Hierarchy of fluids model for plasma and Adaptive
Physic-Based Preconditioning

27 may 2015

IINRIA nancy Grand-Est and IRMA Strasbourg, TONUS team, France

2Max-Planck-Institut fiir Plasmaphysik, Garching, Germany ’1 \

&’L‘"’?: — ” oy E. Franck Adaptive Preconditioning \ /28‘




R R R R R RS
Outline
Mathematical context and JOREK code
Physic based preconditioning for Waves equations
Physic based preconditioning for MHD equations

Conclusion

(o

E. Franck Adaptive Preconditioning \ /28‘




Mathematical context and JOREK code
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Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. A neutron and 17.6 MeV of
free energy are released. At those
energies, the atoms are ionized forming
a plasma.

Plasma: For very high temperature, the
gas are ionized and gives a plasma
which can be controlled by magnetic
and electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source.
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Iter Project

Fusion DT: At sufficiently high energies, [Py Hmetormson sl

deIJterium and tritium can fuse to Poloidal magnetic field Outer Poloidal field coils
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Plasma: For very high temperature, the
gas are ionized and gives a plasma
which can be controlled by magnetic
and electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields. Resulting Helical Magnetic field Toroidal field coi

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source. Figure: Tokamak
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Physical context : MHD and ELM's

B |n the tokamak some instabilities can
appear at the edge of the plasmas.

B The simulation to these instabilities is an B ELM'’s simulation
important subject for ITER.

B Exemple of Edge Instabilities in the
tokamak :

Disruptions: Violent edge instabilities
which can damage critically the
tokamak.

Edge Localized Modes (ELMs’):
Periodic edge instabilities which can
damage the Tokamak.

B These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

B These instabilities are described by fluid
models (MHD resistive and diamagnetic or
extended ).
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Vlasov equation

B First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.

B We define f;(t,x, v) the distribution function associated with the species s. x € Dx
and v € R3.

Two fluids Vlasov equation

duf+v- Vs + 2= (E+vXB)-Vuf = G = ¥ G,
s t
50,E—V x B =—pol,

9B = -V X,
V-B=0
V~E:£.

B Derivation of two fluid model :
O We apply this operator [gs g(v)(-) on the equation.
O g(v)s = 1, mgv, mg|v|?.
B Using
m] va msvCssdv = 0, va ms|v|? Cssdv = 0,
O va g(v)sCordv + va g(v)¢Csdv = 0.
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Two fluid model

B Computing the moment of the Vlasov equations we obtain the following two fluid
model

Two fluid moments

d¢tns + Vx - (msnsus) = 0, -

9¢(msnsus) + Vi - (msnsus ® ug) + Vyps + Vi Ms =0E+J; xB+R,,
at‘(’nsnses) + Vy (msnsuses + Psus) + Vi (ﬁs ‘Us + qs)
=0sE-us + Qs +Rs - us,

C%atE—Vsz—yoJ,
8tB:—V><E,
V-B=0, V~E=%.

B = va fsdv the particle number , mgnsus = va msvfsdv the momentum, €5 the
energy.

B The isotropic pressure are ps, s the stress tensors and qs the heat fluxes.
B R, and Qs associated with the interspecies collision (force and energy transfer).

B The current is given by J =Y c Js = Y 0sus with 05 = gsns.

()
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Extended MHD: assumptions and generalized Ohm law

Extended MHD: assumptions

B quasi neutrality assumption: n; = n,
£ Since me << mj therefore p = m;n; + mene = mjn;
0 Since me << mj therefore u = MifititMeNele o .

B Magnetostatic assumption : V x B = i0J (characteristic velocity << c)

B Taking the electronic density and momentum equations we obtain

me (9t (neue) + V- (neue @ ue)) + Vpe = —encE+Je X B—V - M. +Re,

B We multiply the previous equation by —e and we define Jo = —eneu., we obtain
1 1 = 1

S (e +V-(Je®ue)) =E+ue xB+ ——Vp.+ —— V.M. — ——R,,
e2n, ene ene ene

B Using the quasi neutrality, me << m; and R = —R. = —77;>-pJ, we obtain

Generalized Ohm law

E+uxB=7l—"2V. M.+ 2 yxB— " vp,.
pe pe pe
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Extended MHD: model

9:p+ V- (pu) =0, .
potu+pu-Vu+Vp=JxB-V-TI,

1
i -1
—A:Vu+N.:V (%J) +yI2

1 1 5 \Y
71atp+ U~VP+711PV'U+V'q:—mJ~(Vpe77pe7‘)>

1
T-1ep

3B = -V x (—u><B+'7J—ﬂv'ﬁe—ﬁvpe+ﬁ(-’><3))r
pe pe oe
V.-B=0, VxB=J.

2 2
B The total energy for the MHD is given by £ = p4- + 18- 4+ -1 p with p = pT and

¥ = % The conservation law for the total energy is given by
|ul?

m;: = =
+V. LTe, ((JXB)XBprexBfV~ne><Bf%pleJ<ne)} -0
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Reduced MHD: assumptions and principle of derivation

B Aim: Reduce the number of variables and eliminate the fast waves in the reduced
MHD model.
B We consider the cylindrical coordinate (R, Z,¢) € Q) x [0, 27].

Reduced MHD: Assumption

Fe 1 R
B = ﬁoe(p-i- va Xep u= —RVu x ep + VHB—FT/CE (e4, X Vp)

with u the electrical potential, i the magnetic poloidal flux, v the parallel velocity.

B To avoid high order operators, we introduce the vorticity w = Ao u and the toroidal
current j = A* = R2V - (&5 Vporh).
B Derivation: we plug B and u in the equations + some computations. For the

equations on u and v we use the following projections

ey -V x R?(pd:u+pu-Vu+Vp=J x B+vAu)

and

B (pdtu+pu-Vu+Vp =JxB+vAu).
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Description of the JOREK code

B JOREK: Fortran 90 code, parallel (MPI+OpenMP)

B Determine the equilibrium
O Define the boundary of the computational domain
O Compute (R, Z) on a first poloidal grid.

B Compute equilibrium solving Grad-Shafranov equation

9 (19 P2y  _,0p oF
Ra?(ﬁa?)*a?—"?w":w

B Computation of aligned grid
L Identification of the magnetic flux surfaces
O Create the aligned grid (with X-point)
I Interpolate (R, Z) in the new grid and recompute the
equilibrium
B Perturbation of the equilibrium (small perturbations of non
principal harmonics).

B Time-stepping (full implicit) Figure: unaligned grid

()
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U Poloidal discretization: 2D Cubic Bezier finite elements.
O Toroidal discretization: Fourier expansion.
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Description of the JOREK code

JOREK: Fortran 90 code, parallel (MPI+OpenMP)

Determine the equilibrium

O Define the boundary of the computational domain
O Compute (R, Z) on a first poloidal grid.

N\
N
7

=
B Compute equilibrium solving Grad-Shafranov equation W%:‘:"
"
i
9 (1 alp) %P 50p oF
R—=l|555)ts55 =R =~ —F=
R <R R/ 8z W oy |ll|l‘\l{{‘l{{\\\‘{{\‘\'|i=5’
IS
LT
B Computation of aligned grid WW%
L Identification of the magnetic flux surfaces \\\\\\\\\E\\\\\\\;\\\gﬂ””"
O Create the aligned grid (with X-point) \}}}\{}\\\‘\:\\*‘;f:.
O Interpolate ¥(R, Z) in the new grid and recompute the N
equilibrium
]

Perturbation of the equilibrium (small perturbations of non
principal harmonics).

sl

v\\\\{{\

Time-stepping (full implicit)

i I ) o Figure: Aligned grid
U Poloidal discretization: 2D Cubic Bezier finite elements.
O Toroidal discretization: Fourier expansion.
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==
Linear Solvers

B We solve a nonlinear problem G(U"*1) = b(U", U™~ 1),
B First order linearization

(agﬁin)) 0U" = —G(U") + b(U", U™ ) = R(U"),

with 6U" = U™ —U", and J, = a%&f’") the Jacobian matrix of G(U").

Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.
Principle of the preconditioning step:

0 Replace the problem Ji6U, = R(U") by Pk(P;le)zSUk = R(U").
O Solve the new system with two steps PydU} = R(U") and (P, 1Jy)dUx = dU;
[

If Py is easier to invert than J, and P, =~ J the linear solving step is more robust and
efficient.

Physic-based Preconditioning of JOREK

B Extraction of the blocks which are associated with each toroidal harmonic.

B Solve exactly with LU decomposition each subsystem associated with a block
B Reconstruction of the solution of P,x = b

B Principle of Physic-based preconditioning: \We neglect in the Jacobian the physical

effect associated to the coupling between the Fourier mods (non diagonal block). r-\
1
E. Franck
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Physic based preconditioning for Waves equations
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Implicit scheme for Damped waves equations

B Damping wave equation (baby problem used for Inertial fusion confinement)

1
dp+cV-u=0 atp-l—gv-u:O
<
dtu+cVp = —cou atu+EVp:fgu
e €2
B with ¢ opacity, c light speed and ¢ ~ % ~ %

B When ¢ — 0 the model can be approximated by d;p — V - (%Vp) =0.
B This problem is stiff in time. CFL condition is At < Cieh + Goe?.

B Simple way to solve this: implicit scheme but the model is ill-conditioned.
B Two sources of ill-conditioning: the stiff terms (which depend of €) and the hyperbolic
structure.

O allows to treat the stiffness using a reformulation,

O rewrites the hyperbolic system as a second order equation (well-conditioned) which
can be solved easily,

O can be extend to the nonlinear hyperbolic system as MHD (and resistive MHD with
additional splitting steps).
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R R R R R R R RERERRERERREEE———SS———————
Construction of the preconditioning |

B First we implicit the equation

At At
pt +9?V Mt =pn (1 9)?V -u”

At At At At
w4 0=V p +eg—2"u"+1 —u = (1-0) 2 Vp - (1 79)£—2‘7u"

B The implicit system is given by

(2 ¢)(z)-(%)

LR
withm=1, D= ' O ) u=( 62 Bty YandL= e
0 Iy x y At

B The solution of the system is given
=ik
pn+1 _ M U RP
untl L D Ry
(1 MU M-t 0 / 0 Ry
“\o 1 0 B —LM=t Ry
with Py = D — LM™1U. r'\
15/28
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R R R R R R R RERERRERERREEE———SS———————
Construction of the preconditioning |

B Secondly we rewrite the equation

"+1+9 - bY w 7p"7(179)%v~u"
"+1+9 Loprtt = au"f(lff))—a?tv a(1—0) A1 o
2
&
| I e
with & &2 + foAt

B The implicit system is given by
M U pn+1 B Rp
L D utl TR,

At
At At af— 0

. _ _( la O _ _
WIthM—Id,D—<O Iy ),U—(f)?ax ?a}/)andL— 9&3

B The solution of the system is given
-1
pn+1 _ M U Rp
untl L D R
_ (1 MU M-t 0 I 0 Ry
A0 0 (o —LM=t Ru
with Pecpyr = D — LM™LU. r'\
15/28
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R R R R R RRRRRERERREEEEE———=—————————
Principle of the preconditioning Il

B Using the previous Schur decomposition we can solve the implicit wave equation with
the algorithm.

Predictor : Myp* = R,
Velocity evolution :  Ppu”t! = (=Lpp* + Ry)
Corrector :  Mp"t1 = Mup* — Upun i1

B with the matrices:
0 My, the mass matrix which discretize the Identity operator
0 Uy, discretize the operator U and Ly the discretization of the L operator.
Py discretize the positive and symmetric operator :

20‘A21:2 ( axx axy )
€

Pschur = g — 0 ayx ayy

B The physic based preconditioning PB(x) solves the previous algorithm with
Conjugate-Gradient with ¢ = 10™* and Jacobi PC.

0 The weak form of the Schur operator is not coercive. Study Mix methods.

U The Mass matrix are not not easy to invert for B-Splines. Specific PC based on
M ~ A® B with A and B one 1D matrices

f16
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Algorithm of the PhyBas Preconditioning step

B Algorithm and implementation of the PB(x) preconditioning:

GMRES method

Call preconditioning

Solve_PC(IN: R, OUT: X)

Reconstruction step

Construction of so-
lution X using:

- Xp (pressl:lre sol.)

- xy (velocity sol.)

Extraction step

Construction of sub-RHS:
- Rp (pressure term)
-Ry (velocity term)

Solving step

-Predictor CG(9)
-Update CG(x)
~Corrector CG(9)

B |n this case we solve the sub-steps with a GC solver

B We can use also Multi-grid (MG) methods or other methods efficient for symmetric
and diagonal dominant matrix.

(2
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Results for Waves equation

B Comparison between iterative solver for test case in the diffusion limit o = 1.

Mesh / solvers GC | GC-PC | Gmres | Gmres-PC-Jacobi
% cv X X X v
Mesh 4*4, ¢4 ier | - B ! 07
N v | X X X v/
Mesh 16¥16, €1 | jrer | = | - - 15E-+4
% cv X X X v
Mesh 4%, &2 | jer | - | - - 21000
Mesh 16*16, ¢, | < | X | X x x
iter | - - - -

B ¢ =10% and g, = 10710,

B The solver tolerance is 10710 for convergence and iter_max=100000. We compute the
average on ten time iterations.

B The GC solver is iunstable and cannot solve this type of problem.

B The results show that it is necessary to use a good preconditioning + robust solver
(for general matrix).

ap
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Results for Waves equation

B Comparison between GMRES method with different preconditioning

Mesh / solvers Jac ILU(0) | ILU(4) MG(2) | SOR PB
" cv v v v v v v/
Mesha*4, e | jier | 27 11 38 8 1
time | 7.2 E-4 | 1.3E-3 | 7.7E-3 | 1.5E-2 | 1.4E-3 | 2.1E-3
a*a s cv 4 4 v X v v
1 e2 iter | 2.1E4+4 | 11 1 - 8 1
time | 3.6E-1 | 1.3E-3 | 7.7E-3 | - 1.5E-3 | 2.1E-3
% cv v v v X v v
16%16, &1 iter | 1.5E+4 | 18 9 140 20 1
time | 5.0E-0 | 2.3E-2 | 4.0E-1 | 5.0E-1 | 5.0E-2 | 2.1E-2
" cv X v/ v/ X v v
LR iter | - 18 9 - 20 1
time | - 2.3E-2 | 40E-1 | - 5.0E-2 | 2.1E-2
" cv X X v/ X X X
64764, £ iter | - - 632 - N 1
time | - . 2.0E+1 | - - 4.2E-1

B |LU (Incomplete LU), MG (Multi-grids), SOR, PB (our physic based PC).

\ /2
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Physic based preconditioning for MHD equations

E. Franck Adaptive Preconditioning



Current Hole and preconditioning associated

B Current Hole : reduced problem in cartesian coordinates.

B The model

ot = [, u] + Ay
9:Au = [Au, u] + [, Ap] + vA2u

with w = Au and j = Ayp.

B |n this formulation we split evolution and elliptic equations.

B For the time discretization we use a Cranck-Nicholson scheme and linearized the
nonlinear system to obtain

(7 5)(ah)=(%)

or

Iy — At[, u"] — AtA —A0[yp", -] syn R
[ o e ) ()= (%)
—AO[Y", A] — AtO[-, AP"] A — AtO([A-, u"] + [, Au”] + A2)
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Design of the preconditioning for reduced MHD

PB-PC for Current Hole

Predictor :  Mdpp = Ry

potential update :  Pecpyrdu” = (—LoYp + Ry))
Corrector :  Moy" = Méyy — Usu"”

Current update : 6z = Ady"

Vorticity update : Jdw"” = Adu”

B The schur complement is given by Pecp, = D — LM~1U

B Two approximations for M~

O Slow flow: M~ = At
U Arbitrary flow: find M* such that UM* ~ MU. Consequently

Pl=(D-LM*U)"t = M*(DM* - LU)™,

we obtain

potential update | :  (DM* — LU)éu™* = (—Loyp + Ry))
potential update Il :  du" = M*6u™*

B Last question : Computation of the operator LU (second order form of the coupling

hyperbolic operators). /\
2

2
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Approximation of the Schur complement |

B Computation of Schur complement for (slow flow approximation M~! ~ At)

Pschur = % +u" - V(Adu) +du- V(Au") — GvA25u — 2 AtLU

® Operator LU = B - V(A(B" - Véu)) + 2Bl - V(B" - Vou).
B B".Véu=—[¢", éu] and u" - Viéu = —[du, u"] et bu-Vu" = —[u",du].

B Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves (rigorous proof missing).

Properties of LU operator

O We consider the L2 space. The operator LU is not self adjoint and not positive for all

ou
aj"

oY

O We propose the following approximation LUPP™< = B" - V(A(B" - Véu)).

< LUSU,Bu > o= / IV(B" - Véu)|? — (Bl - Vou)(B" - Vou)

U The operator LU3PP is positive and self-adjoint.

B There are different methods to solve the Schur complement using splitting to solve

smaller and more simple operators. r‘\
2
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Results for Current Hole Model

B Comparison between GMRES method with different preconditioning
B 50 time step in the linear phase (kink instability ?). tol = 1078, iter_max = 10000.

Mesh / solvers Jac | ILU(0) ILU(4) MG | SOR PB(6) PB(4)
e o | X |V 7 X |7 7 7
16¥16 dt=05 | 4 | - 14 6 - 12 1 1
time | - 1.2E-1 1.4E40 | - 1.8E-1 | 2.6E4+0 | 2.3E+0
o o | X |7 7 X | X 7 7
32%32 di=1 iter - 26 9 - - 1 1
time | - 6.8E-1 7.2E40 | - - 9.8E4+0 | 8.9E+0
o o | X |7 7 X | X 7 7
FRlEOCE: iter - 404 84 - - 1 1
time | - 24E+4+1 | 3.9E+1 | - - 3.9E+1 | 3.8E+1

B On fine grid our method is the more robust and competitive

B This is not optimal because :
O The matrices (7 in this case) are assembled one by one and not at the same time.
' The extraction and reconstruction are made one by one.
O The assembly of the matrices in Django are not optimal (PETSC configuration).
O We solve each sub-system with a GMRES-MG(2) and not just a MG solver.

B 75% of the solving time comes from to the construction of the sub-matrices. In the

future we will assume that it is possible to decrease this part by 5-6.
24
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Adaptive PhyBas preconditioning

B The PhyBas PC is based on physical approximations of the equations. We can also
add approximations of the discretization in space.

B |ndeed, we can use a less order approximation in the PC to reduce the size of the
matrices and the storage and keep a good efficiency.

Applications to MHD PC

B We can call the preconditioning with

U poloidal and toroidal orders of the B-Splines smaller than the orders used for the
full model.

U poloidal and toroidal regularity of the B-Splines different than the regularity used
for the full model.

O less Fourier harmonics than for the full model (we keep the coupling terms but
neglect harmonics).

B Some restriction and interpolation steps must be added in the " extraction” and
" reconstruction” steps.

B Remark: At the end, the user could choose the order and number of Harmonics for the
PC (different that for the model) and adapt these parameters during the simulation.

25 /
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Algorithm of the adaptive PhyBas Preconditioning step

B Algorithm and implementation of the APB(x) preconditioning:

. 3 N
Reconstruction variables ( GMRES method ) Extraction variables
-Reconstruction lModeI(n,pclﬁrder, n,tor,order)J = Epifiain (RS (k-

pend of variables)

of full solution

A\ 4
[ Call preconditioning ]

- )
Extraction poloidal
Solve_PC(IN: R,m_pol_order, wi
m_tor_order, OUT: X) if m_pol_order<n_pol_order
-Extraction of less

degree coefficients

Reconstruction poloidal

if m_pol_order<n_pol_order
-Reconstruction of high
degree coeffcients

Extraction step

Reconstruction
step

3 5 Extraction toroidal
Reconstruction toroidal

if m_tor_order<n_tor_order
-Extraction of less
degree coefficients

if m_tor_order<'n_tor_order
-Reconstruction of high
degree coeffcients

Solving step

- Slow flows approx.
- Arbitrary flows approx.

B |n the future it is important to perform the extraction and reconstruction parts.

‘26/28‘
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Conclusion
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Conclusion

Conclusion:

B The idea to design a PC is to write the solving step as a suitability of simple operators
(easy to invert) using splitting and reformulation (second order formulation) methods.

B The possible approximations gives the PC algorithm.

B Problem: the proposed method is dependent of the problem and use a lot of methods
(CG, MG, GMRES etc) = lot of work to treat all the models.

Possible approximations:

| A

Solving approximation: each sub step can be solved with a small accuracy.

Physical approximation: each subsystem can be simplified to obtain well-conditioned
operators (necessary in the MHD case).

Discretization approximation: the systems associated with the PC can be solved with
less order numerical methods or coarser grids.

Multi-discretization approximation: the PC models and the model can be discretized
with different methods (finite element for PC and DG for the full system).

Others applications:

B Shallow water equations and ocean flows: Cemracs 2015 Project.
B Radiative transfer: project with CEA (DAM).
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