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Multi-scale problems

Time Multi-scale problems:

B Models: hyperbolic systems able to model complex physics through nonlinear
conservation laws

B Properties propagation: hyperbolic systems have finite propagation speed given by
the wave velocities (eigenvalues of the Jacobian).

B Stability: the time step is constrained by the fastest waves.

B Multi-scale problem: V.« << Vi, and T¢ = O(Viin).

B Morphodynamics flows: caused by the movement of a fluid in contact with the
topography.
B Shallow Water + Exner equations:

deh+ V- (hu) =0
0thu+V - (hu®u)+Vp=—ghVb
tb+V-Q=0

where h is the height, u the velocity, b the topography, and Q@ = Q(u).

time scales:

U time step At: given by gravity waves’ speeds A = \/hg.

O simulation time T >> At : given by the sedimentation behavior.
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Project

Implicit scheme:

B To treat this problem, one good option: implicit scheme.

B |n the case of implicit schemes we must invert a linear system. Two solutions:
U exact solvers: too greedy for fine 2D or 3D problems.
U iterative solvers: the stiff or multi-scale hyperbolic systems are ill-conditioned.

B For iterative solvers, we need to find a robust and efficient preconditioning.

Aim ;

To design efficient and robust preconditioned implicit algorithm for hyperbolic systems
with DG high-order method on complex geometries.

| A\

Objectives:

B Write implicit method (based on GMRES+ Free Jacobian method) for one macro-cell.

B Design and study the physics based preconditioning (based on physical or numerical
approximations).

B Full model in Discontinuous Galerkin and preconditioning in Continuous Galerkin.
B Validate the methods on Wave and Shallow Water equations.

[ £
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Schnaps code: DG method for hyperbolic scheme

O

High order method adapted to the
discretization of hyperbolic systems.

Principle: we discretize in each cell
the weak form without enforcing
continuity between the cells.

Reduction CPU: quadrature using
Gauss Lobatto points (diagonal
mass matrix).

Conditioning: High-order methods
are ill-conditioned.

Complex geometries:

O ldea: we decompose the domain
between curved macro-cells
(GMSH).
O Macro-cell: Cartesian in the
interior. r\
5
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General discretization method

We consider systems of equation of the following shape:
U+ F(U)=S,

with U € RV our unknowns, F a function acting on U and S source terms independent of
U.

B Discretization in space : Discontinuous Galerkin

U Polynomial approximation of the solution U in each cell,
U Weak formulation : 9:(U, ¢)2 + (f (U), ¢);2 = (S, ¢) 2, V¢ basis function,

[0 Discontinuous basis functions,

1, ifj=i",

T(x:) = i .
e () 0, ifj#iT, AC/
where x; is a Gauss-Lobatto point. | — - _|_{ — _| — _| — _|
X
B Discretization in time : 0-scheme
U™ 4 AtBF(U™Y) = U™ — At(1— 0)F(U™) 4 AtOS™! + At(1 —0)S"

Second-order and unconditionally-stable for 6 = 0.5 (Crank-Nicholson). h
6
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Wave equation
Discrete formulation
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Wave equation

B Acoustic wave equations :
9tp+cV-u=S5,,
diu+cVp=3S5,.

with u the velocity, p the pressure and c the speed wave.

B We use the previously described discretization with

0-) o -(%) 5 (2

B | inear hyperbolic system.

Wave propagation :

0 Study of solutions given by an equilibrium state and an irrotational perturbation
p=po+dpand u=ug+du.

U Propagation of the perturbation at the velocity +c.

(o
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Matrix equation

The weak formulation leads to the matrix equation

M cOAtU;  cOAtU, ptt
cOAtLy M 0 utl

cOAtLy 0 M yntl
M —c(1-0)AtU;  —c(1—6)AtUs p"
= [ —c(1-0)AtL, M 0 u |,
—c(1-0)AtL, 0 M vn

with

M = (IQ q)fq)fdx)(ij)e[[1,N]]2 , the mass matrix

(/ axq’J‘P> ' (/ ay(P/(Pl) '
(ij)e[1.N]2 (i.j)e[1,N]?
Ly = (/ I Pjp ) ' (/ ay(P/(Pl)
(i.j)e[1,N]2 (ij)el, N]]2

Preconditioning of the Jacobian matrix thanks to the Schur theory.
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Wave equation

Preconditioning and Schur complement
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Schur complement

Property (Schur decomposition)
Let o/ be a matrix defined by blocks

(23

with A invertible. Assume A, B, C, D are respectively p X p, p X q, g X p and g X g

matrices, one has
o o 0)(A 0 I, A7lB
CA1 Iq 0 D-CAB 0 Iq

where I, is the p X p identity matrix.

Definition (Schur complement)

If o/ is a matrix defined by blocks as in the previous property, the Schur complement of &/

is D— CA 1B
‘11/
\ /26
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Preconditioning for Wave equation

Applying this decomposition to our system yields

M cOAtU;  cHAtU,
cOAtL; M 0
cOAtL, 0 M

~

In 0\ (M 0 v cOAtM~IU
COALM™Y Iy )\ O M —c20?A2LM-TU) \ 0 In2

e ) (). v

Pechur = M — 202A2 LML U.

with

and
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Preconditioning for Wave equation

Applying this decomposition to our system yields

M cOAtU;  cHAtU,
cOAtL; M 0
cOAtL, 0 M

Iy 0 M 0 Iy cOAtM~TU
COALM™Y Iy )\ O M —c20?A2LM-TU) \ 0 In2

e ) (). v

Pechur = M — 202A2 LML U.

with

and
Hence, the preconditioning for the wave problem unfolds as the following splitting
n
Mp* = Mp" — ¢(1 - 0)AtMU <5,,> , prediction step,
un+1 un
Pschur (v"+1> =M (v,,> —c(1—-0)AtMLp" — cOAtLp*, propagation step,

n+1
Mp™t1 = —cOALU <:,,+1) + Mp*, correction step.
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Properties of Pscpyr

B To retrieve from those systems of equations the underlying physics, preconditioning
has to follow some properties.

B The splitted system should keep as most physical properties from the original problem
as possible.

B P =h—c?0?V(V-h)

Properties of Pschur

B P, . should be easy to invert,
B P is self adjoint,

B P, hur propagates an irrotational perturbation with the same speed +c as the original
problem.

Proof. Py, is the discretization of the motion equation
0u:& — c?0%V (V-¢&) =0,
where u = 9¢¢.

Remark : The preconditioning has the same propagation speed as the full model, which is

equivalent at the spectral level. /\
1
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Wave equation

Results on preconditioning for Wave equation
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Results

Here, we compile some results on different test-cases in Discontinuous Galerkin of fourth

order for the acoustic wave equations.

At Type of preconditioning Mesh Number of iteration / time-step
0.01 GMRES 20 x 20 103
GMRES-PC 20 x 20 3
GMRES 40 x 40 224
GMRES-PC 40 x 40 3
0.05 GMRES 20 x 20 762
GMRES-PC 20 x 20 14
GMRES 40 x 40 1594
GMRES-PC 40 x 40 20
Table: Results for a steady state.
At Type of preconditioning Mesh Number of iteration / time-step
0.01 GMRES 30 x 30 150
GMRES-PC 30 x 30 11
GMRES 40 x 40 220
GMRES-PC 40 x 40 12

Table: Results for a periodic wave problem.
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Shallow water equation
Properties of the system
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Shallow water equation

Shallow Water equation :
0th+ V- (hu)=0
dthu+V - (hu®u)+Vp=—ghVb

. . . _ gh?
with h the height, u the velocity, and the pressure p = &5

B We can diagonalize the system to obtain the eigenvalues : (u, n) & ¢ and (u, n), with
¢ = y/hg the sound speed

B Linearized Shallow Water Homogeneous equation: we consider that the solutions are
given by an equilibrium and a perturbation h = hy + dh and u = ug + du.

B The linearized system propagates these perturbations at the velocity (ug, n) +/hog
and (ug, n).

B To obtain a simpler operator (well-conditioned) which propagates the perturbations
with velocities close to the original problem.

7
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Shallow water equation

f-scheme for Shallow Water and preconditioning
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6-scheme and free Jacobian method (1)

f-scheme applied on Shallow Water equation yields

AL 4 0AEV - (A"Tu™TY) = A" — At(1 - 0)V - (h"u"),
hn+1un+1 + eAtthrl (un+1 . V) un+1 + eAthn+1thn+1 + 0Atghn+1Vb
= h"u" — At(1 - 0)h" (u"- V) u" — At(1 — 0)gh"V A" — (1 — 0)Atgh"Vb.

This system can be rewritten in the form
hn+1 h"
(o) =5 (0r)

c. (M h+ 0AtY - (hu)
\u hu + 0Ath (u- V) u+ 0AthgVh+ AtghVb )’

with

and

h h—At(1-0)V - (hu
B: (u) H <hu —At(L—0)h(u-V) ut£ At(l)f 9)(hg)Vh -(1- 9)Atgth> :
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6-scheme and free Jacobian method (I1)

A linearization of G gives
oh" h" h"
sace” (5an) =2 (un) =< (i)
n
with 5" = A" — A" Su" = u"tt — u" and Jacg the Jacobian matrix of G at (h ),

un
. (D1 U
Jace” = ( L D,

D; = Il+9Atv-(U"/1), U:9tV~(h"12),
L= u"ly +0AtgV (h"ly) + 0Ath (u" - V)u" + 0gh AtV b,
Dy = Wl + OALh" (u™ - V) Iy + 0Ath" (I, - V)u".

with

Free Jacobian

The full jacobian matrix is not stored, on the contrary, the jacobian matrix is
approximated by the relation

n n
(&) +=x) < (&)
u u
Jacg X ~

€

which requires the computation of G only.

N
)
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Preconditioning Algorithm based on Py,

The Schur decomposition gives the following algorithm

D16h* = —AtV - (h"u"),
Dy — LD U)Su™ ! = —Loh* — Ath"(u" - V)u" — Atgh"V h" — Atfgh" Vb,
1
DiSh"! = Dyoh* — Usu™t,

while its complement for the Shallow Water system is

Pechur = Dy — LD T U.

Different flows

We want to study different Schur approximations introduced by L. Chacén for MHD
flows:

B slow flow,
B arbitrary flow,

in order to compute the linear wave propagation of Pscpy,-

viscoresistive magnetohydrodynamics, Physics of plasmas 2008.

L. Chacén: An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional I

/2
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Shallow water equation

Wave propagation by Pycpyr

2
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Slow flow approximation of the Schur complement

Slow flow hypothesis

We assume that the flow is small, consequently At|u"| << 1.
Consequently we obtain that D; ~ /1 in this regime.

For a constant velocity u”, Psch,, becomes
Pschur = Do — LLU = h"l +60th" (u" - V) b + 0Ath" (b - V) u" — LU,
and

LU = 0At (u” + 0At (u" - V) u") V - (h"h) 4+ 62At?V [l - Vp" +2p"V - ] .

2
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Slow flow approximation of the Schur complement

Slow flow hypothesis

We assume that the flow is small, consequently At|u"| << 1.
Consequently we obtain that D; ~ /1 in this regime.

For a constant velocity u”, Psch,, becomes
Pschur = Do — LLU = h"l +60th" (u" - V) b + 0Ath" (b - V) u" — LU,
and
LU = 0At (u" + 0At (u" - V) u") V - (h"h) + 0?At?V [ - Vp" +2p"V - h].

Hypothesis 1. We neglect the advection term in LU, to obtain the dispersion relation

u’-n (um- n)?
=10 +64/h"g — ——— k||.
w ( . P CIE P

Hypthesis 2. We consider now the full LU operator, and we obtain

w = £6+/gh"||k||.

Proof. To prove those two results, we write the motion equation on ¢ with 9;:¢ = u and

inject an irrotational linear plane wave. (2 \

3
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Arbitrary flow approximation of the Schur

Arbitrary flow hypothesis

The approximation D; = ; is not valid anymore, we have to consider Dfl in Pschur-

We introduce the construction of an operator M such that UM ~ D; U consequently we
obtain that
Pachur = (D2M — LU)M ™.

The solution of the equation Py, du = 0 is given by
(DoM — LU)éu* =0,
Su = Méu*.

We choose
M = b+ 0Atu" (V- b).

For a constant velocity u”,
Hypothesis 1. We neglect advection terms in LU to obtain the dispersion relation

w = +0./gh"||k|].

Hypothesis 2. We consider each term of the LU operator to obtain the following

d|spe|5|on relation
w = —6 :I:@\/h”g—f(u” l’l)2 HkH , \
2
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Perspectives

Theoretical perspectives

B Propose two new approximations of the Schur that are
U non-negative,
U partly or fully symmetric,
O spectrally close in the fast-flow regime:
u - n = c for the first approximation, and &(u - n+ c¢) for the second one.

Numerical perspectives
B QOptimize preconditioning for the wave system,
B Validation of the Shallow Water preconditioning with Jacobian free method,

B Variation of the approximation degrees between the preconditioned and the full model.

G
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