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Mathematical and physical context
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Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. A neutron and 17.6 MeV of
free energy are released. At those
energies, the atoms are ionized forming
a plasma.

Plasma: For very high temperature, the
gas are ionized and give a plasma which
can be controlled by magnetic and
electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source.
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Iter Project

B Fusion DT: At sufficiently high energies, [Py Hmetormson sl
deu.tenum and tritium can fuse to Poloidal magnetic field Outer Poloidal field coils
Helium. A neutron and 17.6 MeV of _ (for plasma positioning and sha
free energy are released. At those
energies, the atoms are ionized forming

a plasma.

B Plasma: For very high temperature, the
gas are ionized and give a plasma which
can be controlled by magnetic and
electric fields.

B Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields. Resulting Helical Magnetic field Toroidal field coi

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

B |TER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source. Figure: Tokamak
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Physical context : MHD and ELM

In the tokamak some instabilities can
appear in the plasma.

The simulation of these instabilities is an
important subject for ITER.

Exemple of Instabilities in the tokamak :

O Disruptions: Violent instabilities which
can critically damage the Tokamak.

U Edge Localized Modes (ELM): Periodic
edge instabilities which can damage the
Tokamak.

These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

These instabilities are described by fluid
models (MHD resistive and diamagnetic or
extended ).

B E|LM’s simulation
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Extended MHD: model

B To simulate instabilities we solve the Extended MHD model.

Simplify Extended MHD

Btp+V(pu) IO,
patu+pu~Vu+Vp+V~ﬁ=J>< B,

Btp+u~Vp+pV-u+V-q:%V <§>+17|J|2

mj mj
9:B =—-V X (—u><B+17J—EVp+ p—e(JxB)),

VXB:]JQJ

V-B=0

B with p the density, p the pressure, u the velocity, B the magnetic field, J the current,
N stress tensor and q the heat flux.

B |n black: ideal MHD. In black and blue: Viscous-resistive MHD. All the terms: Hall or

extended MHD. /\
6
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JOREK code and spatial discretization

Spatial method

B Mixed Parabolic-Hyperbolic problem : Finite
element method + Stabilization.

B Strong anisotropic problem: Aligned grids +
High-order method

IsoParametric analysis.

> IsoGeometric /

”
Wee N
REK NG
B Jorek code : (physical code for MHD simulations). AN

\
\\\}\\\\ R

B |soParametric approach for Flux Surface Aligned
mesh (Hermite-Bézier element) + Fourier.

v
DJANGO .
Figure: Flux-Surface
B Django : (New code for MHD simulations). Aligned grid
B |soGeometric approach for Flux Surface/Field

Aligned meshes (Arbitrary order B-Splines).
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Time Numerical methods for MHD

Wave Structure of the MHD

B We linearized the MHD around By = Be,,
00, po and ug = 0.
B Alfvén velocity and Sound velocity :

_ ./ B} _ [1m
Va= Hopo and c = Po

B Waves in plasma (toroidal B): V, and

1
_ 1 2 4 AV2c2 cos? ?
Vi = 5 V£ /(V4—4V2c2cos? 6

with V2 = Va2 +c2 .0 the angle between
By and the direction of the wave.

B Tokamak regime: V, >> c >>| u|.

Numerical context for time discretization

B Stiff fast wave + diffusion (resistivity and viscosity) ====> Implicit or semi-implicit
methods.

B Nonlinear 3D problem ====> Iterative nonlinear implicit methods.

B Ao >> Apin ====> Preconditioning.

8
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Linear Solvers and preconditioning

B We solve a nonlinear problem G(U""!) = b(U", U""!). First order linearization

with 6U" = U1 — U", and J, = % the Jacobian matrix of G(U").
B Principle of the preconditioning step:
0 Replace the problem J,6Uyx = R(U") by Pk(P,:le)JUk = R(UM).
O Solve the new system with two steps P,dU; = R(U") and (P, 1Jx)éUy = SU;}

B |f Py is easier to invert than J, and Py & Ji the solving step is more robust and
efficient.

Physic-based Preconditioning

B |n the GMRES context if we have a algorithm to solve P,U = b, we have a
preconditioning.

B Principle: construct an algorithm to solve PyU = b (not necessary to construct the
matrix)

(5
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Preconditioning for Linearized Euler and MHD models
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Physic-based: operator splitting

B Coupled hyperbolic problems are ill-conditioned contrary to simple diffusion and
advection operators.

B |dea: Use operator splitting and a reformulation to approximate the Jacobian by a
series of suitable simple problems (advection or diffusion).

B For each subproblem we use an adapted solver as Multigrid solver.

B Implicit scheme for wave equation: we solve

dsu = Oy Vv u™l = "+ Atd, vt
0tV = Oy U v+l = yn L Attt

B which is strictly equivalent to solving one parabolic problem

(1 — At )u"t = u" + Atd,v"
Vn+1 — " *AtaXU"Jrl

0 This algorithm gives a very good preconditioning, which is easy to invert (just one
elliptic operator to invert).
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Linearized Euler equation

B We consider the 2D Euler equation in the conservative form,

9:0 + V- (pu) =0
de(pu) +V - (pu®u)+Vp =0
dep+ V- (pu) =0

B Due to the isothermal assumption, we have p = czp with ¢ =/ Tp.
B Linearization: u = ug + du, p = po +6p, p = po + Sp with pg = c?po.
B Using the linear relation between pg and pg we obtain

{ 9:0u + ug - Vou + pr(Sp =0

0t0p+ug - Vép+cpoV-éu =0

B To simplify, we assume that pg = % Defining a normalized velocity a and Mach
number M = ‘"—C"I we obtain the final model

Final model

diu+cMa-Vu+cVp =0
dip+cMa-Vp+cV-u =0

with M €10,1], and | a |= 1.

f12
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First preconditioning

Implicit scheme:

lg + MAa-V AV P\ _ (ly—MAea-V AeV- p"
AV lg + MAa-V utl ) AeV lg — MAea-V u”

B with A = 0cAt and A, the numerical acoustic length.

B |dea for preconditioning: split the systems between some triangular problems to
decouple the variables

lg + AAD,  ADiv
A= ( )fGrad [ Iy + AAD, ) =~ (Id+)\l—1)(ld +)\L2)(Id+/\L3)

B First choice SPC(1): L1 =LY, L; = Lg and L; = Lg with

[0 _ (MAD, 0© 10 0 0 0_ (0 Div
1 0 0)' 27 \Grad MAD,)' 3~ \0o o0

B Using the previous decomposition, we can approximate the wave solution solving the
following algorithm:
Predictor :  (lg + MAAD,)p" = R,
Velocity evolution :  (lg + MAAD,)u""* = (=AGradp” + R,)

Corrector :  p"'' = p* — ADivu, 1 r-\
1
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Others preconditoning
B Formal analysis of SPC(1) approximation:
E=A—(lg+AL)(lg+ ML) (Ig + ALs) = O (A2 (1 + M)

B |n the explicit splitting theory we kill the second order terms in A (2 order differential
operators) in the error adding step.
B However the 2nd order operators are easy to invert consequently we propose .

B Second choice SPC(1): L = L9 L = Lg — /\Lng and L; = Lg with

LOZ MADP 0 L(): 0 0 . L(): 0 DIV
0 0) ™2 Grad MAD, — AGradDiv )’ 0 o0

Predictor :  (lg + MAAD,)p" =R,
Velocity evolution :  (ly + MAAD, — A?GradDiv)u""! = (=AGradp” + Ry)
Corrector :  p""' = p* — ADivu,.1

B Formal analysis of SPC(2) approximation:

E=A—(lg+AL)(ly + ML) (lg + AL3) = O (A*M))

B The SPC(2): the method corresponds to the physic-based PC of L. Chacon
B Spatial discretization gives additional error between the PC and A depending of h.
B We can construct SPC(3) with E = O(A3(M + M?))

114/
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==
Results

B Test case: propagation of pressure perturbation (order 10*3).
B The explicit time step is approximatively between 1073 and 107%.
B We fixe the Mach number M = 10~ and we compare different PC for GMRES

At PC | Jacobi | ILU(4) | MG(2) | SP(1) | SP(2)
32*32 P3 1.1E+2 1 20 2 1
At =0.01 32%x32P5 | 1.3E+2 1 60 2 1
32*%32 P3 | 5.0E+2 3 2.0E+3 9 6
At=0.1 32%32P5 1.4E+3 3 nc 9 6
32*%32 P3 | 4.0E+3 nc nc 85 42
At=1 32%x32P5 | 3.5E+4 nc nc 86 43

B Secondly we compare the effect on the mesh on the SPC methods.

At mesh | 16%16 | 32%32 | 64%64
SPC(1) At=01 5 8 14
At=1 40 90 | >100
SPC(2) At=01 4 5 2
At=1 30 42 27

B Same effect with Hermite-Bézier scheme. The SP(2) method is better on fine grids.

‘15/24‘
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Results

B Test case: propagation of pressure perturbation (order 1073).
B The explicit time step is approximatively between 10~3 and 1074.
B We fixe the Mach number M = 1073 and we compare different PC for GMRES

At PC Jacobi ILU(4) MG(2) | SP(1) | SP(2)
32*¥32 P3 | 1.1E+2 1 20 2 1
At =0.01 32x%32P5 1.3E+2 1 60 2 1
32*32 P3 | 5.0E+2 3 2.0E+3 9 6
At=0.1 32%32P5 | 1.4E+43 3 nc 9 6
32*%32 P3 | 4.0E+3 nc nc 85 42
At=1 32%x32P5 | 3.5E+4 nc nc 86 43

B To finish we consider the dependency of the Mach Number.

PC mesh | M=0 [ M=10* ] M=102 ] M=10 [ M=1
SPC(1) At=0.1 15 15 15 22 80
SPC(2) At=0.1 2 2 2 4 10

At=0.5 15 15 17 40 >200
SPC(3) At=0.1 2 2 2 4 11

At=05 15 15 17 42 > 200

B Same effect with Hermite-Bézier scheme. The SP(2) method is better on fine grids.

()
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Elliptic operators

Operators of the PB-PC

Iy+ (MANa-Vig, Iy+Mia-Vig—BA2V(V - ly)

with [a|=1, M << 1.

B When MA = O(1) the transport operator is ill-conditioned. To invert this operator we
can add stabilization terms, or design a specific preconditioning.
B We will focus on the low-mach regime and the elliptic operator.

Acoustic elliptic operator

B Here we consider the elliptic operator

u—A°V(V-u)=f ———_ 7 -V(V-u)=0
{ M(n)uz(O, %Q Ao { M(n()u:g), e[@)

v

B The limit operator is non-coercive. Indeed we can find || u ||# 0 (with the good BC)

such that
/ |V -u?P=0
Q

¥ Numerical problem: conditioning number in O(A) (and also of h and the order). (6 \
/
24
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Results
B Test case: Solution for the following operator with homogeneous Dirichlet on mesh
32%32
u—\Au=*F
Cells HB Splines O3 | Splines O5
32 | 64 | 32 64 32 64
A=0.1 | Jacobi 3 4 |29 55 110 | 100
ILU(B) | 5 7 2 3 1 2
MG(2) | 8 9 8 7 20 19
A=1 Jacobi 3 4 | 30 35 120 | 110
ILU@) | 7 | 11 | 2 5 1 4
MG(2) | 10 | 11 | 8 9 20 21
A =10 Jacobi 3 4 | 30 34 120 | 110
ILUB) | 7 | 12 | 3 5 1 4
MG(2) | 10 | 12 | 8 9 20 21

Strategy to solve acoustic operator

O Step 1: R. Hiptmair, J. Xu Using discrete B-Splines H(Div) space + Auxiliary space
pc, split the kernel to the rest

Ll Step 2: We treat the orthogonal of the kernel with multi-grids+GLT method

0 GLT: Generalized locally Toeplitz (S. Serra Capizzano) method which allows by a
generalized Fourier analysis to modify the multi-grid method in the high-frequency.

7

E. Franck IsoGeo and Physic-Based pc for MHD \ /24‘




Results
B Test case: Solution for the following operator with homogeneous Dirichlet on mesh
32%32
u—ANV(V-u)=f
Cells HB Splines O3 Splines O5
32 64 32 64 32 64
A =0.1 | Jacobi 300 750 110 230 290 520
ILU(8) 10 nc 3 6 1 nc
MG(2) 45 80 15 25 45 55
Jacobi nc nc 6.3E4+2 | 1.2E4+3 | 1.7TE+3 | 3.6E+3
A=1
ILU(8) nc nc nc nc nc nc
MG(2) | 300 600 | 1.0E4+2 | 2.0E+2 | 1.8E+2 | 3.5E+2
Jacobi nc nc 1.2E4+5 | 5.0E4+5 | 1.7E+5 | 6.6E+5
A =10
ILU(8) nc nc nc nc nc nc
MG(2) | 3.0E43 | 1.5E4+4 | 6.8E4+2 | 1.8E4+3 | 2.2E4+3 | 3.8E+3

Strategy to solve acoustic operator

0 Step 1: R. Hiptmair, J. Xu Using discrete B-Splines H(Div) space + Auxiliary space
pc, split the kernel to the rest

[l Step 2: We treat the orthogonal of the kernel with multi-grids+GLT method

O GLT: Generalized locally Toeplitz (S. Serra Capizzano) method which allows by a
generalized Fourier analysis to modify the multi-grid method in the high-frequency.
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Linearized 3D MHD

B We consider the 3D Isothermal MHD equation in the non-conservative form,

pdu+pu-Vou+Vp = (VxB)xB
otp+u-Vp+9pV-u =0

9:B+V x (B x u) :;OVXB
V-B=0

B Linearization: u = ug +du, p = pg+6p, p = po + op with pp = c2po, B = By + ¢B.
B We define three important parameters: the Mach number M, the pressure ratio of the

plasma § = \5/—22 the Alfvén speed V2 = % and the magnetic Reynolds
Ry = F‘OLJUO\ )
Final model
deu+ (M\/BV,)a-Vu+ Vp = 1§ (Y x B) x bo)
dep+ (My/BVa)a-Vp+BVIV - u =
3B+ (M\/BVa)a-VB+ | By |V x (bgxu) ="%P%vy (v xB)
ith M €]0,1], p€]107°,1071], | a|=| by |= 1.
'18/
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Implicit scheme for linear MHD equation

su" + (M\/BN)a - Vu" + Vp = e ((V x B") x bo)
5p"+ (My/BA)a-Vp" + A’V - u" =0
58"+ (M\/BA)a- VB™+ | Bo | V x (bo x u") = PAy (v x BT)

B with A = V,At the numerical Alfvén length, and 5p" = p™+1 — p",

B We propose to apply the SPC(2) method splitting the velocity to the other variables.

B |n the end of the preconditioning we must invert three operators

Operators of the PB-PC

Iy -+ (My/BA)a-Viy— MI\?/‘BAAI(,, Iy + (M\/BA)a- Vg

P = (la+My/BAa- Vig = BA2V(V - 1g) = A (bo x (V x V x (bo X I4)) )

with [a =1, M << 1, € ]107% 10

0’;7" ........ E. Franck IsoGeo and Physic-Based pc for MHD k



Remarks

B First case: We consider the regime M << 1 and f << 1.

Dominant Schur operator

O The Schur operator in this regime is mainly
P = (Ig— A% (bo x (V x V x (bo x I)))
0 The limit operator is non-coercive (A >> 1). Indeed we can find || u ||# O such that

V x (b =0
S 19 x (b0 xu) |

U Example: all the velocity proportional to the magnetic field.

B Second case: We consider the regime M << 1and g < 1.

Multis-cale operator

0 Using a Fourier analysis and Diagonalizing the operator in the Fourier space we denote
that the eigenvalues are the MHD speed waves

0 When M and B is not so small, the different velocities (Alfvén, magneto-sonic slow
and fast) have very different scales.

E. Franck IsoGeo and Physic-Based pc for MHD k /24‘



Alfven elliptic operator

Magnetic field

L} B:%E¢+%VIIJXE¢
B Poloidal flux i satisfy
equilibrium equation

dp _ dF

*0 2 Y =i
A= iRy Py

with Fg an
approximation of F.

B Test case: b given by

equilibrium for g ~ 10~*
.

Figure: Mesh
B Example of convergence problem (Hermite-Bezier finite elements):
Jacobi PC MG(2)
32%32 | 64%64 | 32*%32 | 64*64
A =05 | 60 55 12 11
A=2 nc nc nc nc

G
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Alfven elliptic operator

Magnetic field

" B=ey+ Ve
B Poloidal flux i satisfy
equilibrium equation

with Fy an
approximation of F.

B Test case: b given by / [

equilibrium for g~ 10~* ‘
v

Figure: 1 equilibrum

B Example of convergence problem (Hermite-Bezier finite elements):

Jacobi PC MG(2)
32%32 [ 64%64 | 32*%32 | 64%64
A=0.5 | 60 55 12 11
A=2 nc nc nc nc

G

1
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Other example Reduced Low beta MHD

B Current Hole : 2D reduced MHD in cartesian geometry in low f limit.

B We define i the poloidal magnetic flux and u the electrical potential. The model is
given by
o = [, u] +17(D¢p — Je)

9:Au = [Au, u] + [, AY] +vA%u

with the vorticity w = Au and the current j = Aip.

B After linearization we can use SPC method to design a preconditioning for the

Jacobian.
B Test case Kink Instability: growth of a linear instability and non linear saturation
phase.
At and mesh iteration
At = 1 Mesh=32*32 1-3

At = 10 Mesh=32%*32 4-25
At = 10 Mesh=64*64 1-20

B For this test case the GMRES tolerance is ¢ = 107°. Remark: The ILU(k), MG(2) and
Jacobi PC tested are not able to treat this problem.
‘2
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==
Conclusion

Physic-based pc

B |f we are able to invert the sub-systems, then the physic-based pc is
O very efficient in the Low-Mach regime for large time step.

O less efficient in the sonic-regime, however we can treat large time step than the
explicit one.

' The efficiency does not decrease when the h decreases.

Euler equation

B Euler equation: at the end the main difficulty is to invert quickly the div-div operator.

B Ongoing work: Construct and validate preconditioning for div-div using H(div)
discrete space (R. Hiptmair, J. Xu) + GLT

B Future work: find a better version of the method for Mach close to one.

v

B |n the low-Beta regime, the main difficulty is to invert quickly the curl-curl operator.
B Ongoing work: find a good preconditioning for curl-curl using compatible-space
(difficulty: the dependance in the magnetic field).

separate the scales.

)
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B For B not so small, we have a multi-scale operator. Future work: find a strategy to
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