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Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. A neutron and 17.6 MeV of
free energy are released. At those
energies, the atoms are ionized forming
a plasma.

Plasma: For very high temperature, the
gas are ionized and give a plasma which
can be controlled by magnetic and
electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source.
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Iter Project

B Fusion DT: At sufficiently high energies, [Py Hmetormson sl
deu.tenum and tritium can fuse to Poloidal magnetic field Outer Poloidal field coils
Helium. A neutron and 17.6 MeV of _ (for plasma positioning and sha
free energy are released. At those
energies, the atoms are ionized forming

a plasma.

B Plasma: For very high temperature, the
gas are ionized and give a plasma which
can be controlled by magnetic and
electric fields.

B Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields. Resulting Helical Magnetic field Toroidal field coi

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

B |TER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source. Figure: Tokamak
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Physical context : MHD and ELM

In the tokamak some instabilities can
appear in the plasma.

The simulation of these instabilities is an
important subject for ITER.

Exemple of Instabilities in the tokamak :

O Disruptions: Violent instabilities which
can critically damage the Tokamak.

U Edge Localized Modes (ELM): Periodic
edge instabilities which can damage the
Tokamak.

These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

These instabilities are described by fluid
models (MHD resistive and diamagnetic or
extended ).

B E|LM’s simulation
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Extended MHD: model

B To simulate instabilities we solve the Extended MHD model (collisional and
quasi-neutral limit of two species Vlasov-Maxwell equation.

Simplify Extended MHD

dp+ V- (pu) =0,
patu+pu~Vu+Vp+V~ﬁ:J>< B,

atp+u~Vp+pV~u+V~q=%V (§>+17|J|2

0:B = -V x (—u><B+17J—ﬂVp+ﬂ(J><B)),
pe pe

V x B = pgd

V-B=0

B with p the density, p the pressure, u the velocity, B the magnetic field, J the current,

N stress tensor and q the heat flux. m; the ion mass, e the charge, 7 the resistivity
and jio the permeability.

B |n Black: ideal MHD. In Black and blue: Viscous-resistive MHD. All the term: Hall or
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Wave structure of the MHD and time method

Wave Structure of the MHD

B We linearized the MHD around By = Be,,
00, po and ug = 0.
B Alfvén velocity and Sound velocity :

_ ./ B} _ [1m
Va= Hopo and c = Po

B Waves in plasma (toroidal B): V, and

1
_ 1 2 4 AV2c2 cos? ?
Vi = 5 V£ /(V4—4V2c2cos? 6

with V2 = Va2 +c2 .0 the angle between
By and the direction of the wave.

B Tokamak regime: V, >> c >>| u|.

Numerical context for time discretization

B Stiff fast wave + diffusion (resistive and viscous) ====> Implicit or semi-implicit
methods.

B Nonlinear 3D problem ====> Iterative nonlinear implicit methods.

B Ao >> Apin ====> Preconditioning.

7
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- _____________________________________________________________________________________________
JOREK code and typical test case

JOREK

B A reduced MHD (full MHD in the future)
code which simulate instabilities with 2

numerical blocks:
0 Computation of the equilibrium and the
aligned grid
' Computation of the MHD instabilities grids2.pdf
perturbing equilibrium.
B Spatial discretization: 2D Cubic Bezier
finite elements + Fourier expansion.

B Time discretization: implicit + Gmres with Figure: Aligned grid
Fourier Block Jacobi.
B Problems with the JOREK code:

I We need new numerical methods to
solve huge cases.

New code : DJANGO

B Modular code based of general finite elements ( B-Splines, Lagrange, Powel-Sabin)
and Physic-Based preconditioning

¢

E. Franck PC for reduced MHD




Preconditioning and Physic-Based PC
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Linear Solvers and preconditioning

B We solve a nonlinear problem G(U""!) = b(U", U""!). First order linearization

with 6U" = U™ — U", and J, = a%g{,ﬂ) the Jacobian matrix of G(U").

B Principle of the preconditioning step:
O Replace the problem JdUyx = R(U") by Pk(P;IJk)(SUk = R(UM).
U Solve the new system with two steps PxdUj = R(U") and (P 1 Jk)6Uy = dU}

B |f Py is easier to invert than J, and Py ~ Ji the solving step is more robust and
efficient.

Physic-based Preconditioning

B |n the GMRES context if we have a algorithm to solve P U = b, we have a
Preconditioning.

B Principle: construct an algorithm to solve P U = b approximating and splitting the
equations and approximating the discretizations.
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Physic-based: operator splitting

B Coupled hyperbolic problems are ill-conditioned contrary to simple diffusion and
advection operators.

B |dea: Use operator splitting and a reformulation to approximate the Jacobian by a
suitability of simple problems (advection or diffusion).

B For each subproblem we use an adapted solver as multi-grid solver.

B Implicit scheme for wave : we solve

dsu = Oy Vv u™l = "+ Atd, vt
0tV = Oy U v+l = yn L Attt

B which is strictly equivalent to solve one parabolic problem

(1 — At )u"t = u" + Atd,v"
Vn+1 — " *AtaXU"Jrl

0 This algorithm gives a very good preconditioning, that is easy to invert (just one
elliptic operator to invert).
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Application: Linearized Euler equation
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Linearized Euler equation

B We consider the 3D MHD equation in the conservative form,

9:0 + V- (pu) =0
de(pu) +V - (pu®u)+Vp =0
dep+ V- (pu) =0

B Due to the isothermal assumption, we have p = czp with ¢ =/ Tp.
B Linearization: u = ug + du, p = po +6p, p = po + Sp with pg = c?po.
B Using the linear relation between pg and pg we obtain

{ 9:0u + ug - Vou + pr(Sp =0

0t0p+ug - Vép+cpoV-éu =0

B To simplify, we assume that pg = % Defining a normalized velocity a and Mach
number M = ‘"—C"I we obtain the final model

Final model

diu+cMa-Vu+cVp =0
dip+cMa-Vp+cV-u =0

with M €10,1], and | a |= 1.
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Implicit scheme for wave equation

Implicit scheme:

Iy + MAa -V A2V p"\ _ [ly—MA.a-V A2V. p"
A’V ly+ M\a-V untt ) o A2V Iy —MA.a-V u”

B with A = 6cAt and A. the numerical acoustic length.

B The implicit system is given by

p"t\ [ AD, Div \ '[ R,
utl ) T\ Grad AD, Ry

B The solution of the system is given by

p"tt N\ _ (1 AD,'Div AD;1 0 / 0 Ry
utl )T L0 0 P —GradAD,' | Ru

with Pscpyr = AD, — Grad(AD; ') Div.
B Using the previous Schur decomposition, we can solve the implicit wave equation with
the following algorithm:
Predictor :  ADpp* = R,
{ Velocity evolution :  Pu™?! = (—Gradp® + Ry)

Corrector :  ADpp™*! = AD,p* — Divu,yq /\
14/
22‘
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
PC for linearized Euler equations

B The preconditioning is given by the algorithm of L. Chacon (2007-2008)

Low Mach approximation:

0 We assume that M << 1, therefore we use the approximation
ADy = (Ig+ MAa- V)t =~ Iy

in the second and third step.

B We obtain
Predictor :  ADpp* = R,
Velocity evolution :  Pu""! = (—Gradp* + Ry)
Corrector :  p"™t = p* — Divu,, 1

with two small operators

PC-operators :

0 Advection
ADp = Iy + MAa -V

O Advection-Diffusion
Pschur = lg + MAa -V — /\2V(V)
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==
Results

B Test case: propagation of pressure perturbation (not an easy test).

B Capture of acoustic phenomena. We consider At = 0.5% =0.5.

At /Mach | 1073 ] 1072 | 0.1 1
0.005 1 1 1 2
*
16¥16 0.05 2 2 3 6
0.5 10 11 24 | 0O(10%)
0.005 1 1 1 2
*
32732 0.05 2 2 3 5
0.5 7 9 23 | 0(10%)
0.005 1 1 1 1
*
64%64 0.05 1 2 2 4
0.5 2 3 15 | 0O(10?)

B Number of iterations for different PC with Mesh 32 x 32.

At/ PC Jacobi | ILU(0) | ILU(4) | Pb-PC
At=0.1 X 70 20 1
At=1 X X X 1
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==
Results

B Test case: propagation of pressure perturbation (not an easy test).
B Capture of material wave. We consider At = O(ﬁ)
At /Mach | 1077 1073
16*16 AA tt=: 120 (13(5):38 920(i-13100
RFAEIE

At =2 2 3
*
hch At =10 8 11

B Number of iterations for different PC with Mesh 32 x 32.

At/ PC Jacobi | ILU(0) | ILU(4) | Pb-PC
At =0.1 X 70 20 1
At=1 X X X 1

‘16
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Elliptic operators

B When MA = O(1) the transport operator is ill-conditioned. To invert this operator we
can

0 add stabilization terms,
U design a specific preconditioning.
B We will focus on low-mach regime and the elliptic operator.

Acoustic elliptic operator

0 Here we consider the elliptic operator

u—\N°V(V-u)y=f — [ -V(V-u)=0
{ M(n)u:(O, gO A {M(n()u:Z), o0

Problem

| A

O The limit operator is non-coercive. Indeed we can find || u ||# 0 (with the good BC)
such that
/ |V-u?P=0
Q
0 For exemple: u =V x 1.

O Numerical problem: conditioning number in O(A) (which depend also of h and the
order).

E. Franck
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Results

B Test case: Solution for the

u—MNAu=f

B operator with homogeneous Dirichlet on mesh 32%32

At/PC | Jacobi | ILU(4) | ILU(8) | MG(2)

A=005| 3ma 5 3 8

A =01 3 7 5 8
A=05 3 11 7 10
A=1 3 11 7 10
A=2 3 11 7 10
A=5 3 11 7 10

Strategy to solve acoustic operator

0 Step 1: Hiptmair, Xu Using discrete B-Splines H(Div) space + Auxiliary space pc,

split the kernel to the rest

0 Step 2: We treat the orthogonal of the kernel with multi-grids+GLT method

0 GLT: Generalized locally Toeplitz method which allows by a generalized Fourier

analysis to correct the multi grid method in the high-frequency (problem for high order

discretization).

—
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Results

B Test case: Solution for the

u—NV(V-u)=f

B operator with homogeneous Dirichlet on mesh 32%32

At/ PC Jacobi | 1LU(4) | ILU(8) | MG(2)
A =0.05 135 8 5 22
A=0.1 310 20 10 44
A=05 1800 nc nc 135
A=1 nc nc nc 300
A=2 nc nc nc 500
A=5 nc nc nc 2100

Strategy to solve acoustic operator

0 Step 1: Hiptmair, Xu Using discrete B-Splines H(Div) space + Auxiliary space pc,

split the kernel to the rest

0 Step 2: We treat the orthogonal of the kernel with multi-grids+GLT method

0 GLT: Generalized locally Toeplitz method which allows by a generalized Fourier

analysis to correct the multi grid method in the high-frequency (problem for high order

discretization).
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Application: Linearized 3D MHD
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Linearized 3D MHD

B We consider the 3D Isothermal MHD equation in the non-conservative form,

90+ V - (ou) —0
potu+pu-Vu+Vp I L(VxB)xB
otp+u-Vp+9pV-u =0

9:B+V x (B x u) =1V xB

Mo

V-B=0

B Linearization: u = ug +du, p = pg+6p, p = po + 6p with pp = czpo, B = By +4B.
B We define three important parameters: the Mach number M, the pressure ratio of the

plasma g = v2' the Alfvén speed V2 = ‘pB‘;ll and the magnetic Reynolds R, = %‘“0‘.

Final model

otu+ (M/BVs)a-Vu+Vp = ‘B 1 ((V x B) x bo)
9:p+ (My/BVa)a-Vp+yBV2V -u =0

3B+ (M\/BV,)a-VB+ | By |V x (bo x u) :%f‘/”vX(va)

with M €]0,1], B €]107%,1071], | a|=| by |= 1.

N\
)

~~
N
N
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Implicit scheme for linear MHD equation

Implicit scheme:

du" + (My/BA)a - Vu" + Vp = 1y ((V x B") x bo)
5p"+ (My/BA)a - Vp" + BA2V - u" =
5B+ (M\/BA)a- VB ™+ | Bo | V x (bo x u") =Py (v x B")

B with A = V,At the numerical Alfvén length, and 5p" = p"+! — p".

B As before we apply the preconditioning splitting between the velocity and the other
variables with the low Mach approximation.

B |n the end of the preconditioning we must invert three operators

Operators of the PB-PC

s+ (My/BNa-Viy— M%B)‘A/d, Iy + (M+/BAN)a- Vg
P = (lg+My/BAa- Vig = BA2V(V - 1g) = A (bo x (V x V x (bo X Iq)) )

with |a|=1, M €]0,1], B € ]107°,107}]

21
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Remarks

B As for the Euler equation we can solve the advection equation adding stabilization or
using specific preconditioning.
B First case: We consider the regime M << 1and << 1.

Dominant Schur operator

0 The Schur operator in this regime is mainly
P = (lg— A% (bo x (V x V x (bo x I)))

0 The limit operator is non-coercive (A >> 1). Indeed we can find || u ||# O such that

L\Vx(boxu)|2:0

B Second case: We consider the regime M <1 and 8 < 1.

Multis-cale operator

0 Using a Fourier analysis and Diagonalizing the operator in the Fourier space we denote
that the eigenvalues are the MHD velocities

O When M and B is not so small, the different velocities (Alfvén, magneto-sonic slow
and fast) have very different scales.
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Conclusion

Physic-based pc

B |f we are able to invert the sub-systems, then the physic-based pc is
O very efficient in the Low-Mach regime for large time step.

0 less efficient in the sonic-regime, however we can treat large time step than the
explicit one.

) The efficiency does not decrease when the h decreases.

Euler equation

B For the Euler equation, in the end the main difficulty is to invert quickly the div-div
operator.

B Ongoing work: find a good preconditioning for div-div using H(div) discrete space
(Hiptmair, Xu +GLT)
MHD equation

B |n the low-Beta regime, the main difficulty is to invert quickly the curl-curl operator.

B Ongoing work: find a good preconditioning for curl-curl using compatible-space
(difficulty: the dependance in the magnetic field).

B When B is not so small, we have a multi-scale operator.

B Future work: find a strategy to separate the scales.
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