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Multi-scale problems

Time Multi-scale problems:
� Models: hyperbolic systems able to model complex physics through nonlinear

conservation laws

� Properties propagation: hyperbolic systems have finite propagation speed given by
the wave velocities (eigenvalues of the Jacobian).

� Stability: the time step is constrained by the fastest waves.

� Multi-scale problem: Vmax << Vmin and Tf = O(Vmin).

� Morphodynamics flows: caused by the movement of a fluid in contact with the
topography.

� Shallow Water + Exner equations: ∂th+∇ · (hu) = 0
∂thu +∇ · (hu ⊗ u) +∇p = −gh∇b
∂tb+∇ ·Q = 0

where h is the height, u the velocity, b the topography, and Q = Q(u).

time scales:

� time step ∆t: given by gravity waves’ speeds λ =
√
hg .

� simulation time Tf >> ∆t : given by the sedimentation behavior.
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Project

Implicit scheme:
� To treat this problem, one good option: implicit scheme.

� In the case of implicit schemes we must invert a linear system. Two solutions:

� exact solvers: too greedy for fine 2D or 3D problems.
� iterative solvers: the stiff or multi-scale hyperbolic systems are ill-conditioned.

� For iterative solvers, we need to find a robust and efficient preconditioning.

Aim :
To design efficient and robust preconditioned implicit algorithm for hyperbolic systems
with DG high-order method on complex geometries.

Objectives:
� Write implicit method (based on GMRES+ Free Jacobian method) for one macro-cell.

� Design and study the physics based preconditioning (based on physical or numerical
approximations).

� Full model in Discontinuous Galerkin and preconditioning in Continuous Galerkin.

� Validate the methods on Wave and Shallow Water equations.
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Schnaps code: DG method for hyperbolic scheme

DG schemes:

� High order method adapted to the
discretization of hyperbolic systems.

� Principle: we discretize in each cell
the weak form without enforcing
continuity between the cells.

� Reduction CPU: quadrature using
Gauss Lobatto points (diagonal
mass matrix).

� Conditioning: High-order methods
are ill-conditioned.

Complex geometries:

� Idea: we decompose the domain
between curved macro-cells
(GMSH).

� Macro-cell: Cartesian in the
interior.
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General discretization method

We consider systems of equation of the following shape:

∂tU + F (U) = S,

with U ∈ RN our unknowns, F a function acting on U and S source terms independent of
U.

� Discretization in space : Discontinuous Galerkin

� Polynomial approximation of the solution U in each cell,

� Weak formulation : ∂t (U, ϕ)L2 + (f (U) , ϕ)L2 = (S , ϕ)L2 , ∀ϕ basis function,

� Discontinuous basis functions,

ϕ+
i (xj ) =

{
1, if j = i+,

0, if j 6= i+,

where xj is a Gauss-Lobatto point.

ϕ−
i

ϕ+
i

xi

� Discretization in time : θ-scheme

Un+1 + ∆tθF (Un+1) = Un − ∆t(1− θ)F (Un) + ∆tθSn+1 + ∆t(1− θ)Sn

Second-order and unconditionally-stable for θ = 0.5 (Crank-Nicholson).
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Wave equation

� Acoustic wave equations : {
∂tp + c∇ · u = Sp ,

∂tu + c∇p = Su .

with u the velocity, p the pressure and c the speed wave.

� We use the previously described discretization with

U =

(
p
u

)
, F (U) =

(
c∇ · u
c∇p

)
, S =

(
Sp
Su

)
� Linear hyperbolic system.

Wave propagation :

� Study of solutions given by an equilibrium state and an irrotational perturbation
p = p0 + δp and u = u0 + δu.

� Propagation of the perturbation at the velocity ±c.
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Matrix equation
The weak formulation leads to the matrix equation

 M cθ∆tU1 cθ∆tU2

cθ∆tL1 M 0
cθ∆tL2 0 M

pn+1

un+1

vn+1


=

 M −c(1− θ)∆tU1 −c(1− θ)∆tU2

−c(1− θ)∆tL1 M 0
−c(1− θ)∆tL2 0 M

pn

un

vn

 ,

with

M =
(∫

Ω ϕi ϕjdx
)
(i ,j)∈J1,NK2 , the mass matrix

U1 =

(∫
Ω

∂x ϕj ϕi

)
(i ,j)∈J1,NK2

, U2 =

(∫
Ω

∂y ϕj ϕi

)
(i ,j)∈J1,NK2

,

L1 =

(∫
Ω

∂x ϕj ϕi

)
(i ,j)∈J1,NK2

, L2 =

(∫
Ω

∂y ϕj ϕi

)
(i ,j)∈J1,NK2

.

Aim
Preconditioning of the Jacobian matrix thanks to the Schur theory.
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Schur complement

Property (Schur decomposition)
Let A be a matrix defined by blocks

A =

(
A B
C D

)
with A invertible. Assume A, B, C , D are respectively p × p, p × q, q × p and q × q
matrices, one has

A =

(
Ip 0

CA−1 Iq

)(
A 0
0 D − CA−1B

)(
Ip A−1B
0 Iq

)
where Ip is the p × p identity matrix.

Definition (Schur complement)
If A is a matrix defined by blocks as in the previous property, the Schur complement of A
is D − CA−1B

Courtès,Oberlin,Franck Physic-Based Preconditioning 11/26

11/26



Preconditioning for Wave equation
Applying this decomposition to our system yields M cθ∆tU1 cθ∆tU2

cθ∆tL1 M 0
cθ∆tL2 0 M

 =

(
IN 0

cθ∆tLM−1 IN2

)(
M 0
0 M − c2θ2∆t2LM−1U

)(
IN cθ∆tM−1U
0 IN2

)
with

M =

(
M 0
0 M

)
, L =

(
L1

L2

)
, U =

(
U1 U2

)
,

and
Pschur = M − c2θ2∆t2LM−1U.

Hence, the preconditioning for the wave problem unfolds as the following splitting

Mp∗ = Mpn − c(1− θ)∆tMU

(
un

vn

)
, prediction step,

Pschur

(
un+1

vn+1

)
= M

(
un

vn

)
− c(1− θ)∆tMLpn − cθ∆tLp∗, propagation step,

Mpn+1 = −cθ∆tU

(
un+1

vn+1

)
+Mp∗, correction step.
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Properties of Pschur

� To retrieve from those systems of equations the underlying physics, preconditioning
has to follow some properties.

� The splitted system should keep as most physical properties from the original problem
as possible.

� Pschur ≡ I2 − c2θ2∇(∇ · I2)

Properties of Pschur
� Pschur should be easy to invert,

� Pschur is self adjoint,

� Pschur propagates an irrotational perturbation with the same speed ±c as the original
problem.

Proof. Pschur is the discretization of the motion equation

∂ttξ − c2θ2∇ (∇ · ξ) = 0,

where u = ∂tξ.

Remark : The preconditioning has the same propagation speed as the full model, which is
equivalent at the spectral level.
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Results
Here, we compile some results on different test-cases in Discontinuous Galerkin of fourth
order for the acoustic wave equations.

∆t Type of preconditioning Mesh Number of iteration / time-step
0.01 GMRES 20× 20 103

GMRES-PC 20× 20 3
GMRES 40× 40 224

GMRES-PC 40× 40 3
0.05 GMRES 20× 20 762

GMRES-PC 20× 20 14
GMRES 40× 40 1594

GMRES-PC 40× 40 20

Table: Results for a steady state.

∆t Type of preconditioning Mesh Number of iteration / time-step
0.01 GMRES 30× 30 150

GMRES-PC 30× 30 11
GMRES 40× 40 220

GMRES-PC 40× 40 12

Table: Results for a periodic wave problem.
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Shallow water equation

� Shallow Water equation : ∂th+∇ · (hu) = 0

∂thu +∇ · (hu ⊗ u) +∇p = −gh∇b

with h the height, u the velocity, and the pressure p = gh2

2 .

� We can diagonalize the system to obtain the eigenvalues : (u, n)± c and (u, n), with
c =
√
hg the sound speed

� Linearized Shallow Water Homogeneous equation: we consider that the solutions are
given by an equilibrium and a perturbation h = h0 + δh and u = u0 + δu.

� The linearized system propagates these perturbations at the velocity (u0, n)±√h0g
and (u0, n).

Aim of the Physic-Based Preconditioner:
� To obtain a simpler operator (well-conditioned) which propagates the perturbations

with velocities close to the original problem.
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θ-scheme and free Jacobian method (I)

θ-scheme applied on Shallow Water equation yields


hn+1 + θ∆t∇ ·

(
hn+1un+1

)
= hn − ∆t(1− θ)∇ · (hnun) ,

hn+1un+1 + θ∆thn+1
(
un+1 · ∇

)
un+1 + θ∆thn+1g∇hn+1 + θ∆tghn+1∇b

= hnun − ∆t(1− θ)hn (un · ∇) un − ∆t(1− θ)ghn∇hn − (1− θ)∆tghn∇b.

This system can be rewritten in the form

G

(
hn+1

un+1

)
= B

(
hn

un

)
,

with

G :
(
h
u

)
7→
(

h+ θ∆t∇ · (hu)
hu + θ∆th (u · ∇) u + θ∆thg∇h+ θ∆tgh∇b

)
,

and

B :
(
h
u

)
7→
(

h− ∆t(1− θ)∇ · (hu)
hu − ∆t(1− θ)h (u · ∇) u − ∆t(1− θ)hg∇h− (1− θ)∆tgh∇b

)
.
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θ-scheme and free Jacobian method (II)
A linearization of G gives

JacG
n

(
δhn

δun

)
= B

(
hn

un

)
−G

(
hn

un

)
,

with δhn = hn+1 − hn, δun = un+1 − un and JacnG the Jacobian matrix of G at

(
hn

un

)
,

JacG
n =

(
D1 U
L D2

)
with

D1 = I1 + θ∆t∇ · (unI1), U = θt∇ · (hnI2),
L = unI1 + θ∆tg∇(hnI1) + θ∆tI1(un · ∇)un + θgI1∆t∇b,

D2 = hnI2 + θ∆thn (un · ∇) I2 + θ∆thn(I2 · ∇)un.

Free Jacobian
The full jacobian matrix is not stored, on the contrary, the jacobian matrix is
approximated by the relation

JacnGX ≈
G

((
hn

un

)
+ εX

)
−G

(
hn

un

)
ε

which requires the computation of G only.
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Preconditioning Algorithm based on Pschur

The Schur decomposition gives the following algorithm
D1δh∗ = −∆t∇ · (hnun),

(D2 − LD−1
1 U)δun+1 = −Lδh∗ − ∆thn(un · ∇)un − ∆tghn∇hn − ∆tθghn∇b,

D1δhn+1 = D1δh∗ −Uδun+1,

while its complement for the Shallow Water system is

Pschur = D2 − LD−1
1 U.

Different flows
We want to study different Schur approximations introduced by L. Chacón for MHD
flows:

� slow flow,

� arbitrary flow,

in order to compute the linear wave propagation of Pschur.

L. Chacón: An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional
viscoresistive magnetohydrodynamics, Physics of plasmas 2008.
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Slow flow approximation of the Schur complement

Slow flow hypothesis
We assume that the flow is small, consequently ∆t|un | << 1.
Consequently we obtain that D1 ≈ I1 in this regime.

For a constant velocity un, Pschur becomes

Pschur = D2 − LI1U = hnI2 + θthn (un · ∇) I2 + θ∆thn (I2 · ∇) un − LU,

and

LU = θ∆t (un + θ∆t (un · ∇) un)∇ · (hnI2) + θ2∆t2∇ [I2 · ∇pn + 2pn∇ · I2] .

Hypothesis 1. We neglect the advection term in LU, to obtain the dispersion relation

ω =

(
θ
un · n

2
± θ

√
hng − (un · n)2

4

)
||k ||.

Hypthesis 2. We consider now the full LU operator, and we obtain

ω = ±θ
√

ghn ||k ||.

Proof. To prove those two results, we write the motion equation on ξ with ∂tξ = u and
inject an irrotational linear plane wave.
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Arbitrary flow approximation of the Schur

Arbitrary flow hypothesis

The approximation D1 ≈ I1 is not valid anymore, we have to consider D−1
1 in Pschur.

We introduce the construction of an operator M such that UM ≈ D1U consequently we
obtain that

Pschur = (D2M − LU)M−1.

The solution of the equation Pschur δu = 0 is given by{
(D2M − LU)δu∗ = 0,

δu = Mδu∗.

We choose
M = I2 + θ∆tun (∇ · I2).

For a constant velocity un,
Hypothesis 1. We neglect advection terms in LU to obtain the dispersion relation

ω = ±θ
√

ghn ||k ||.

Hypothesis 2. We consider each term of the LU operator to obtain the following
dispersion relation

ω =

(
−θ

un · n
2
± θ

√
hng − 3

4
(un · n)2

)
||k ||.
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Perspectives

Theoretical perspectives

� Propose two new approximations of the Schur that are

� non-negative,
� partly or fully symmetric,
� spectrally close in the fast-flow regime:

u · n ± c for the first approximation, and ±(u · n + c) for the second one.

Numerical perspectives

� Optimize preconditioning for the wave system,

� Validation of the Shallow Water preconditioning with Jacobian free method,

� Variation of the approximation degrees between the preconditioned and the full model.
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