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Mathematic and physical context
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Stiff hyperbolic systems

� Stiff hyperbolic system with source terms:

∂tU +
1

ε
∂xF (U) +

1

ε
∂yG(U) =

1

ε
S(U)−

σ

ε2
R(U), U ∈ Rn

with ε ∈ ]0, 1] et σ > 0.

� Subset of solutions given by the balance between the source terms and the convective

part:

� Diffusion solutions for ε→ 0 and S(U) = 0:

∂tV − div (K(∇V,σ)) = 0, V ∈ Ker R.

� Steady-state for σ = 0 et ε→ 0 :

∂xF (U) + ∂yG(U) = S(U).

� Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative
hydrodynamic (hydrodynamic + linear transport of photon).
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Notion of WB and AP schemes

� Acoustic equation with damping and gravity:
∂tp +

1

ε
∂xu = 0,

∂tu +
1

ε
∂xp = −

1

ε
g −

σ

ε2
u,

−→ ∂tp − ∂x
(

1

σ
(∂xp + g)

)
= 0.

� Steady-state: u = C , ∂xp = −g − σ
ε
C .

� Godunov-type schemes give an error
homogeneous to O(∆x).

� For nearly uniform flows, spurious
velocities larger that physical velocity.

� Important deviation of the steady-state.

� WB scheme: discretize the steady-state
exactly of with high accuracy.

� Ref: S. Jin, A steady-state capturing
method for hyperbolic method with
geometrical source terms.

� Consistency of Godunov-type

schemes: O(
∆x

ε
+ ∆t).

� CFL condition: ∆t(
1

∆xε
+
σ

ε2
) ≤ 1.

� Consistency of AP schemes:
O (∆x + ∆t).

� CFL condition: degenerate on
parabolic CFL at the limit.

� Ref: S. Jin, D. Levermore Numerical
schemes for hyperbolic conservation
laws with stiff relaxation.

� To construct WB and AP schemes: incorporate the source in the fluxes to capture the
balance between source and convective terms.
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AP scheme and Uniform convergence in 1D
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Jin-Levermore scheme
� Jin-Levermore scheme. Plug the balance law ∂xp = −σ

ε
u + O(ε2) in the fluxes. We

write

p(xj ) = p(xj+ 1
2

) + (xj − xj+ 1
2

)∂xp(xj+ 1
2

)

Coupling the previous relation (and the same for xj+1) with the fluxes
uj + pj = uj+ 1

2
+ pj+ 1

2
+
σ
j+ 1

2
∆xj

2ε
uj+ 1

2
,

uj+1 − pj+1 = uj+ 1
2
− pj+ 1

2
+
σ
j+ 1

2
∆xj+1

2ε
uj+ 1

2
.

Jin-Levermore scheme:
pn+1
j −pnj

∆t
+

M
j+ 1

2
un
j+ 1

2

−M
j− 1

2
un
j− 1

2
ε∆xj

un+1
j −unj

∆t
+

pn
j+ 1

2

−pn
j− 1

2
ε∆xj

+ σ
ε2 u

n
j = 0,

with  uj+ 1
2

=
uj+uj+1

2
+

pj−pj+1

2

pj+ 1
2

=
pj+pj+1

2
+

uj−uj+1

2

and Mj+ 1
2

= 2ε
2ε+σ

j+ 1
2

∆x
j+ 1

2

.
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M
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2
un
j+ 1

2

−M
j− 1

2
un
j− 1

2
ε∆xj

un+1
j −unj

∆t
+

pn
j+ 1

2

−pn
j− 1

2
ε∆xj

+ σ
ε2 u

n
j = 0,

with  uj+ 1
2

=
uj+uj+1

2
+

pj−pj+1

2

pj+ 1
2

=
pj+pj+1
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+

uj−uj+1

2

and Mj+ 1
2

= 2ε
2ε+σ

j+ 1
2

∆x
j+ 1

2
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Jin-Levermore scheme II

� Consistency error of the Jin-Levermore scheme and classical scheme (uniform mesh):

� First equation: O (∆x + ∆t) (ref
(

∆x
ε

+ ∆t
)

for the classical scheme)

� Second equation: O
(

∆x2

ε
+ ∆t

)
(ref

(
∆x2

ε
+ ∆t

)
for the classical scheme)

� Time discretization:

� Explicit CFL: ∆t
(

1
∆xε+ε

)
≤ 1

� Semi-implicit CFL : ∆t
(

1
∆xε

)
≤ 1.

� Well-balanced property:

� Uniform mesh: the scheme is WB,
� Non-uniform mesh: the scheme is not WB.
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Gosse-Toscani scheme
� Classical strategy: Localization of the source at the interface and the Riemann

problem associated.
� Other solution: we take the following source term 1

2
(uj+ 1

2
+ uj− 1

2
) with the JL

scheme.

Gosse-Toscani scheme:


pn+1
j −pnj

∆t
+

M
j+ 1

2
u
j+ 1

2
−M

j− 1
2
u
j− 1

2
ε∆xj

un+1
j −unj

∆t
+

M
j+ 1

2
p
j+ 1

2
−M

j− 1
2
p
j− 1

2
ε∆xj

−
M

j+ 1
2
−M

j− 1
2

∆xjε
pnj +

(σ
j+ 1

2
∆x

j+ 1
2

2ε2∆j
+
σ
j− 1

2
∆x

j− 1
2

2ε2∆j

)
unj = 0

with

uj+ 1
2

=
unj + unj+1

2
+

pnj − pnj+1

2
, pj+ 1

2
=

pnj + pnj+1

2
+

unj − unj+1

2

and Mj+ 1
2

= 2ε
2ε+σ

j+ 1
2

∆x
j+ 1

2

.

� Consistency error of the Gosse-Toscani (uniform mesh): O (∆x + ∆t)

� Time discretization:
� Explicit CFL: ∆t

(
1

∆xε

)
≤ 1, Semi-implicit CFL : ∆t

(
1

∆xε+∆x2

)
≤ 1.

� Well-balanced property: WB scheme on all meshes.
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Numerical example
� Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a

Gaussian u(0, x) = 0 and σ = 1, ε = 0.001.

Jin-Levermore scheme Godunov scheme

Scheme L2 error CPU time
Godunov, 10000 cells 0.0376 505 sec

Godunov, 500 cells 0.42 5.31 sec
AP-JL, 500 cells 4.3E-3 5.42 sec
AP-JL, 50 cells 0.012 0.46 sec

AP-GT, 500 cells 1.3E-4 2.38 sec
AP-GT, 50 cells 0.012 0.013 sec
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Test for Well-Balanced property

� We propose to validate the Well-Balanced property.

� For this, we initialize the scheme with a steady state and simulate with a large final
time (Tf =20).

� Steady state: {
u(t, x) = C1

p(t, x) = −(g + σ
ε
C1)x + C2

Scheme/mesh Uniform Mesh Random Mesh
Godunov, 100 cells 0.0 2.83E-3

Godunov, 1000 cells 5.0E-17 2.7E-4
AP-JL, 100 cells 0.0 3.3E-3

AP-JL, 1000 cells 6.3E-17 3.9E-4
AP-GT, 100 cells 3.1E-16 3.1E-16

AP-GT, 1000 cells 3.0E-16 2.8E-15
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Test for uniform convergence in 1D

� ε dependent periodic solution for the P1 model.

� p(t, x) = (α(t) + ε2

σ
α
′
(t)) cos(πx), u(t, x) =

(
− ε
σ
α(t) sin(πx)

)
� Convergence study for ε = hγ on random mesh.

JL scheme on uniform mesh JL scheme on random mesh

� The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the
error O(hε+ h2).

� On Random mesh the JL scheme is not an uniform AP scheme.
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Analysis of AP schemes: modified equations

� To understand the behavior of the scheme, we use the modified equations method.

� The modified equation associated with
the Upwind scheme is{

∂tp + 1
ε
∂xu − ∆x

2ε
∂xxp = 0,

∂tu + 1
ε
∂xp − ∆x

2ε
∂xxu = − σ

ε2 u.

� Plugging ε∂xp + O(ε2) = −σu in the
first equation, we obtain the diffusion
limit

∂tp −
1

σ
∂xxp −

∆x

2ε
∂xxp = 0.

� Conclusion: the regime is captured
only on fine grids.

� The modified equation associated to
the Gosse-Toscani scheme is{

∂tp + M 1
ε
∂xu −M ∆x

2ε
∂xxp = 0,

∂tu + M 1
ε
∂xp −M ∆x

2ε
∂xxu = −M σ

ε2 u.

� Plugging Mε∂xp + O(ε2) = −Mσu in
the first equation, we obtain the
diffusion limit

∂tp −
M

σ
∂xxp −

1−M

σ
∂xxp = 0

� Conclusion: the regime is captured on
all grids.
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Conclusion of the Uniform convergence

AP schemes on uniform grids
� AP schemes modify the numerical diffusion to correct the classical scheme on coarse

grid.

� Generally these schemes are uniformly AP on uniform grids.

AP schemes on non-uniform grids
� On non-uniform grids the situation is more complex.

� For example the JL scheme does not converge in the intermediary regimes.

� Possible Explanation: since the linear steady states are not preserved the limit
diffusion scheme in these regimes does not converge.

Open question
� Link between AP and Well-Balanced schemes for linear steady states. Sufficient

condition ? Necessary condition ?
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Uniform convergence in space
� Naive convergence estimate : ||Pεh − Pε||naive ≤ Cε−bhc

� Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

||Pεh − Pε||L2 ≤ min(||Pεh − Pε||naive , ||Pεh − P0
h ||+ ||P

0
h − P0||+ ||Pε − P0||)

ε→ 0
P0
h

Pε

h → 0

P0

ε→ 0

h → 0

Pε
h

� Intermediary estimations :

� ||Pε − P0|| ≤ Caεa,
� ||P0

h − P0|| ≤ Cdh
d ,

� ||Pεh − P0
h || ≤ Ceεe ,

� d ≥ c, e ≥ a.

� We using min(x , y + z) ≤ min(x , y) + min(x , z) and d ≥ c, e ≥ a to obtain

||Pεh−P
ε||L2 ≤ C

(
min(ε−bhc , εe) + hd + min(ε−bhc , εa)

)
≤ 2C

(
hd + min(ε−bhc , εa)

)
.

� Defining ε−b
thresholdh

c = εathreshold we obtain min(ε−bhc , εa) ≤ εathreshold = h
ac
a+b and

||Pεh − Pε||L2 ≤ h
ac
a+b

.
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Uniform convergence for the Gosse-Toscani scheme

Space result:
We assume that ‖Vε(0)− Vεh(0)‖L2(Ω) ≤ Ch ‖ p(0) ‖H2 and C1h < ∆xj < C2h ∀j .
There exist C(T ) > 0 such that:

‖Vε − Vεh‖L2([0,T ]×Ω) ≤ C min

(√
h

ε
, h + 2ε

)
‖ p0 ‖H3(Ω)≤ Ch

1
3 ‖ p0 ‖H3(Ω)

� Proof: we prove all the intermediary estimates. We use the triangular inequality and
we conclude.

� Time discretization: Using a abstract formulation of implicit scheme ( B. Després) we
obtain

Final result:
We assume that ‖Vε(0)− Vεh(0)‖L2(Ω) ≤ Ch ‖ p(0) ‖H2 and C1h < ∆xj < C2h ∀j .
There exist C(T ) > 0 such that:

‖Vε(n∆t)− Vεh(n∆t)‖L2(Ω) ≤ C(h
1
3 + ∆t

1
2 ) ‖ p0 ‖H3(Ω)
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2D AP scheme on unstructured meshes
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Schémas ”Asymptotic preserving” 2D
� Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes

(1D fluxes write in the normal direction) plugging the steady-state in the fluxes.

x j

xr+1

xr−1

l jk

xr

Cell Ω j

Cell Ωk

xk

n jk

� ljk and njk the normal and length associated with the edge ∂Ωjk .

Asymptotic limit of the hyperbolic scheme:

| Ωj | ∂tpj (t)−
1

σ

∑
k

ljk
pnk − pnj

d(xj , xk )
= 0.

� ||P0
h − Ph|| → 0 only on strong geometrical conditions.

� Additional difficulty in 2D: The basic extension of AP schemes do not converge on
2D general meshes ∀ε.
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Nodal scheme : linear case
� Linear case: P1 model


∂tp + 1

ε
div(u) = 0,

∂tu + 1
ε
∇p = − σ

ε2 u.
−→ ∂tp − div

(
1

σ
∇p
)

= 0.

Idea:
Nodal finite volume methods for P1 model +
AP and WB method.

Nodal schemes:
The fluxes are localized at the nodes of the
mesh (for the classical scheme this is at the
edge).

Notations

where the pentagon is split into subtriangles in two different ways.
On each of these subtriangles the barycentric functions are easily
defined as P1 linear functions. By continuity it defines over the
whole pentagon two different sets of barycentric functions. It
means that barycentric functions are not intrinsic objects, even if
the volume Vj is uniquely defined in this case.

Let us define Vj > 0 the volume of the cell Xj

V j ¼
Z

bXq

detðrXxÞdX ¼
Z

bXq

det
Xnvq

r¼1

rXkq
r $ xrjðqÞ

 !
dX; ð7Þ

where bXq is of course the unique reference cell that corresponds to
Xj. This formula defines a mapping from the vertices x = (x1, . . .) to
Vj. Therefore the volume Vj of the cell can be easily defined as a
function of the cell vertices. We can write with natural notations
Vj = Vj(x). In dimension d = 3 the situation may be more complicated
in case the faces are warped, because even the volume Vj is not un-
iquely defined on the geometrical standpoint. On the contrary the
volume is well-defined through the formula (7) for a given choice
of the barycentric functions. This is why we rely on (7) in the rest
of this paper.

Definition 2. The gradient of the volume with respect to the
vertices is

Cjr ¼ rxr V j 2 Rd: ð8Þ
The expression of Cjr is easy to compute in dimension d = 2. Con-

sider the typical situation of Fig. 4. By convention the vertices are
listed counterclockwise xr%1,xr,xr+1, . . . with coordinates xr = (xr,yr).
The quantity 1

2 ðxryrþ1 % yrxrþ1Þis the oriented area of the triangle
with vertices xr, xr+1 and O = (0,0). The sum of these oriented areas
is the total area Vj ¼

P
r

1
2 ðxryrþ1 % yrxrþ1Þ. The formula (8) implies

the formula used in [10]

Cjr ¼
1
2
%yr%1 þ yrþ1

xr%1 % xrþ1

! "
: ð9Þ

Next we consider the dimension d = 3. The reference cell is denoted
bX ¼ bXqðjÞ. One has the general formula that we deduce from (7)

Cjr ¼
X

s

X

t

xs ^ xt

Z

bX
det rkr ;rks;rktð ÞdX

! "
: ð10Þ

The characterization of Cjr for tetrahedrons and for hexahedrons
with warped faces is given in [7].

The scheme that we consider in the following is based on a very
specific nodal solver that we describe now. At the beginning of the
time step one computes the geometrical vectors Cjr for all cell Xj as
a function of the vertices xr.

Definition 3 (The nodal solver). Let us assume that we know the
values of some cell pressures pj and some cell velocities uj for all

cells around a certain vertex xr. The nodal solver at vertex xr is
defined by the following set of linear equations

pjr % pj þ qjcj !ur % uj;
Cjr

Cjrj j

! "
¼ 0;

P
j

Cjrpjr ¼ 0:

8
>><

>>:
ð11Þ

The unknowns are ðpjr; !urÞ. All other quantities are given. Here
qjcj > 0 is the positive acoustic impedance, and cj is the local speed
of sound.

The solution of the nodal solver is computed by elimination of
pjr in the second equation. One gets the linear equation Ar !ur ¼ br

where the matrix is

Ar ¼
X

j

qjcj
Cjr $ Cjr

jCjrj
2 Rd'd

and the right hand side is

br ¼
X

j

Cjr pj þ qjcj uj;
Cjr

jCjr j

! "! "
2 Rd:

In general the linear system that we have to solve is well posed
since the matrix on the left hand side is symmetric non-negative.
It is possible to show that it is a positive (thus invertible) matrix
Ar ¼ At

r > 0 provided the vectors (Cjr)j span Rd. This is the case in
practice [7]. See also a particular proof in dimension d = 2 [10].
The result of Proposition 25 can be interpreted as a new proof of
this well posedness of the nodal solver.

The GLACE scheme is a cell-centered Godunov like Lagrangian
scheme that has been recently proposed in [7]. As detailed in
Eqs. (11)–(15), this scheme is implemented using explicit Euler
time integration with time step Dt > 0.

Definition 4 (The GLACE scheme). At the beginning of the time step
tk = kDt one computes the geometrical vectors Ck

jr . Then one
computes the nodal pressures pk

jr and the nodal velocities !uk
r using

the nodal solver (11). With these quantities one updates the total
momentum and the total energy as follows. For the momentum
one uses

Mj
ukþ1

j % uk
j

Dt
¼ %

X

r

Ck
jrp

k
jr : ð12Þ

The total energy is updated with

Fig. 3. Non-uniqueness of the definition of the barycentric functions in dimension
d = 2. The pentagon is viewed as the union of 5 triangles on the left and as the union
of 3 triangles on the right. On each of the subtriangles the barycentric functions are
the standard linear P1 functions.

Fig. 4. A mesh in dimension d = 2. Notice that C?jr is the vector that joins the middle
of the edges.

B. Després / Comput. Methods Appl. Mech. Engrg. 199 (2010) 2669–2679 2671

� Nodal geometrical quantities Cjr = ∇xr |Ωj |.
�
∑

j Cjr =
∑

r Cjr = 0.
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2D AP schemes

Nodal AP schemes
| Ωj | ∂tpj (t) +

1

ε

∑
r

(ur , Cjr ) = 0,

| Ωj | ∂tuj (t) +
1

ε

∑
r

pcjr = Sj .

� Classical nodal fluxes: {
pcjr − pjCjr = α̂jr (uj − ur ),∑

j pcjr = 0,

with α̂jr =
Cjr⊗Cjr

‖Cjr‖
.

� New fluxes obtained plugging steady-state ∇p = −σ
ε

u in the fluxes:
pcjr − pjCjr = α̂jr (uj − ur )−

σ

ε
β̂jrur ,∑

j

α̂jr +
σ

ε

∑
j

β̂jr

 ur =
∑
j

pjCjr +
∑
j

α̂jruj .

with β̂jr = Cjr ⊗ (xr − xj ).

� Source term: (1) Sj = − σ
ε2 | Ωj | uj ou (2) Sj = − σ

ε2

∑
r β̂jrur ,

∑
r β̂jr = Îd |Ωj |.

� Using the second source term and rewriting the scheme we obtain an local semi
implicit scheme with a CFL independent of ε.
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Diffusion scheme

Limit diffusion scheme (P0
h)

| Ωj | ∂tpj (t)−
∑
r

(ur , Cjr ) = 0,∑
r

α̂jruj =
∑
r

α̂jrur ,

σArur =
∑
j

pjCjr , Ar = −
∑
j

Cjr ⊗ (xr − xj ).

ε→ 0

P0Pε

Pε
h

h → 0

P0
h

ε→ 0

h → 0

� Problem: estimate ||Pεh − P0
h ||.

� In practice, we have obtained
||Pεh − P0

h || ≤ C ε
h

.

� Introduction of an intermediary
diffusion scheme DAεh .

� DAεh : Pεh scheme with ∂tFj = 0.

� In the previous estimation we replace
P0
h by DAεh .

Condition H:
The discrete Hessian of P0

h can be bounded or the error estimate ‖Pεh − P0
h‖ can be

obtained independently of the discrete Hessian.
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h ||.

� In practice, we have obtained
||Pεh − P0

h || ≤ C ε
h

.

� Introduction of an intermediary
diffusion scheme DAεh .

� DAεh : Pεh scheme with ∂tFj = 0.

� In the previous estimation we replace
P0
h by DAεh .

Condition H:
The discrete Hessian of P0

h can be bounded or the error estimate ‖Pεh − P0
h‖ can be

obtained independently of the discrete Hessian.
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Final results

Space result:
We assume that the meshes and the data are regular and the initial datas well-preraped.
There exist C(T ) > 0 such that:

‖Vε − Vεh‖L2([0,T ]×Ω) ≤ Cf (h, ε) ‖ p0 ‖H4(Ω)≤ Ch
1
4 ‖ p0 ‖H4(Ω)

with

f (h, ε) = min

(√
h

ε
, εmax

(
1,

√
ε

h

)
+ h + (h + ε) + ε

)

� Introducing εthresh = h
1
2 we prove that the worst case is ‖Vε − Vεh‖ ≤ C2h

1
4 .

Space-time result:
Wa assume that the assumptions are verified. There exist C > 0 such that:

‖Vε(tn)− Vεh(tn)‖L2(Ω) ≤ C
(
f (h, ε) + ∆t

1
2

)
‖ p0 ‖H4(Ω)

Remark: The condition H is not satisfied. The diffusion scheme used is DAε.
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Intermediary results I

Estimation of ||Vε − Vε
h|| :

We assume that assumptions are verified. There exist C > 0 such that:

‖Vεh − Vε‖L∞((0,T ):L2(Ω)) ≤ C

√
h

ε
.

� Principle of proof:
� Control the stability of the discrete quantities ur and uj by ε

� We define the error E(t) = ||Vε − Vεh ||L2 and we estimate E
′
(t) using Young and

Cauchy-Schwartz inequalities, stability estimates and integration in time.

Estimation of ||DAεh − P0|| :

Wa assume that the assumptions are verified. There exist C1 > 0 such that:

||V0
h − V0||L2(Ω) ≤ C1(T )(h + ε), 0 < t ≤ T .

� Principle of proof:
� Control the stability of the discrete quantities ∇rp and pj .
� Consistance study of Div and Grad discrete operators.
� L2 estimate using consistency error and Gronwall lemma.
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Intermediary results II

Estimate ||Pε
h − DAεh|| :

We assume that the assumptions are verified. There exist C2(T ) > 0 such that:

||Vεh − Vh||L2(Ω) ≤ C2(T )εmax
(

1,
√
εh−1

)
+ Ch, 0 < t ≤ T .

Estimate ||Pε − P0|| :

We assume that the assumptions are verified. There exist C3(T ) > 0 such that:

||Vε − V0||L2(Ω) ≤ C3(T )ε, 0 < t ≤ T .

� Principe of proof:

� Write P0 = Pε + R (resp DAεh = Pεh + R) with R a residue.
� Find a bound with ε of the residue.
� L2 estimate of the difference between the two models and between the two

schemes.
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AP scheme vs classical scheme

� Test case: heat fundamental solution. Results for different hyperbolic scheme with
ε = 0.001 on Kershaw mesh.

Diffusion solution Non AP scheme

Standard AP scheme Nodal AP scheme
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Uniform convergence
� ε dependent periodic solution for the P1 model.

� p(t, x) = (α(t) + ε2

σ
α
′
(t)) cos(πx) cos(πy)

� u(t, x) =
(
− ε
σ
α(t) sin(πx) cos(πy), − ε

σ
α(t) sin(πy) cos(πx)

)
� Convergence study for ε = hγ on random mesh.

γ = 1
4

γ = 1
2

� Numerical results show that the error is homogenous to O(hε+ h2).

� Theoretical estimate that we can hope: O((hε)
1
2 + h).

� Non optimal estimation in the intermediary regime.
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Conclusion of the 2D case

AP schemes on unstructured grids
� Contrary the classical scheme the nodal scheme allows to obtain the uniform AP

property

� However there are spurious mods for non smooth datas (possible stabilization).

� Other scheme: MPFA-AP scheme without spurious mods but the uniform
convergence is an open question.

Extension
� We propose AP schemes for Friedrich’s systems using a particular splitting between

the P1 model and a rest (close to micro-macro decomposition).

� The nodal scheme is also use to construct an AP scheme for Euler with friction and
the M1 model.
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