right)^{-1} \left(\sum_j p_j \mathbf{C}_{jr}\right)$ is a consistent and convergent approximation of the gradient on unstructured meshes (Consistency study+Gronwall's lemma). - For $p = K\rho$, numerically the schemes converge at the first scheme. - If we use a second order advection scheme for the remap part. The full scheme converges with the second order. - Open question: Verify this for a non isothermal pressure law as perfect gas law. WB and AP schemes ## Well balanced property #### Well balanced property - We define the discrete gradient $\nabla_r p = -(\sum_i \hat{\beta}_{ir})^{-1} \sum_i p_i \mathbf{C}_{ir}$ and ρ_r an average of ρ_i around x_r . - If the initial data are given by the discrete steady-state $\nabla_r p = -(\rho \nabla \phi)_r$, $\rho_i^{n+1} = \rho_i^n$, $\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} \text{ and } e_{i}^{n+1} = e_{i}^{n},$ - Remark: The spatial error for a steady-state is only governed by the error between discrete steady-state and the continuous steady-state #### High order reconstruction of steady-state - Aim: Conserve the stability property of the first order scheme, but discretize the steady-state with a high order accuracy or exactly. - Method: design high order discrete steady-state - The discrete steady-state is given $(\sum_i \hat{\beta}_{jr})^{-1} \sum_i p_j \mathbf{C}_{jr} = -\rho_r (\sum_i \hat{\beta}_{jr})^{-1} \sum_i \phi_j \mathbf{C}_{jr}$. - If ρ_r is an arithmetic average around a node r, this discrete steady-state is a second order approximation of the continuous one. WR and AP schemes E. Franck # High order discretization of the steady-state - To begin we consider the steady-state $\nabla p = -\rho \nabla \phi$ - we integrate on the dual cell Ω_r^* (volume V_r) to obtain $$V_r\left(\frac{1}{V_r}\int_{\Omega_r^*}\nabla\rho(\mathbf{x})\right) = -V_r\left(\frac{1}{V_r}\int_{\Omega_r^*}\rho(\mathbf{x})\nabla\phi(\mathbf{x})\right).$$ • We introduce 3 polynomials $\overline{\rho}_r(\mathbf{x})$ (order q), $\overline{\rho}_r(\mathbf{x})$ and $\overline{\phi}_r(\mathbf{x})$ (q+1 order) with $$\int_{\Omega_r^*} \overline{\rho}_r(\mathbf{x}) = \mid \Omega_I \mid \rho_I, \quad \int_{\Omega_r^*} \overline{\rho}_r(\mathbf{x}) = \mid \Omega_I \mid \rho_I, \quad \int_{\Omega_r^*} \overline{\phi}_r(\mathbf{x}) = \mid \Omega_I \mid \phi_I$$ - and $l \in S(r)$ (S(r) a subset of cell around the node r). - Now we incorporate this high-order reconstruction in the scheme. For this we need to have a pressure gradient which corresponds to the viscosity of the scheme. - We obtain a *q*-order steady-state: $$-\underbrace{\left(\sum_{j}\hat{\beta}_{jr}\right)^{-1}\sum_{j}\rho_{j}\mathbf{C}_{jr}}_{=-(\rho\nabla\phi)_{r}^{HO}}$$ with $$(\rho \nabla \phi)_r^{HO} = \frac{1}{V_r} \left(\left(\int_{\Omega_r^*} \nabla \rho(\mathbf{x}) \right) + \left(\int_{\Omega_r^*} \rho(\mathbf{x}) \nabla \phi(\mathbf{x}) \right) \right) + \left(\sum_i \hat{\beta}_{jr} \right)^{-1} \sum_i \rho_j \mathbf{C}_{jr}$$ # Numerical result: large opacity - Test case: sod problem with $\sigma > 0$, $\varepsilon = 1$ and $\nabla \phi = 0$. - $\sigma = 1$ AP scheme, ρ non-AP scheme, ρ # Numerical result: large opacity - Test case: sod problem with $\sigma > 0$, $\varepsilon = 1$ and $\nabla \phi = 0$. - $\sigma = 10^6$ Urria E. Franck WB and AP schemes #### Result for steady-state - 1D Steady-state: $\rho(t, x) = 3 + 2\sin(2\pi x)$, u(t, x) = 0 - $p(t,x) = 3 + 3\sin(2\pi x) \frac{1}{2}\cos(4\pi x)$ and $\phi(x) = -\sin(2\pi x)$. Random 1D Grid. | Г | Cells | LR | | LR-AP(2) | | LR-AP O(3) | | LR-AP O(4) | | |-------|-------|--------|------|----------|------|------------|------|------------|------| | Cells | | Error | q | Error | q | Error | q | Error | q | | | 20 | 0.8335 | - | 0.0102 | - | 0.0079 | - | 0.0067 | - | | | 40 | 0.4010 | 1.05 | 0.0027 | 1.91 | 8.4E-4 | 3.23 | 1.5E-4 | 5.48 | | | 80 | 0.2065 | 0.96 | 7.0E-4 | 1.95 | 7.7E-5 | 3.45 | 4.1E-6 | 5.19 | | | 160 | 0.1014 | 1.02 | 1.7E-4 | 2.04 | 7.0E-6 | 3.46 | 1.0E-7 | 5.36 | **2D Steady-state**: $\rho(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$, $u(t, \mathbf{x}) = 0$, $p(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$ ans $\phi = (\mathbf{x}, \mathbf{g})$. | | Cells | LR | | LR-AP O(2) | | LR-AP O(3) | | |-----------|------------------|---------|------|------------|------|------------|------| | | Cells | Error | q | Error | q | Error | q | | Cartesian | 16×16 | 0.04132 | 1.07 | 0.00147 | 2.34 | 5.47E-6 | 3.8 | | Mesh | 32 × 32 | 0.02013 | 1.04 | 3.28E-4 | 2.16 | 3.67E-7 | 3.9 | | | 64×64 | 0.00993 | 1.02 | 7.65E-5 | 2.1 | 2.38E-8 | 3.95 | | | 128×128 | 0.00493 | 1.01 | 1.90E-5 | 2.1 | 1.52E-9 | 3.96 | | Random | 16×16 | 0.05465 | 0.86 | 0.00155 | 2.7 | 8.25E-6 | 3.47 | | Cartesian | 32 × 32 | 0.02940 | 0.89 | 3.4E-4 | 2.18 | 7.55E-7 | 3.45 | | Mesh | 64×64 | 0.01488 | 0.98 | 7.98E-5 | 2.09 | 8.5E-8 | 3.15 | | | 128×128 | 0.00742 | 1.00 | 2.06E-5 | 1.95 | 2.37E-8 | 1.84 | #### Result for steady-state - **1D Steady-state**: $\rho(t, x) = 3 + 2\sin(2\pi x)$, u(t, x) = 0 - $p(t,x) = 3 + 3\sin(2\pi x) \frac{1}{2}\cos(4\pi x)$ and $\phi(x) = -\sin(2\pi x)$. Random 1D Grid. | Cells | LR | LR | | LR-AP(2) | | LR-AP O(3) | | LR-AP O(4) | | |-------|--------|------|--------|----------|--------|------------|--------|------------|--| | Cells | Error | q | Error | q | Error | q | Error | q | | | 20 | 0.8335 | - | 0.0102 | - | 0.0079 | - | 0.0067 | - | | | 40 | 0.4010 | 1.05 | 0.0027 | 1.91 | 8.4E-4 | 3.23 | 1.5E-4 | 5.48 | | | 80 | 0.2065 | 0.96 | 7.0E-4 | 1.95 | 7.7E-5 | 3.45 | 4.1E-6 | 5.19 | | | 160 | 0.1014 | 1.02 | 1.7E-4 | 2.04 | 7.0E-6 | 3.46 | 1.0E-7 | 5.36 | | **2D Steady-state**: $\rho(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$, $u(t, \mathbf{x}) = 0$, $p(t, \mathbf{x}) = e^{-\mathbf{x}, \mathbf{g}}$ ans $\phi = (\mathbf{x}, \mathbf{g})$. | | Cells | LR | | LR-AP O(2) | | LR-AP O(3) | | |---------|------------------|---------|------|------------|------|------------|------| | | Cells | Error | q | Error | q | Error | q | | Collela | 16×16 | 0.08902 | 0.45 | 0.00197 | 2.44 | 2.97E-5 | 1.9 | | Mesh | 32×32 | 0.05725 | 0.63 | 5.9E-4 | 1.74 | 5.43E-6 | 2.45 | | | 64 × 64 | 0.03232 | 0.82 | 2 1.6E-4 | 1.88 | 5.93E-7 | 3.19 | | | 128×128 | 0.01711 | 0.92 | 4.5E-5 | 1.86 | 4.68E-8 | 3.66 | | Kershaw | 16×16 | 0.08376 | 0.83 | 3.38E-4 | 2.36 | 6.13E-6 | 3.84 | | Mesh | 32×32 | 0.04253 | 0.98 | 7.29E-5 | 2.24 | 3.97E-7 | 3.95 | | | 64 × 64 | 0.02060 | 1.05 | 7.87E-5 | 2.13 | 2.03E-8 | 4.3 | | | 128 × 128 | 0.00988 | 1.06 | 4.34E-6 | 1.9 | 1.77E-9 | 3.52 | # Conclusion and perspectives | Co | nclusion | |-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | P_1 model: First AP scheme on unstructured meshes (now other schemes have been developed). | | | P_1 model : Uniform proof of convergence on unstructured meshes in 1D and 2D for the implicit scheme. | | | An extension for general Friedrich's systems have been also studied (algebraic micro-macro decomposition) | | | Euler model with external force : AP schemes for the high friction regime. Euler model with external force : new high-order reconstruction of the hydrostatic steady-state. | | | | | Pos | ssible perspectives | | | P_1 model: Theoretical study of the explicit and semi-implicit scheme (CFL independent of ε). | | | Euler model : Entropy study for the AP-WB scheme. | | | Euler model : Validate on analytic case the convergence of the diffusion scheme for nonlinear pressure law. | | | Find a generic procedure to stabilize the nodal schemes (B. Després and E. Labourasse for the Lagrangian Euler equations). | (nría- ## Stage CEA DAM Project: "implicit scheme and preconditioning for radiative transfer" models" with Xavier Blanc, Emmanuel Labourasse + Master student? ## Transport equation (photonics neutronic): \Box The distribution function $f(t, \mathbf{x}, \Omega)$ with Ω the direction, c the light speed satisfy $$\partial_t f + c\mathbf{\Omega} \cdot \nabla f = c\sigma \left(\int_{S^2} f d\mathbf{\Omega} - f \right)$$ \square The kinetic equations are approximated by linear hyperbolic P_n systems: $$\partial_t \mathbf{U} + cA_x \partial_x \mathbf{U} + cA_y \partial_y \mathbf{U} + cA_z \partial_z \mathbf{U} = -c\sigma R \mathbf{U}$$ - Important regimes: free transport regime $(\sigma \to 0)$: exact transport of the solution and diffusion regime $(\sigma \to \infty)$. - Problems for explicit scheme: Very large and stiff hyperbolic systems. Stiff hyperbolic CFL for explicit schemes, Stiff parabolic CFL condition for the AP schemes. - Problems for implicit scheme: the large hyperbolic system (bad structure) and the large ratio between wave velocities ($\{\lambda_{min}c,....,\lambda_{max}c\}$ with $\lambda_{min}\approx-1,\lambda_{max}\approx1$). - **Aim**: Test a physic-based preconditioning + GMRES for the P_1 model. Extend this preconditioning to the P_n models and the transport regime. (India E. Franck WB and AP schemes # **Thanks** Thank you