Splitting based Implicit solvers for compressible
fluid models

NMPP Seminar, IPP, December 2016

Hnria Nancy Grand Est and IRMA Strasbourg, France
2Max-Planck-Institut fiir Plasmaphysik, Garching, Germany

3University of Strasbourg, France
4University of Insubria, Como, ltaly ,1/ \
41

E. Franck \ 4



Outline

Mathematical and physical problems

Physic-Based preconditioning and semi-implicit schemes

Relaxation methods

Elliptic problems

Conclusion

E. Franck \ 4



Mathematical and physical problems
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Hyperbolic systems and explicit scheme

B We consider the general problem
0:U + 94 (F(U)) = vox(D(U)o,U)

with U : R" — R" (idem for F(U)) and D a matrix.
This system is parabolic and derivate on hyperbolic system when v << 1.
In the following we consider the limit v << 1.

Wave structure :

_9F
U

B The Riemann invariants given by P(U)U are propagated at the speed velocities
(eigenvalues of A) contained in the matrix A(U).

A(U) and A= P(U)A(U)P7L(U)

Explicit scheme

.. . 2
O CFL for explicit scheme: At < min (MA%”' A%)

W

Problem of Explicit scheme

O Problem: if V << Apax ((with V the characteristic velocity of the phenomena
studied), the CFL is too restrictive.
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Hyperbolic systems and explicit scheme

Implicit scheme

B Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.

B Problem of implicit scheme: need to invert large matrix. Direct solver not useful in
3D, we need iterative solvers.

B Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

B Implicit scheme :
U+ Atdx(F(U)) — Atva,(D(U)oxU) = U"

B At the limit v << 1 and At >> 1 (large time step) we solve d,F(U) =0

B Conclusion: for v << 1 and At >> 1 the conditioning of the full system is closed to
conditioning of the steady system given by the ratio of the speed waves to the

hyperbolic system:

5
E. Franck \ /41




R R R R R R R R RS
Example of ill-conditioning systems

B Euler equation

atp +V- (pu) =0,
ot(pu)+V - (pu® u+ply) =0,
9:(pe) + V- (pue +up) =0

B Eigenvalues : (u,n) £ c and (u, n) with ¢
the sound speed.

M= lu

B Mach number : <

B Nondimensional eigenvalues :
M—-1,M M+1
B Conclusion: ill-conditioned system for
M<<land M =1

B Same type of problem : Shallow - Water
with sedimentation transport.

Ideal MHD

90+ V- (pu) =0,
potu+pu-Vu+Vp=JxB,
otp+u-Vp+pV-u=0
0:B=-V x(-uxB),
V-B=0, VxB=J.

Eigenvalues : (u,n), (u,n)+ V,,

(u,n) £ ¢(c, Va,0) with ¢ the sound speed,
V, the Alfven speed and 6 the angle
between n and the B.

Mach number : M = @ and B-number :
B=v;

Approximated Nondimensional eigenvalues
for B << 1 (Tokamak)

BM, BM+t1l, MBE(B+1)
in the parallel direction of the magnetic field
(different in the perpendicular region).
Conclusion: for example we have an
ill-conditioned system for

M<<1, B<<l1

(o
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Other problems of conditioning

Simple model
vu—Au="f

We define (1(0) with 8 € [—7t, ]2 the Fourier transform of u.
Applying the Fourier transform F we obtain

v+l el*a=Ff
After discretization more the mesh is fine more we have discrete low frequencies (
6 ~ 0) — ill conditioned discrete system.
For fluids models (for v << 1 and At >> 1) the solutions are given by
x(Fx(U))+09,(F,(U)) =0.

Linearizing around a constant state we obtain A(Ug)dxdU + B(Ug)9,6U = 0.
Applying F we obtain

(A(Uo,0) + B(Up,0)) U =0+ A(Uo,0)(P1(Uo,0)0) =0
Example: eigenvalues of linearized Euler equation in Fourier space

(u,0)—c, (u,0), (u,0)+c

L) The Euler equations are ill-conditioned for the frequencies perp to the velocity.

This type of problem existes for lot of fluid models and generate ill-conditioned
matrices at the discrete level.
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Idea

Limit of the classical method

B High memory consumption to store Jacobian and perhaps preconditioning.

B CPU time does not increase linearly comparing to the size problem ( effect of the
ill-condiitoning link to the physic).

Future of scientific computing

B Machines able to make lot of parallel computing.

B Small memory by node.

| A

B Propose algorithm with approximate the full problems by a collection of more simple
one.

B Perform the resolution of the simple problems.

B Avoid memory consumption using matrix-free.

(o

E. Franck \ /41‘




Physic-Based preconditioning and semi-implicit scheme
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Linearized Euler equation

B \We consider the 2D Euler equation in the conservative form,
{ 90+ V- (pu) =0

pdtu+pu-Vu+Vp=0
00: T +pu-VT+90TV-u=0

B Linearization: u=ug+du, p=po+6p, T=To+6T and /7Ty
0:0p +ug - Vop+poV-0u=0
009:0u + potg - Vou +poVOT + ToVip =0
000:0 T + potg - VOT + 00 ToV - du =0

B We multiply the first equation by Tp and sum the first and third equations. After that
we define dp = pod T + Todp

d+0p + ug - Vip +poc2V ou=20
d¢0u + ug - Véu + %V&p =0

B After normalization we obtain the final model.

Final model

Jtu+ Ma-Vu+Vp=0
dtp+Ma-Vp+V-u=0

with M € ]0,1], and || a ||= 1.

é’ur" ........ E. Franck \



R R R R R RRERERRERERRREEE——SS———————
Schur preconditioning method

B Implicit problem after time discretization:
ly+MAa-V AV- p"\ _ [(ly—M)ra-V AeV- p"
AV lg + MAa -V ut ) AV lg —MAea-V u”
with A = At and Ae = (1 —0)At.
The implicit system after linearization is given by

-1
ptt Y (A AV R, . B )
( ol =0 Ay A R, | with A= I, + MAa-V.
B Applying the Schur decomposition we obtain

"N (g ATV Al 0 Iy 0 R,
utt S0 g 0 om —AVATL Iy Ru

B Using the previous Schur decomposition, we obtain the following algorithm:

{ Predictor : Ap* =R,

A~

Velocity evolution :  Pscpyett™! = (=AVp"1 + R,)
Corrector :  Ap"t!l = Ap* — AV - u"t1

Approximation (PC)

O Pochur = A= A2V ((A"1)V- = A— A\?V(V:) and A = Iy in the third equation. The
approximation is valid in the low Mach regime.
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Results on PC

B Firstly we consider the low Mach regime(M =~ 0) with At = 0.1. We study the
efficiency depending of the mesh.

PC necells | 16 %16 | 32%32 | 64x64 | 128%128
no pc 250 90 20 25
PC, 5 5 2 1
PC, 7 6 2 2

B We call PC, (resp PC,) the case where the elliptic operator in on p (resp u).

B Secondly, we consider the low Mach regime M ~ 0 with h = 1/64. We study the
efficiency depending of the time step.

Preconditioning At | At=0.1 | At=02 | At=05 | At=1 | At=2
no pc 20 35 70 130 230
PC, 2 2 2 2 3
PC, 2 2 2 3 3

O In the low Mach regime more the mesh is fine and the time step large more the PC is
efficient.

O For Mach between 0.1 and 1 the efficiency for large time step is bad.

2
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Interpretation of PB-PC as splitting scheme
B Splitting scheme:

dtp+Ma-Vp=0 0tp+V-u=0 1)
Jtu =0 ' Jdtu+ Ma-Vu+Vp=0

B Discretization each subsystem with a 6 scheme and using a Lie Splitting we obtain

g+ A+ A+ (B0 )= () @)

B with

A _( la+Mria-v 0 (0 0 c_ (0 AV
) 0 )™=\ o0 ly+Mria-v )T AV Uy

B The first step correspond to the predictor step

wem(%)- (%)

B The second step can be rewritten ( which correspond to update-corrector step of
PBPC)

pn+1 P* P. " un+1 — 7)\Vpn+1+u*
(la + A, +C) ( urtl )T A p;ifr: Pt — )\(V . yntl )

B Conclusion: The PB-PC is equivalent to a first order implicit splitting scheme. r-\
13
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Splitting schemes and numerical results

® Problem of PC :

U Less accurate for Mach closed to one.

O Discretization effect which limited the extension of the classical PC.

B Proposition : use directly splitting schemes.

B Different splitting schemes (first or second order version can be used):

Schemes Formula
Ap-AuC | (Id+A,)(ld+A, +C)
A-C (ld+A, +A,)(ld+ C)
Au-ApC | (Id+A,)(Id+ A, + C)
B Splitting error: Splitting error E= O(Mach).
B Numerical results (for Mach=0.5) :
Ap-AuC A-C Au-ApC
Order 1 | Order 2 | Order 1 | Order 2 | Order 1 | Order 2
At=05 0.9 1.1 0.9 9E—? 1.4 1.1
At=0.25 0.5 0.5 0.4 0.18 0.8 0.21
At =0.125 0.3 1.2E1 0.45 5.9E? 0.55 6.7E~2
At = 0.0625 0.15 33E2 0.18 1.5E2 0.28 1.7E2
At =0.03125 | 72E 2 | 85E3 | 82E 2 | 3.6E3 0.14 45E3
At =0.015625 | 3.5E2 | 21E3 | 40E 2 | 90E* | 70E2 | 1.1E3

B Results: expected order for the different splitting.
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Numerical results

B We compare the CPU time for different simulation, changing the Mach number. Test:
acoustic wave.

M=10*] M=10°? | M=101 | M=05
PC1 101.6 145 240 5200
PC 2 98.9 125.8 208 5000
Sp A, —A,C 101.7 102.8 103 115.2
Sp A, — A,C 98.2 99.6 99.6 111.4
Sp A-C, 90.4 92.1 92.7 102.3
Sp A-C,C 93 94.3 95 104.5

B Comparison of the numerical solution (pressure). Test: acoustic wave with M=0.5.
B Implicit time step : At = 0.01 ( 2 CFL time step

Ub: was

o5 5

Figure: Left: solution for implicit scheme, Right: solution for Sp scheme A, — A,C /\
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Compressible Navier-Stokes equation splitting

B Compressible Navier-Stokes equation. Extension of previous method: three-step
splitting:

9:p+ V- (pu) =0
pdtu~+pu-Vu+Vp=vAu+ (v+A)V(V-u) —pg (3)
00: T +pu-VT+50TV -u=v(Vu)>+v+A)(V-u)2+V-(yVT)
B First solution:
0 Step 1:

dtp=0
poru =vAu+ (v+A)V(V - u) Diffusion — CN + finit element
00: T =v(Vu)2+ (v +A)(V-u)?>+V-(yVT)

U Step 2:
{ dp+u-Vp=0

potu+pu-Vu=0 Transport — Semi Lagrangian
p0: T +pu-VT =0

U Step 3:
{ 9p+pV-u=0

potu+ Vp=—pg Acoustic + gravity — CN + parabolization + FE
0p0: T+ 90TV -u=0

B Splitting Error: O(Mach + Diffusion) r-\
16
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Compressible Navier-Stokes equation splitting

B Compressible Navier-Stokes equation. Extension of previous method: three-step

splitting:
poru+pu-Vu+Vp=vAu+ (v+A)V(V-u) —pg (3)
00: T +pu-VT+90TV -u=v(Vu)>+v+A)(V-u)2+V-(yVT)

B Second solution:
O Step 1:

dip =0
ot +pu-Vu =vAu+ (v+A)V(V-u) 5 Burgers — CN + FE or 77 (next part))
00: T =0
U Step 2:
dp+u-Vp=0
potu =0 Convection diffusion — CN
0: T +pu-VT =v(Vu)2+ (v+A) (V- u)2+V-(yVT)

U Step 3:

0tp+pV-u=0
pdiu+Vp=—pg Acoustic + gravity — CN + parabolization + FE

00: T +9pTV-u=0

B Splitting Error: O(Mach + Diffusion)
B Assumption: First solution better for low diffusion (opposite for large diffusion). (16 \
/41‘
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Implicit scheme for linear MHD equation

Final model

2
dcu+ (M\/BVs)a-Vu+ Vp = 154 ((V x B) x bo)
9:p+ (M\/BVa)a-Vp+BV2V-u =
3B+ (M\/BVs)a-VB+ | By |V x (bo xu) = "YP2v x (v x B)

with M €10,1], B € ]107%,1071], | a |=| bo |= 1.

B \We use a implicit scheme.

B We propose to apply PB-PC or splitting A, — A, C method. At the end we must
invert three operators

Operators of the PB-PC

Iy + (M/BN)a-Viy — M;‘,/BAAId, Iy + (M\/BA)a- Vg

P= (/d +M\/BAa- Vg — BA2V(V - Iy) — A2 (bo x (V x V x (b x /d)))

with [a|=1, M << 1, € ]107%1071] and A = V,At.
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General principle
B We consider the following nonlinear system
0:U +9xF(U) = vdx(D(U)oxU) + G(U)

B Aim: Find a way to approximate this systemwith a suite of simple systems.
B |dea: Xin-Jin relaxation method (finite volume method).

{ 9:V + a2, U = %(F(U) - V)+H(U)

Limit of relaxation scheme

0 The limit scheme of the relaxation system is
9:U+ 0, F(U) = G(U) + €0, ((a>— | A(U) |?)9xU) + €95 G(U) — ed, H(U) + o(?)

0 with A(U) the Jacobian of F(U).

Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ¢).

B Stability: the limit system is dissipative if (a>— | p |2) > 0.

9
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General principle Il

Generalization

B Replacing %Id by £~ with
E=vD(U) (@~ |p )
B and taking H(U) = A(U)G(U): we obtain the following limit system

9:U+0,F(U) = G(U) + 10, (DU, U) + o(v?)

B Relaxation system: "the nonlinearity is local and the non locality is linear”.

B Key method: Splitting between source and linear hyperbolic part.

Solver for linear part

B The system
atU + BXV = 0
9:V +2a29,U =0

B can be rewritten as N independent wave systems.

B Wave solver: Schur complement. We solve two mass matrices and one Laplacian to
obtain the solution of the implicit wave problem.

E. Franck




Exemple 1 : 1D Burgers equation

B Model : Viscous Burgers equation
1,
9ep +0x ( 5p° ) = Ix(voxp) +

B (Classical implicit scheme : Cranck-Nicholson + linearization + Newton.

B Relaxation system:
{ at‘ﬂ + 8Xu =f

2
atquuczaxp = % (% — u)

Limit of relaxation scheme

0 The limit scheme is given by

1
3up + 0 (ipz) = 3, (12— | p [)3xp) + F + o)

U taking € = m we recover the initial equation.

O Stability condition: « >| u |.
G,
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Exemple 1 : Time scheme for Burgers

B Transport step (T(At)):

Iy OAtD, of \ [l —(1—6)Atoy o"
a?0Atd, g vt ) T\ —a?(1—0)Atd, Uy u”

B Relaxation step (R(At)):

p* = p" + Atf
g = At [ e—(1—0)At
e+ 0At 2 e+ 0At
B First order time scheme: T(At) t) with 6 =1

oR(A
B Second order time scheme: T (%) R(At) o T( ) or inverse with 6 = 0.5.

Consistency at the limit

B The first order scheme at the limit is consistent with

3.0+, (%,ﬂ) — (e+ %)ax((at | 0 12)3xp) + %ax(ﬁaxu) +F+o(+ AR +eAt)

0’;; »»»»»»»» E. Franck
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Results |

B Model : We consider the Burgers equation without viscosity with source term.

B We choose as source term f = gp to obtain a steady solution given by

e

o

2
p(t,x) =1.0+0.1e" 7, g(t,x)=—

SR

B We consider the final time T = 0.1 and a fine mesh (10000 cells with third order
polynomials). The first and second order schemes are compared for different time step.

Order 1 Order 2
Error Order Error Order
At =0.02 1.58E2 - 3.1E*7

At =0.01 947E3 | 074 | 7.75E° 2.0
At = 0.005 5.18E-3 | 0.87 | 1.956°° 2.0
At = 0.0025 27E3 0.94 | 4.86E°° 2.0
At=0.00125 | 1.38E-3 | 097 | 1.21E°® 2.0

Table: Error and order for the test 1 one with the relaxation scheme.

B The splitting scheme allows to obtain first and second order scheme without CFL

condition.
‘2
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Results Il

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable if for At = 1.0E7°.
B Implicit time step : At = 1.0E~3

Figure: Left: numerical solution for first order and second order schemes for
At = 0.001, Right: Zoom

B Remark: for discontinuous solution ( or strong gradient solution) the scheme admits
high numerical dispersion and instabilities.

B |nstability: oscillations — « increase and « increase — oscillations increase. r‘\
2
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Results Il

Spatial discretization: No; = 10000, order = 3. Initial condition : Gaussian.

Implicit time step : At = 1.0E73, At = 5.0E3 and At = 1.0E~2 (only for first

Figure: Left: numerical solution for first order scheme, Right: numerical solution for

Remark: for discontinuous solution ( or strong gradient solution) the scheme admits

B Model : Viscous - Burgers model.
|
B Explicit time step : stable if for At = 1.0E5.
|
order).
\
|
second order scheme. v = 1073
|
high numerical dispersion and instabilities.
|

Instability: oscillations — « increase and « increase — oscillations increase. (2 \
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Results Il

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable if for At = 1.0E7°.

B |mplicit time step : At = 1.0E~3, At =5.0E~3 and At = 1.0E~2.

Figure: Left: numerical solution for first order scheme, Right: numerical solution for
second order scheme. v = 1072

B Remark: for discontinuous solution ( or strong gradient solution) the scheme admits
high numerical dispersion and instabilities.
B |nstability: oscillations — & increase and « increase — oscillations increase. h
2
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Results I

B Model : Viscous - Burgers model.

B Conditioning : well-conditioning system in 1D.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable if for At = 1.0E~°

Figure: Left: Comparison between fine solution, CN and relaxation numerical
solutions. Right: zoom. v = 10719, At = 0.002

B Conclusion: the Relaxation method is a little more dispersive that the

Cranck-Nicholson method. r‘\
25/
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Results I

B Model : Viscous - Burgers model with v = 10712,
B Comparison of CPU time between two methods.

CN method Relaxation method
At cells 5.10° 10% 2.10* | 5.10° 10* 2.10%

At = 0.005 67 217.5 980 75.5 240 1100

At =0.01 35 114 518 41 122.5 561
At =0.02 18 61 280 20 63 294
At =0.05 9.5 32,5 144 8 29 126

Remark

The Relaxation method is competitive when the solver converges slowly for the
classical method (high time step in this case).

The assembly time is negligible in 1D not in 2D and 3D. The 1D burgers equation is
not an ill-posed problem contrary multi-D hyperbolic systems or low Mach Euler

equations.

O Therefore for complex models or in multi-D.

Future optimization:

£ CN scheme does not use a PC and the relaxation scheme solves sequentially the
independent subsystems.

E. Franck
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Exemple Il : 1D Navier-Stokes equation

B Model : Viscous Burgers equation

drpu + dx(pu? + p) = 0x(v(p)9xu) — pg

{ dep + dx(pu) =0
E + 0y (Eu+ pu) = 05 (v(0)dx %) + 05 (79x T) — pveg

B We apply the relaxation method: three additional variables.

O The relaxation scheme is stable if >~ | A [>> 0 with A the Jacobian.

O Classical choice: &« > u+ c.

O To obtain the physical diffusion matrix:

0 0 0
e=| - 0 (2= AP
o
_’7577('7_1)5—V(p)u2 v(p) — (y—1py  (y—1)py
&L‘ua,- M """""" E. Franck
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Results for Navier-Stokes equation |

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At =1.0E2 At =50E3 [ At=25E3 | At=1.25E3
CN scheme 8.8E3 2.25E3 57E3 1.4E73
Relaxation scheme 2.25E3 5.7E* 1.4E7% 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.
B Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green)
At =0.01
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Results for Navier-Stokes equation |

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E? | At=50E 3 | At=25E 3 | At =125E3
CN scheme 8.8E3 2.25E73 5.7E3 1.4E73
Relaxation scheme 2.25E3 57E* 1.4E7% 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.
B Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green)
At =0.02
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Results for Navier-Stokes equation |

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=5.0E 3 | At=25E3 | At=125E3
CN scheme 8.8E3 2.25E3 57E3 1.4E73
Relaxation scheme 2.25E3 5.7E*% 1.4E% 36E°

B Conclusion: the relaxation scheme converges with the second order as expected.
B Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green)
At =0.05

B The two methods (CN and relaxation) capture well the fine solution.
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Results I

B Model : Compressible Navier-Stokes equation model with ¢ = 10710,

B |nitial data: Constant pressure with a perturbation of density. Initial velocity null.

B Test: Propagation of acoustic wave.

CN method Relaxation method
At / cells 5.10° | 10* | 2.10* | 5.10° | 10%* | 2.10*
At = 0.005 170 580 | 2550 135 420 | 1890
At =0.01 100 345 | 1500 70 215 980
At =0.02 60 205 920 40 120 525
At = 0.05 30 120 525 20 65 270

0 The 1D Navier-Stokes problem is ill-conditioned comparing to Burgers. In this case
the efficiency of Relaxation comparing to Cranck-Nicholson is better.

U In this case the Relaxation method is competitive with the classical scheme without
important optimization (no parallelization of the problem, etc).
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Problem of relaxation solvers

B Problem for Relaxation solver I: high diffusion
:U+V-F(U)=V-(D(U)VU)+G(U)+0O(] D(U) |?

B Conclusion: For | D(U) |<< 1 the relaxation system is valid.

B Tokamak MHD context: the anisotropic diffusion in the parallel direction is in O(1)
for Tokamak. We must adapt the method.

B Toy model:

{ 3T+V-(uT)=V-(D(b)VT), DMb)VT =(bab)VT+xVT

B There exists different relaxation schemes for the diffusion.

B The first results (we need more results) show difficulty to treat large time steps if we
use implicit schemes.

B Possible solution : modification of the relaxation method (keeping a part of relaxation
step in the transport step) to treat high time step.

B Problem for Relaxation solver Il: more numerical and physical dispersion (more
critical problem)

B Possible solution : adaptive time scheme 7 limiter or other treatment for

discontinuities, high order scheme in time ? h
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Lattice Boltzmann schemes

B | attice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics
model.

Lattice Scheme

B For N velocities — compute equilibrium: % i 9
fi = wip (1+3(u; - u) + 3 (uu; — 3lg) : uu) 4

B For N velocities — relaxation to the equilibrium: /
0:fi = L(F59 - f) 2 / N g

B For N velocities — transport : 9:f; + v; - Vf; =0 b \\\\

B We compute the moments p =Y, f;, pu = Y_; uif; o P e
etc

B Advantage: In DG context the transport matrices
are triangular by block and can be solved by a
up-down algorithm without stocking

B Problem: physical limitation. Example D2Q9 is
consistent with isothermal Navier-Stokes + a
destabilizing diffusion homogeneous to O(Mach?).

B Solution: use DdQ(d + 1)" lattice we obtain a
relaxation system where the transport is diagonal
with properties closed to the Jin-Xin relaxation.
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Elliptic problems
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Elliptic problems for " Splitting” implicit schemes

0 All the methods proposed before split the complex systems between some simple
systems.

B Simples systems:

0O

O

Laplacian : vu —AAu=f

Advection: vu+Aa-Vu=f

Div-Div and Curl-Curl: vu —AV(V-u) =Ff, vu—AV X (Vxu)=Ff
Alfven Curl-Curl: vu — BAV(V - u) — A (by x (VX V x (bg x u))) = f

For the last operator, we have additional complexity, but the scale can be probably
separate using a formulation parallel-perp of the MHD and PC.

B Conclusion: to obtain efficient methods in time we need efficient methods for all these
systems.

B Efficient solvers: solvers with an accuracy independent of A , the order and the size of

the mesh. Parallelized solvers. /\
33/
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GLT principle
B PDE : Lu = g after discretization gives L,u, = g, with {L,}, a sequence of matrices.

B |t is often the case that the matrix L, is a linear combination, product, inversion or
conjugation of these two simple kinds of matrices
O T,(f), i.e., a Toeplitz matrix obtained from the Fourier coefficient of
f:]-m ] = C, with f € L}([-m, 7).
U D(a), i.e., a diagonal matrix such that (Dn(a)); = a(%) with a: [0,1] — C
Riemann integrable function.
In such a case {L,}, is called a GLT sequence.

Fundamental property

U Each GLT sequence {L,}, is equipped with a "symbol”, a function
X :[0,1] x [—7, 1] — C which describes the asymptotic spectral behaviour of {L,} :

{Ln}n ~X

E.g.: if Ly = Dn(a)Ty(f), then {Lp}, ~x=a-f

B Advantage of this tool: studying the symbol we retrieve information on the
conditioning and propose new preconditioning based on this symbol.
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GLT for stiffness matrix

B Application: B-Splines discretization of the model
—Au=f, in[0,1)%
B The basis functions are given by ¢;(x) a tensor product of 1D B-Splines functions.

Symbol of the problem

{ 2L, } ~ = (Hk 1Mp—1(0k) ) ():k 1#7(2 — 2 cos(6,)) T 1J¢kij(91))

with 6, € [—7t, 7t] and wp(8) := mp(0)/mp—1(6).

P
" (%) <mpa(6) < mpa(0) = 1.
B Remark 1: The symbol has a zero in § = (0, ...,0) = n?~2L, is ill-conditioned in the
low frequencies. Classical problem solved by MG preconditioning.

B Remark 2: The symbol has infinitely many exponential zeros at the points 6 with
0; = 7 for some j when p; — co = n9=2L, is ill-conditioned in the high frequencies.
Non-canonical problem solvable by GLT theory.

B Preconditioning: Using the symbol we can construct a smoother for MG valid for
high-frequencies. (i.e. CG preconditioned with a Kronecker product whose jth factor is

Tyjntpi—2(mp;-1)).

B Extension: the method can be extended to the case with mapping (general

geometries) and more general operators. r'\
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Numerical results

B Solver: Comparison between classical multi-grid solver and MG with CG + GLT
preconditioning smoother.

B Model: 2D Laplacian with Homogeneous Dirichlet BC

B Efficiency of the multi-grid method depending to the polynomial degree.

Residual versus MG Cycles for different Degrees, 16 elements-2D

— p=1
2 — p=2 100000 Condition Number for different Bsplines Degrees in 2D-16 elements
— p=3
— p=4
-4 — p=
p=5 80000
£ 60000
5
H
£
£ 40000
S
20000
14 H H H H H H H : //
100 200 300 400 500 600 700 800 b 5 n % =
Number of MG cycles B-Spline degree

B Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.
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Numerical results

B Solver: Comparison between classical multi-grid solver and MG with CG + GLT
preconditioning smoother.

B Model: 2D Laplacian with Homogeneous Dirichlet BC

B Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

B The efficiency of the multi-grid method + GLT PC method depending on the
polynomial degree.

Residual versus Cycles for P = 3, 2D-16*16 Grid Points Residual versus Cycles for P = 5, 2D-16*16 Grid Points

-2
— MG+GLT — MG+GLT
— Mo — MG
- -6
° °
3 %
H <
E -8 £ -8
=2 <l
& &
_10 -10
12 \ 12 ( e
-14 L B
10 2 30 40 5 100 200 300 400 500 600 700 800
Number of MG cycles Number of MG cycles

B Conclusion: the MG + CG-GLT is efficient for all high-order polynomial degrees. r-\
3
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Numerical results

B Solver: Comparison between classical multi-grid solver and MG with CG + GLT
preconditioning smoother.
B Model: 2D Laplacian with Homogeneous Dirichlet BC

B Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

Degree/Scheme | MG + GLT | MG

1 1.32 1.76

2 2.56 2.75

3 2.58 4.42

4 3.42 21.62

5 6.35 170.48

6 15.71 677.17*
7 25.99 825.56*
8 27.89 800.72*
9 58.03 1098.94*

Table: Computational cost comparison for the Laplacian operator -2D 64*64 elements

O The GLT preconditioning allows to avoid the problem of conditioning for high degree
polynomial and limit CPU time.
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Numerical results

B The GLT preconditioning is based on the "symbol” which describe the eigenvalues

linked to the mass matrix.
B Conclusion: it can be also used as a PC for the mass matrix (closed to Kronecker

product preconditioning).

B Result inverting the mass matrix with CG + GLT.

Degree | PCG | CG Degree | PCG | CG
3 10 111 3 10 117
5 25 449 5 23 533
7 40 1777 7 38 2166

Table: Left: Number of iterations-mass matrix on a square 32*32. Right on a square

64*64
Degree | PCG | CG Degree | PCG | CG
3 50 210 3 71 340
5 83 796 5 118 1711
7 125 2639 7 186 >3000
Table: Left: Number of iterations-mass matrix on a circle 32*32. Right on a circle
64*64
B Conclusion: the GLT PC is also a good PC for the mass matrix. h
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Vectoriel elliptic problems and advection

Study of the conditioning problem using Fourier analysis.

Fourier transform for Advection
[v+i(a-0)]a=0

For v << 1 the system is ill-conditioning to the orthogonal frequencies to the velocity
a.

Fourier transform for vectorial elliptic problems (ex grad div problem):

9% 016> L
|:1//d+ ( R 95 =0

0 0 .
vlg + P =0
[" (o I3 ﬂ

For small v the vectorial problems are ill-conditioning.

In the future: GLT analysis to find additional problems due to the numerical
discretization.

Aim: find preconditioning for these problems. Open problem for advection. Auxiliary
space or GLT with diagonalization for vectorial problems.

[38

E. Franck \ /41‘



Conclusion

E. Franck



==
Conclusion

B First way: Splitting method. M. Gaja Phd and NMPP group.

Physic-based method

U Advantages:
B Efficient method for low Mach method.
B Compatible with equilibrium conservation.
B Few memory consumption if coupled with Jacobian free.
O Defaults:
Nonlinear matrices (important cost )
Less efficient is the regime Mach closed to one.
Efficiency of PC depend also to the mesh, discretization etc ( not clear)
Need Preconditioning for advection ?

4

Semi Implicit

O Advantages:
B Probably efficient for all Mach regimes between zero and one.
B Compatible with equilibrium conservation.
B Few memory consumption if coupled with Jacobian free
0 Defaults:
B Nonlinear matrices (important cost )
B Efficiency of PC depend also to the mesh, discretization etc ( not clear)
B Need Preconditioning for advection ? KO-\
\
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Conclusion
Second way: Relaxation method. INRIA Tonus team and NPP group.

Relaxation

B Advantages:

O Few memory consumption ( derivates matrices and perhaps mass).
O Good parallelization ( models + domain decomposition).
O Able to treat lots of regimes.
B Defaults:
O Not directly able to treat high diffusion (on going work).
U Lose of parallelization for complex BC.
L A little bit more numerical dispersion.
U not compatible with equilibrium conservation.

Remark

| A\

All the methods needs preconditioning for mass, Laplacian and vectorial elliptic
problems.

All the methods needs stabilization or other treatment in the nonlinear phase for the
numerical dispersion.

Find 4th order schemes for the two methods could be possible and useful (ongoing
work in TONUS team)

1A\
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