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Mathematic and physical context
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Stiff hyperbolic systems

B Stiff hyperbolic system with source terms:

1 1 1
9:U+ ~0,F(U) + ~8,G(U) = ~5(U) — ZR(U), U € R"
€ € g &€
with € €]0,1] et o > 0.

B Subset of solutions given by the balance between the source terms and the convective
part:

O Diffusion solutions for ¢ — 0 and S(U) = 0:
8V —div (K(VV,0)) =0, V € KerR.
[ Steady-state for c =0 ete — 0 :

8 F(U) + 8, G(U) = S(U).

B Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative
hydrodynamic (hydrodynamic + linear transport of photon).
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Notion of WB and AP schemes

B Acoustic equation with damping and gravity:

1
Otp + —0xu =0,

1 o
Oru+ —Oxp=—-g— 7u,
g g &

B Steady-state: u=C, Oxp=—g — ZC.

€
B Godunov-type schemes give an error
homogeneous to O(Ax).

B For nearly uniform flows, spurious
velocities larger that physical velocity.
B |mportant deviation of the steady-state.

B WB scheme: discretize the steady-state
exactly of with high accuracy.

B Ref: S. Jin, A steady-state capturing
method for hyperbolic method with
geometrical source terms.

1
— Otp — Ox (;(@p + g)) =0.

Consistency of Godunov-type
A
schemes: O(—X + At).
€
1 o
— 4+ =)< 1.
Axe + 62) -

Consistency of AP schemes:
O (Ax + At).

CFL condition: degenerate on
parabolic CFL at the limit.

CFL condition: At(

Ref: S. Jin, D. Levermore Numerical
schemes for hyperbolic conservation
laws with stiff relaxation.

B To construct WB and AP schemes: incorporate the source in the fluxes to capture the

balance between source and convective terms.

E. Franck
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AP scheme and Uniform convergence in 1D

(°/=

E. Franck WB and AP schemes \ y




==
Jin-Levermore scheme

B Jin-Levermore scheme. Plug the balance law 9xp = —Zu + O(£?) in the fluxes. We
write

P(xj) = P(xj 1) + (4 =X, 1)0xp(x;, 1)

Coupling the previous relation (and the same for xj; ;) with the fluxes

dj+lAXj

2

Utpi=u1tp1+ —5 U1
Gj+%AXj+1

Uptl — Pj+1 = Uy L — Pl + U

2

Jin-Levermore scheme:

n+l_ n M. qu" =M. qu"
P; P + Jjt3 j+% Jj=3 J*%
At eAx;
n+1 n p’ 1—Pf’ 1
yoTy + Jt3 =3 L gy =0
At elx; e j !
with
— Yty | PiTRi
Ui =7+
_ PitPi1 | YU
Pit1 =%  T73
2¢e
and M. 1 = .
J+3 25+o’j_+% ij+%
7
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==
Jin-Levermore scheme

B Jin-Levermore scheme. Plug the balance law 9xp = —Zu + O(£?) in the fluxes. We
write

P0) = plx;, 1) = (g =, 1) T uly, )

Coupling the previous relation (and the same for x;j;1) with the fluxes

Jj+%AXj
T A Ea
%1 AXJ+1
Uit = Pj+1 = U1 = Pt 7“14%-
Jin-Levermore scheme:
n+l_ _n M qu? =M. u"
p; p; n 3ty i3 -3
At elx;
n+l__ n p’ 1 —p"
i i o J+% ji% +gun_0
At elx; g2 j — 1
with
_ Yituipn | PP
Ul =—"> +73
_ PitPi1 | Ui~
Pit1 =% T3
2e
and M., 1 = — =5 ——.
Jt3 2€+o'j+%Ax

'+l
it3 7\
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==
Jin-Levermore scheme ||

B Consistency error of the Jin-Levermore scheme and classical scheme (uniform mesh):
O First equation: O (Ax + At) (ref <% + At) for the classical scheme)
[ Second equation: O (AX2 + At) (ref (A?XZ + At) for the classical scheme)

€

B Time discretization:

0 Explicit CFL: At (g ) <1

O Semi-implicit CFL : At (£1-) < 1.

B Well-balanced property:

L Uniform mesh: the scheme is WB,
0 Non-uniform mesh: the scheme is not WB.
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Gosse-Toscani scheme

B Classical strategy: Localization of the source at the interface and the Riemann
problem associated.

B Qther solution: we take the following source term %(Uj+l + Uj,l) with the JL
2 2
scheme.

Gosse-Toscani scheme:

1 . . 1—M. .
P;’Jr —P;' /+%uj+% J*%uj—%
At eAx;
nt+l_n M., ip.,1—M _ 1p. 1 M. 1-M._1 o 10x 1 o 1Ax._ 1
T 5 M B T 5 S M | 20y (22 Jta  Jmo Jmo ) n g
At eAx; Axje J 252A/ QEQAJ J
With n n n n n n
I /= G A _P P Y
Jt+3 2 2 ' Jt3 2 2
2¢e
and M. 1= 5" A —-
Jt3 2E+O'j+% ij+%
v

B Consistency error of the Gosse-Toscani (uniform mesh): O (Ax + At)
B Time discretization:

O Explicit CFL: At (z-) <1, Semi-implicit CFL : At(
B Well-balanced property: WB scheme on all meshes.

1
AXE+AX2) <1

E. Franck
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Numerical example

B Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a

Gaussian u(0,x) =0 and ¢ = 1, ¢ = 0.001.

Jin-Levermore scheme

Godunov scheme

A ~
/ \\ ,r/ Y
/ | [
/’ \\ { \x
/// \ / |
/f \\ c’/" \\
/ 4 { !
/ /
/ | / 4
// \\ // \\
/ \ / \
/ ~ / AN
Scheme LZ error | CPU time
Godunov, 10000 cells 0.0376 505 sec
Godunov, 500 cells 0.42 5.31 sec
AP-JL, 500 cells 4.3E-3 5.42 sec
AP-JL, 50 cells 0.012 0.46 sec
AP-GT, 500 cells 1.3E-4 2.38 sec
AP-GT, 50 cells 0.012 0.013 sec h
10
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Numerical example

B Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a
Gaussian u(0,x) =0 and o =1, e = 0.001.

Jin-Levermore scheme Godunov scheme
7 )
/o £
//' \\ ‘/ )
! ! i
[ I
{ § { 1!
{ f | ]
\ / \
// \‘\ /,/ i
// \ / \
/ Y /‘/ 3
/ \\ / \\
/ | : \
Scheme L? error | CPU time
Godunov, 10000 cells 0.0376 505 sec
Godunov, 500 cells 0.42 5.31 sec
AP-JL, 500 cells 4.3E-3 5.42 sec
AP-JL, 50 cells 0.012 0.46 sec
AP-GT, 500 cells 1.3E-4 2.38 sec
AP-GT, 50 cells 0.012 0.013 sec
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Test for Well-Balanced property

B We propose to validate the Well-Balanced property.
B For this, we initialize the scheme with a steady state and simulate with a large final
time (T¢=20).

B Steady state:

{ u(t,x) =G
p(t.x)=—(g+2CG)x+ C&
Scheme/mesh Uniform Mesh | Random Mesh

Godunov, 100 cells 0.0 2.83E-3

Godunov, 1000 cells 5.0E-17 2.7E-4
AP-JL, 100 cells 0.0 3.3E-3
AP-JL, 1000 cells 6.3E-17 3.9E-4
AP-GT, 100 cells 3.1E-16 3.1E-16
AP-GT, 1000 cells 3.0E-16 2.8E-15

E. Franck
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Test for uniform convergence in 1D

B ¢ dependent periodic solution for the P; model.

B p(t,x) = (aft) + %a/(t))cos(wx), u(t,x) = (—£a(t)sin(rx))
B Convergence study for e = h” on random mesh.

JL scheme on uniform mesh JL scheme on random mesh

B The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the

error O(he + h?).
‘12/30

B On Random mesh the JL scheme is not an uniform AP scheme.
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Test for uniform convergence in 1D

B ¢ dependent periodic solution for the P; model.

B p(t,x) = (aft) + %O&’(t))COS(TFX), u(t, x) = (—£a(t) sin(wx))
B Convergence study for ¢ = h7 on random mesh.

GT scheme on uniform mesh GT scheme on random mesh

ity

B The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the

error O(he + h?).
112/30

B On Random mesh the JL scheme is not an uniform AP scheme.
E. Franck WB and AP schemes \ y




Analysis of AP schemes: modified equations

B To understand the behavior of the scheme,

B The modified equation associated with ®
the Upwind scheme is

atp+ l8}(“ — A*;(axxp =0,
Oru+ - 0xp — Z—gaxxu = fg%u.

B Plugging €dxp + O(e?) = —ou in the
first equation, we obtain the diffusion
limit

1 Ax
Otp — —Oxxp — — Oxxp = 0.
o 2¢e

B Conclusion: the regime is captured
only on fine grids.

we use the modified equations method.

The modified equation associated to
the Gosse-Toscani scheme is

{

Plugging Medxp + O(e?) = —Mou in
the first equation, we obtain the
diffusion limit

Otp+ MLocu— M2%0up =0,
Oeu+ MLop — MEXDou=—M % 0.

€

=

o

M
Oxxp =0

M
3tP - *axxp -
g

Conclusion: the regime is captured on
all grids.

E. Franck
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Conclusion of the Uniform convergence

AP schemes on uniform grids

B AP schemes modify the numerical diffusion to correct the classical scheme on coarse
grid.

B Generally these schemes are uniformly AP on uniform grids.

AP schemes on non-uniform grids

B On non-uniform grids the situation is more complex.

B For example the JL scheme does not converge in the intermediary regimes.

B Possible Explanation: since the linear steady states are not preserved the limit
diffusion scheme in these regimes does not converge.

Open question

B |ink between AP and Well-Balanced schemes for linear steady states. Sufficient
condition ? Necessary condition 7

\l 14/30‘
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Uniform convergence in space

B Naive convergence estimate : ||P; — P%||aive < Ce=bhe

B |dea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

1P; = PEll2 < min([1Pf = PEllnaive. [1P5 — PRIl + 1Py = POII + [P — Pl)

P: £-0 PO B |ntermediary estimations :
h
0[P = PY|| < Gae?,
, b O ||PY — PO|| < Cy4hd,
-0 - O ||PZ—P2||SCeee,
Od>c e>a
Pe PO
e—=0

B We using min(x, y + z) < min(x, y) + min(x, z) and d > ¢, e > a to obtain
[|Pr—P¢ll2 < C (min(e_bhc, ) + h9 4+ min(e~bh°, sa)> <2C (hd + min(e~bh°, 53)>

—b

: ac
] = c _ -a 0 H —bpc -a a — hath
Defining €, ah® = €3 eshoig We obtain min(e =°h€,e?) < &3, . = ha+b and

€ _ pe e
IPE — Plli2 < hot

E. Franck
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Uniform convergence for the Gosse-Toscani scheme

Space result:

We assume that [[V=(0) — V7 (0)[|2q) < Ch || p(0) [|12 and Gih < Ax; < Goh V.
There exist C(T) > 0 such that:

. h 1
IVE = VElli2¢o, 1jx ) < € min (\/: h+ 26) I Po llt3@)< Ch3 I Po llH3(q)

B Proof: we prove all the intermediary estimates. We use the triangular inequality and
we conclude.

B Time discretization: Using a abstract formulation of implicit scheme ( B. Després) we
obtain

We assume that [[V=(0) — V7 (0)[|2q) < Ch || p(0) [|12 and Gih < Ax; < Goh V.
There exist C(T) > 0 such that:

1 1
V= (nAt) — Vi (nAt)ll 2y < C(h3 + At2) || po [l3(q)

\‘ 16/30
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2D AP scheme on unstructured meshes
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Schémas " Asymptotic preserving” 2D

B (Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes
(1D fluxes write in the normal direction) plugging the steady-state in the fluxes.

B /i and nj the normal and length associated with the edge 0.

Asymptotic limit of the hyperbolic scheme:

n

| Q| Oepi(t) — Z e ———~ d(xJ,

Xk)

B ||PY — Pp|| — 0 only on strong geometrical conditions.

B Additional difficulty in 2D: The basic extension of AP schemes do not converge on

2D general meshes Ve. /\
18/30

E. Franck WB and AP schemes \ y




==
Nodal scheme : linear case

B Linear case: P; model

Op + %div(u) =0, 1
— Otp — div (pr) =0.
o

dru+ 1Vp=—%u.

Notations

Nodal finite volume methods for P; model + ’ Cell p
AP and WB method.

v

Nodal schemes:

The fluxes are localized at the nodes of the
mesh (for the classical scheme this is at the
edge).

B Nodal geometrical quantities C;, = Vx,|;].

u ZjCJFZZer’ZO' h
19/30
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2D AP schemes

Nodal AP schemes

1
| | Oepj(t) + - > (u,Ci) =0,
r

1
|9 | dewj(t) + 2> pe;y = S;.

B (lassical nodal fluxes:
{ PSjr — pjCjr = ajr(uj —uy),

Z_/ pcjr = 0!
o~ Ci®C
with aj, = e
B New fluxes obtained plugging steady-state Vp = —%u in the fluxes:

~ g =~
pc;r — pCjr = @jr(uj —ur) — —fjur,
~ g -~ .
Zaf"i_gZBjr ur :ijCj,-l-Zaj,uj.

with B; = Cjr @ (%, — x;).

B Source term: (1) S; = —% [ Q; [ujou (2) S; = % ngjrur, Z,B}, = Iyl
Using the second source term and rewriting the scheme we obtain an local semi
implicit scheme with a CFL independent of ¢. /\
20/
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Diffusion scheme

Limit diffusion scheme (P?)

| Q; | 8epj(t) = Y _(ur, Cjr) =0,
r
D ajuy = Gjrur,

gAru, = ijCj,, A = —ZCJ, ® (xr — xj).
J J

pe =0 po B Problem: estimate ||Pf — P?|.
. B |n practice, we have obtained
o |IP; — PRIl < C¥.
h—0 -
Pe po

Condition H:

The discrete Hessian of P can be bounded or the error estimate ||Pf — P?|| can be
obtained independently of the discrete Hessian.

1 21/30
0;. ......... E. Franck WB and AP schemes \ y




Diffusion scheme

Limit diffusion scheme (P?)

| Q; | 8epj(t) = Y _(ur, Cjr) =0,
r
D ajuy = Gjrur,

gAru, = ijCj,, A = —ZCJ, ® (xr — xj).
J J

pe vy =0 DAs 5Ho> po B Problem: estimate ||P; — P2||.
& h B In practice, we have obtained
R IIP; — PRIl < C&.
h—0 _o B Introduction of an intermediary
. diffusion scheme DA7.
o o *” B DAS: P§ scheme with 0;F; = 0.
e—=0 n

In the previous estimation we replace
Pg by DAj.

Condition H:

The discrete Hessian of P can be bounded or the error estimate ||Pf — P?|| can be
obtained independently of the discrete Hessian.

1 21/
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Final results

Space result:

We assume that the meshes and the data are regular and the initial datas well-preraped.
There exist C(T) > 0 such that:

1
IVE = Villizqo, riey < CF(1) 1| Po llgey< ChE 1l po Loy

f(h,e) = min <\/§,amax (1, \/é) +h+(h+6)+a>

1 1
B Introducing €¢hresh = h2 we prove that the worst case is [[VE — V|| < Ghs.

with

Space-time result:

Wa assume that the assumptions are verified. There exist C > 0 such that:

1
IVE(ta) = Vi (ta)ll 2@y < € (F(h.2) + A2 || o Il

Remark: The condition H is not satisfied. The diffusion scheme used is DA.. /\
22
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Intermediary results |

Estimation of ||V — V;|| :

We assume that assumptions are verified. There exist C > 0 such that:

h
IVE = VEllLoo (0, 7):12(0)) < C\/;

B Principle of proof:
U Control the stability of the discrete quantities u, and u; by €

O We define the error E(t) = [[VE — V§||;2 and we estimate El(t) using Young and
Cauchy-Schwartz inequalities, stability estimates and integration in time.

Estimation of ||DA; — PY| :

Wa assume that the assumptions are verified. There exist C; > 0 such that:

IVE = VOl12(0) < GL(T)(h + ), 0<t<T.

B Principle of proof:
L Control the stability of the discrete quantities V,p and p;.
O Consistance study of Div and Grad discrete operators.

0 L2 estimate using consistency error and Gronwall lemma. /\
23
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Intermediary results Il

Estimate ||P; — DA,

We assume that the assumptions are verified. There exist Co(T) > 0 such that:

IV — Vill 2@y < Go(T)e max (1, Vsh*l) +Ch  0<t<T.

Estimate ||P° — PY|| :

We assume that the assumptions are verified. There exist C3(T) > 0 such that:

[IVE = V0| 12(q) < G3(T)e, 0<t<T.

B Principe of proof:
O Write PO = P + R (resp DAS = P{ + R) with R a residue.
U Find a bound with ¢ of the residue.

0 L2 estimate of the difference between the two models and between the two
schemes.

A 24/30
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AP scheme vs classical scheme

B Test case: heat fundamental solution. Results for different hyperbolic scheme with
€ = 0.001 on Kershaw mesh.

Diffusion solution Non AP scheme

2 [ 2 5
7 4
6 3

15 s — s f
.
> :

, .

1 f »
o 3

o5 S 05

o 0 05 1 15 2 °

)] 05 1 15 2
Standard AP scheme Nodal AP scheme

2 8 2 7
7 6
6 5

15 5 15 4
: 3

; 2 , 2
1 1
o o

05
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Uniform convergence
B ¢ dependent periodic solution for the P; model.
B p(t,x) = (o) + Sa (1)) cos(mx) cos(my)
B u(t,x) = (—Zaft)sin(mx) cos(my), —Ea(t)sin(my) cos(mx))
B Convergence study for ¢ = h” on random mesh.

_ 1
T=13
0.1 T 0.1
gamma=1/4 ---%---
h R
0.01 | W+ 4 0.01 -
-,
5 0.001 | *. El 5 0.001 El
] o
o o™
- 0.0001 El - 0.0001 ¢ El
1e-05 | El 1e-05 - El
1e-06 L 1e-06 L
10 100 1000 10 100 1000
N N

B Numerical results show that the error is homogenous to O(he + h?).

B Theoretical estimate that we can hope: O((ha)% + h).

B Non optimal estimation in the intermediary regime. h
26
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Uniform convergence

B ¢ dependent periodic solution for the P; model.
B p(t,x) = (aft) + éo/(t)) cos(mx) cos(my)
B u(t,x) = (—Zaft)sin(mx) cos(my), —Ea(t)sin(my) cos(mx))

B Convergence study for ¢ = h” on random mesh.
1

y== ¥ = 2
0.1 0.1
0.01 E 0.01
5 0.001 - E 5 0.001 E
] o
o™~ o
— 0.0001 E — 0.0001 E
1e-05 E 1e-05 E
1e-06 L 1¢-06 L
10 100 1000 10 100 1000
N N

B Numerical results show that the error is homogenous to O(he + h?).

B Theoretical estimate that we can hope: O((ha)% + h).

B Non optimal estimation in the intermediary regime. h
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Conclusion of the 2D case

AP schemes on unstructured grids

B Contrary the classical scheme the nodal scheme allows to obtain the uniform AP
property
B However there are spurious mods for non smooth datas (possible stabilization).

B Other scheme: MPFA-AP scheme without spurious mods but the uniform
convergence is an open question.

B \We propose AP schemes for Friedrich’s systems using a particular splitting between
the P; model and a rest (close to micro-macro decomposition).

B The nodal scheme is also use to construct an AP scheme for Euler with friction and
the M; model.

‘ 27/30
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