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27 may 2015

1INRIA nancy Grand-Est and IRMA Strasbourg, TONUS team, France
2Max-Planck-Institut für Plasmaphysik, Garching, Germany

E. Franck Adaptive Preconditioning 1/28

1/28



Outline

Mathematical context and JOREK code

Physic based preconditioning for Waves equations

Physic based preconditioning for MHD equations

Conclusion

E. Franck Adaptive Preconditioning 2/28

2/28



Mathematical context and JOREK code

E. Franck Adaptive Preconditioning 3/28

3/28



Iter Project

� Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. A neutron and 17.6 MeV of
free energy are released. At those
energies, the atoms are ionized forming
a plasma.

� Plasma: For very high temperature, the
gas are ionized and gives a plasma
which can be controlled by magnetic
and electric fields.

� Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

� ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source.
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Physical context : MHD and ELM’s

� In the tokamak some instabilities can
appear at the edge of the plasmas.

� The simulation to these instabilities is an
important subject for ITER.

� Exemple of Edge Instabilities in the

tokamak :

� Disruptions: Violent edge instabilities
which can damage critically the
tokamak.

� Edge Localized Modes (ELMs’):
Periodic edge instabilities which can
damage the Tokamak.

� These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

� These instabilities are described by fluid
models (MHD resistive and diamagnetic or
extended ).

� ELM’s simulation
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Vlasov equation

� First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.

� We define fs (t, x, v) the distribution function associated with the species s. x ∈ Dx

and v ∈ R3.

Two fluids Vlasov equation

∂t fs + v · ∇xfs +
qs
ms

(E + v×B) · ∇vfs = Cs = ∑
t

Cst ,

1
c2 ∂tE−∇×B = −µ0J,

∂tB = −∇× E,
∇ ·B = 0
∇ · E = σ

ε0
.

� Derivation of two fluid model :

� We apply this operator
∫
R3 g (v)(·) on the equation.

� g (v)s = 1,msv,ms |v|2.

� Using

�
∫
Dv

msvCssdv = 0,
∫
Dv

ms |v|2Cssdv = 0,

�
∫
Dv

g (v)sCstdv +
∫
Dv

g (v)tCtsdv = 0.
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Two fluid model

� Computing the moment of the Vlasov equations we obtain the following two fluid
model

Two fluid moments

∂tns +∇x · (msnsus ) = 0,

∂t (msnsus ) +∇x · (msnsus ⊗ us ) +∇xps +∇x ·Πs = σsE + Js ×B + Rs ,

∂t (msnsεs ) +∇x · (msnsusεs + psus ) +∇x ·
(

Πs · us + qs

)
= σsE · us +Qs + Rs · us ,

1
c2 ∂tE−∇×B = −µ0J,

∂tB = −∇× E,
∇ ·B = 0, ∇ · E = σ

ε0
.

� ns =
∫
Dv

fsdv the particle number , msnsus =
∫
Dv

msvfsdv the momentum, εs the
energy.

� The isotropic pressure are ps , Πs the stress tensors and qs the heat fluxes.

� Rs and Qs associated with the interspecies collision (force and energy transfer).

� The current is given by J = ∑s Js = ∑s σsus with σs = qsns .
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Extended MHD: assumptions and generalized Ohm law

Extended MHD: assumptions
� quasi neutrality assumption: ni = ne

� Since me << mi therefore ρ = mini +mene ≈ mini
� Since me << mi therefore u = mi niui+meneue

ρ ≈ ui

� Magnetostatic assumption : ∇×B = µ0J (characteristic velocity << c)

� Taking the electronic density and momentum equations we obtain

me (∂t (neue ) +∇ · (neue ⊗ ue )) +∇pe = −eneE + Je ×B−∇ ·Πe + Re ,

� We multiply the previous equation by −e and we define Je = −eneue , we obtain

me

e2ne
(∂tJe +∇ · (Je ⊗ ue )) = E + ue ×B +

1

ene
∇pe +

1

ene
∇ ·Πe −

1

ene
Re ,

� Using the quasi neutrality, me << mi and R = −Re = −η e
mi

ρJ, we obtain

Generalized Ohm law

E + u×B = ηJ−mi

ρe
∇ ·Πe +

mi

ρe
J×B− mi

ρe
∇pe .
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Extended MHD: model

Extended MHD



∂tρ +∇ · (ρu) = 0,

ρ∂tu + ρu · ∇u +∇p = J×B−∇ ·Π,

1

γ− 1
∂tp +

1

γ− 1
u · ∇p +

γ

γ− 1
p∇ · u +∇ · q =

1

γ− 1

mi

eρ
J ·
(
∇pe − γpe

∇ρ

ρ

)
−Π : ∇u + Πe : ∇

(
mi
eρ J
)
+ η|J|2,

∂tB = −∇×
(
−u×B + ηJ−mi

ρe
∇ ·Πe −

mi

ρe
∇pe +

mi

ρe
(J×B)

)
,

∇ ·B = 0, ∇×B = J.

� The total energy for the MHD is given by E = ρ |u|
2

2 + |B|2
2 + 1

γ−1p with p = ρT and

γ = 5
3 . The conservation law for the total energy is given by

∂tE +∇ ·
[

u

(
ρ
|u|2

2
+

γ

γ− 1
p

)
− (u×B)×B

]
++∇ · q +∇ · (Π · u) + η∇ · (J×B)

+∇ ·
[
mi

ρe

(
(J×B)×B−∇pe ×B−∇ ·Πe ×B− γ

γ− 1
peJ− J ·Πe

)]
= 0
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Reduced MHD: assumptions and principle of derivation

� Aim: Reduce the number of variables and eliminate the fast waves in the reduced
MHD model.

� We consider the cylindrical coordinate (R,Z , φ) ∈ Ω× [0, 2π].

Reduced MHD: Assumption

B =
F0

R
eφ +

1

R
∇ψ× eφ u = −R∇u × eφ + v||B + τIC

R

ρ

(
eφ ×∇p

)
with u the electrical potential, ψ the magnetic poloidal flux, v|| the parallel velocity.

� To avoid high order operators, we introduce the vorticity w = ∆polu and the toroidal

current j = 4∗ψ = R2∇ · ( 1
R2∇polψ).

� Derivation: we plug B and u in the equations + some computations. For the
equations on u and v|| we use the following projections

eφ · ∇ × R2 (ρ∂tu + ρu · ∇u +∇p = J×B + ν∆u)

and
B· (ρ∂tu + ρu · ∇u +∇p = J×B + ν∆u) .
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Description of the JOREK code

� JOREK: Fortran 90 code, parallel (MPI+OpenMP)

� Determine the equilibrium

� Define the boundary of the computational domain
� Compute ψ(R,Z ) on a first poloidal grid.

� Compute equilibrium solving Grad-Shafranov equation

R
∂

∂R

(
1

R

∂ψ

∂R

)
+

∂2ψ

∂Z2
= −R2 ∂p

∂ψ
− F

∂F

∂ψ

� Computation of aligned grid

� Identification of the magnetic flux surfaces
� Create the aligned grid (with X-point)
� Interpolate ψ(R,Z ) in the new grid and recompute the

equilibrium

� Perturbation of the equilibrium (small perturbations of non
principal harmonics).

� Time-stepping (full implicit)

� Poloidal discretization: 2D Cubic Bezier finite elements.
� Toroidal discretization: Fourier expansion.

Figure: unaligned grid
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Linear Solvers
� We solve a nonlinear problem G (Un+1) = b(Un, Un−1).
� First order linearization(

∂G (Un)

∂Un

)
δUn = −G (Un) + b(Un, Un−1) = R(Un),

with δUn = Un+1 −Un, and Jn = ∂G (Un)
∂Un the Jacobian matrix of G (Un).

� Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.

� Principle of the preconditioning step:

� Replace the problem JkδUk = R(Un) by Pk (P
−1
k Jk )δUk = R(Un).

� Solve the new system with two steps PkδU∗k = R(Un) and (P−1
k Jk )δUk = δU∗k

� If Pk is easier to invert than Jk and Pk ≈ Jk the linear solving step is more robust and
efficient.

Physic-based Preconditioning of JOREK
� Extraction of the blocks which are associated with each toroidal harmonic.

� Solve exactly with LU decomposition each subsystem associated with a block

� Reconstruction of the solution of Pkx = b

� Principle of Physic-based preconditioning: We neglect in the Jacobian the physical
effect associated to the coupling between the Fourier mods (non diagonal block).
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Physic based preconditioning for Waves equations
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Implicit scheme for Damped waves equations
� Damping wave equation (baby problem used for Inertial fusion confinement) ∂tp + c∇ · u = 0

∂tu + c∇p = −cσu
⇐⇒


∂tp +

1

ε
∇ · u = 0

∂tu +
1

ε
∇p = − σ

ε2
u

� with σ opacity, c light speed and ε ≈ 1
c ≈

1
σ

� When ε −→ 0 the model can be approximated by ∂tp −∇ · ( 1
σ∇p) = 0.

� This problem is stiff in time. CFL condition is ∆t ≤ C1εh+ C2ε2.

� Simple way to solve this: implicit scheme but the model is ill-conditioned.
� Two sources of ill-conditioning: the stiff terms (which depend of ε) and the hyperbolic

structure.

We propose a preconditioning (work of L. Chacon) which

� allows to treat the stiffness using a reformulation,

� rewrites the hyperbolic system as a second order equation (well-conditioned) which
can be solved easily,

� can be extend to the nonlinear hyperbolic system as MHD (and resistive MHD with
additional splitting steps).
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Construction of the preconditioning I
� First we implicit the equation

pn+1 + θ
∆t

ε
∇ · un+1 = pn − (1− θ)

∆t

ε
∇ · un

un+1 + θ
∆t

ε
∇pn+1 + θ

∆tσ

ε2
un+1 = un − (1− θ)

∆t

ε
∇pn − (1− θ)

∆tσ

ε2
un

� The implicit system is given by(
M U
L D

)(
pn+1

un+1

)
=

(
Rp

Ru

)

with M = Id , D =

(
Id 0
0 Id

)
, U =

(
θ

∆t

ε
∂x

∆t

ε
∂y

)
and L =

 αθ
∆t

ε
∂x

αθ
∆t

ε
∂y


� The solution of the system is given(

pn+1

un+1

)
=

(
M U
L D

)−1 (
Rp

Ru

)

=

(
I M−1U
0 I

)(
M−1 0
0 P−1

schur

)(
I 0
−LM−1 I

)(
Rp

Ru

)
with Pschur = D − LM−1U.
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Construction of the preconditioning I
� Secondly we rewrite the equation

pn+1 + θ
∆t

ε
∇ · un+1 = pn − (1− θ)

∆t

ε
∇ · un

un+1 + θ
α∆t

ε
∇pn+1 = αun − (1− θ)

α∆t

ε
∇pn − α(1− θ)

α∆tσ

ε2
un

� with α =
ε2

ε2 + θσ∆t
� The implicit system is given by(
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un+1
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ε
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Principle of the preconditioning II
� Using the previous Schur decomposition we can solve the implicit wave equation with

the algorithm. 
Predictor : Mhp

∗ = Rp

Velocity evolution : Phun+1 = (−Lhp∗ + Ru)
Corrector : Mpn+1 = Mhp

∗ −Uhun+1

� with the matrices:
� Mh the mass matrix which discretize the Identity operator
� Uh discretize the operator U and Lh the discretization of the L operator.
� Ph discretize the positive and symmetric operator :

PSchur = Id − θ2 α∆t2

ε2

(
∂xx ∂xy
∂yx ∂yy

)
� The physic based preconditioning PB(x) solves the previous algorithm with

Conjugate-Gradient with ε = 10−x and Jacobi PC.

Future study

� The weak form of the Schur operator is not coercive. Study Mix methods.

� The Mass matrix are not not easy to invert for B-Splines. Specific PC based on
M ≈ A⊗B with A and B one 1D matrices
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Algorithm of the PhyBas Preconditioning step

� Algorithm and implementation of the PB(x) preconditioning:

GMRES method

Call preconditioning

Solve PC(IN: R, OUT: X)

Extraction step

Construction of sub-RHS:
- Rp (pressure term)
-Ru (velocity term)

Solving step

-Predictor CG(9)
-Update CG(x)

-Corrector CG(9)

Reconstruction step

Construction of so-
lution X using:

- xp (pressure sol.)
- xu (velocity sol.)

� In this case we solve the sub-steps with a GC solver

� We can use also Multi-grid (MG) methods or other methods efficient for symmetric
and diagonal dominant matrix.
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Results for Waves equation

� Comparison between iterative solver for test case in the diffusion limit σ = 1.

Mesh / solvers GC GC-PC Gmres Gmres-PC-Jacobi

Mesh 4*4, ε1
cv 7 7 7 3
iter - - - 27

Mesh 16*16, ε1
cv 7 7 7 3
iter - - - 1.5E+4

Mesh 4*4, ε2
cv 7 7 7 3
iter - - - 21000

Mesh 16*16, ε2
cv 7 7 7 7
iter - - - -

� ε1 = 10−5 and ε2 = 10−10.

� The solver tolerance is 10−10 for convergence and iter max=100000. We compute the
average on ten time iterations.

� The GC solver is iunstable and cannot solve this type of problem.

A conclusion
� The results show that it is necessary to use a good preconditioning + robust solver

(for general matrix).
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Results for Waves equation
� Comparison between GMRES method with different preconditioning

Mesh / solvers Jac ILU(0) ILU(4) MG(2) SOR PB

Mesh4*4, ε1
cv 3 3 3 3 3 3
iter 27 11 38 8 1
time 7.2 E-4 1.3E-3 7.7E-3 1.5E-2 1.4E-3 2.1E-3

4*4, ε2
cv 3 3 3 7 3 3
iter 2.1E+4 11 1 - 8 1
time 3.6E-1 1.3E-3 7.7E-3 - 1.5E-3 2.1E-3

16*16, ε1
cv 3 3 3 7 3 3
iter 1.5E+4 18 9 140 20 1
time 5.0E-0 2.3E-2 4.0E-1 5.0E-1 5.0E-2 2.1E-2

16*16, ε2
cv 7 3 3 7 3 3
iter - 18 9 - 20 1
time - 2.3E-2 4.0E-1 - 5.0E-2 2.1E-2

64*64, ε2
cv 7 7 3 7 7 x
iter - - 632 - - 1
time - - 2.0E+1 - - 4.2E-1

� ILU (Incomplete LU), MG (Multi-grids), SOR, PB (our physic based PC).

A conclusion
� On fine grid our method is the fastest (and the current implementation is not optimal).
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Physic based preconditioning for MHD equations
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Current Hole and preconditioning associated

� Current Hole : reduced problem in cartesian coordinates.

� The model  ∂tψ = [ψ, u] + η∆ψ

∂t∆u = [∆u, u] + [ψ, ∆ψ] + ν∆2u

with w = ∆u and j = ∆ψ.

� In this formulation we split evolution and elliptic equations.

� For the time discretization we use a Cranck-Nicholson scheme and linearized the
nonlinear system to obtain(

M U
L D

)(
∆ψn

∆un

)
=

(
Rψ

Ru

)
or Id − ∆tθ[·, un ]− ∆tθ∆ −∆θ[ψn, ·]

−∆tθ[ψn, ∆·]− ∆tθ[·, ∆ψn ] ∆− ∆tθ([∆·, un ] + [·, ∆un ] + ∆2)

( δψn

δun

)
=

(
Rψ

Ru

)
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Design of the preconditioning for reduced MHD

PB-PC for Current Hole
Predictor : Mδψn

p = Rψ

potential update : Pschur δun =
(
−Lδψn

p + Ru)
)

Corrector : Mδψn = Mδψn
p −Uδun

Current update : δznj = ∆δψn

Vorticity update : δwn = ∆δun

� The schur complement is given by Pschur = D − LM−1U

� Two approximations for M−1:
� Slow flow: M−1 = ∆t
� Arbitrary flow: find M∗ such that UM∗ ≈ MU. Consequently

P−1 = (D − LM−1U)−1 ≈ M∗(DM∗ − LU)−1,

we obtain{
potential update I : (DM∗ − LU)δu∗∗ =

(
−Lδψn

p + Ru)
)

potential update II : δun = M∗δu∗∗

� Last question : Computation of the operator LU (second order form of the coupling
hyperbolic operators).
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Approximation of the Schur complement I
� Computation of Schur complement for (slow flow approximation M−1 ≈ ∆t)

Pschur =
∆δu

∆t
+ un · ∇(∆δu) + δu · ∇(∆un)− θν∆2δu − θ2∆tLU

� Operator LU = Bn · ∇(∆(Bn · ∇δu)) + ∂jn

∂ψn Bn
pol · ∇(Bn · ∇δu).

� Bn · ∇δu = −[ψn, δu] and un · ∇δu = −[δu, un ] et δu · ∇un = −[un, δu].

� Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves (rigorous proof missing).

Properties of LU operator

� We consider the L2 space. The operator LU is not self adjoint and not positive for all
δu

< LUδu, δu >L2=
∫
|∇(Bn · ∇δu)|2 −

∫
∂jn

∂ψn
(Bn

pol · ∇δu)(Bn · ∇δu)

� We propose the following approximation LUapprox = Bn · ∇(∆(Bn · ∇δu)).

� The operator LUapprox is positive and self-adjoint.

� There are different methods to solve the Schur complement using splitting to solve
smaller and more simple operators.
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Results for Current Hole Model
� Comparison between GMRES method with different preconditioning
� 50 time step in the linear phase (kink instability ?). tol = 10−8, iter max = 10000.

Mesh / solvers Jac ILU(0) ILU(4) MG SOR PB(6) PB(4)

16*16 dt=0.5
cv 7 3 3 7 3 3 3
iter - 14 6 - 12 1 1
time - 1.2E-1 1.4E+0 - 1.8E-1 2.6E+0 2.3E+0

32*32 dt=1
cv 7 3 3 7 7 3 3
iter - 26 9 - - 1 1
time - 6.8E-1 7.2E+0 - - 9.8E+0 8.9E+0

64*64 dt=4
cv 7 3 3 7 7 3 3
iter - 404 84 - - 1 1
time - 2.4E+1 3.9E+1 - - 3.9E+1 3.8E+1

� On fine grid our method is the more robust and competitive

� This is not optimal because :
� The matrices (7 in this case) are assembled one by one and not at the same time.
� The extraction and reconstruction are made one by one.
� The assembly of the matrices in Django are not optimal (PETSC configuration).
� We solve each sub-system with a GMRES-MG(2) and not just a MG solver.

� 75% of the solving time comes from to the construction of the sub-matrices. In the
future we will assume that it is possible to decrease this part by 5-6.
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Adaptive PhyBas preconditioning

Idea
� The PhyBas PC is based on physical approximations of the equations. We can also

add approximations of the discretization in space.

� Indeed, we can use a less order approximation in the PC to reduce the size of the
matrices and the storage and keep a good efficiency.

Applications to MHD PC
� We can call the preconditioning with

� poloidal and toroidal orders of the B-Splines smaller than the orders used for the
full model.

� poloidal and toroidal regularity of the B-Splines different than the regularity used
for the full model.

� less Fourier harmonics than for the full model (we keep the coupling terms but
neglect harmonics).

� Some restriction and interpolation steps must be added in the ”extraction” and
”reconstruction” steps.

� Remark: At the end, the user could choose the order and number of Harmonics for the
PC (different that for the model) and adapt these parameters during the simulation.
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Algorithm of the adaptive PhyBas Preconditioning step

� Algorithm and implementation of the APB(x) preconditioning:

GMRES method

Model(n pol order, n tor order)

Call preconditioning

Solve PC(IN: R,m pol order,
m tor order, OUT: X)

Extraction step

Extraction toroidal

if m tor order<n tor order
-Extraction of less
degree coefficients

Extraction poloidal

if m pol order<n pol order
-Extraction of less
degree coefficients

Extraction variables

- Splitting RHS (de-
pend of variables)

Solving step

- Slow flows approx.
- Arbitrary flows approx.

Reconstruction
step

Reconstruction toroidal

if m tor order<n tor order
-Reconstruction of high

degree coeffcients

Reconstruction poloidal

if m pol order<n pol order
-Reconstruction of high

degree coeffcients

Reconstruction variables

-Reconstruction
of full solution

� In the future it is important to perform the extraction and reconstruction parts.
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Conclusion
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Conclusion

Conclusion:
� The idea to design a PC is to write the solving step as a suitability of simple operators

(easy to invert) using splitting and reformulation (second order formulation) methods.

� The possible approximations gives the PC algorithm.

� Problem: the proposed method is dependent of the problem and use a lot of methods
(CG, MG, GMRES etc) =⇒ lot of work to treat all the models.

Possible approximations:
� Solving approximation: each sub step can be solved with a small accuracy.

� Physical approximation: each subsystem can be simplified to obtain well-conditioned
operators (necessary in the MHD case).

� Discretization approximation: the systems associated with the PC can be solved with
less order numerical methods or coarser grids.

� Multi-discretization approximation: the PC models and the model can be discretized
with different methods (finite element for PC and DG for the full system).

Others applications:
� Shallow water equations and ocean flows: Cemracs 2015 Project.

� Radiative transfer: project with CEA (DAM).
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