Splitting based Implicit solvers for compressible fluid models

D. Coulette³, <u>E. Franck</u>¹, M. Gaja², P. Helluy³, J. Lakhlili ², M. Mazza², M. Mehrenberger³, A. Ratnani², S. Serra-Capizzano⁴, E. Sonnendrücker²

NMPP Seminar, IPP, December 2016

 $^{1}/_{41}$

¹Inria Nancy Grand Est and IRMA Strasbourg, France

²Max-Planck-Institut für Plasmaphysik, Garching, Germany

³University of Strasbourg, France

⁴University of Insubria, Como, Italy

Outline

Mathematical and physical problems

E. Franck

 $Physic-Based\ preconditioning\ and\ semi-implicit\ schemes$

Relaxation methods

Elliptic problems

Conclusion

Mathematical and physical problems

Hyperbolic systems and explicit scheme

■ We consider the general problem

$$\partial_t \boldsymbol{U} + \partial_x (\boldsymbol{F}(\boldsymbol{U})) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U})$$

- with $U: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ (idem for F(U)) and D a matrix.
- This system is parabolic and derivate on hyperbolic system when $\nu << 1$.
- In the following we consider the limit $\nu << 1$.
- Wave structure :

$$A(\boldsymbol{U}) = \frac{\partial F}{\partial \boldsymbol{U}}$$
 and $A = P(\boldsymbol{U})\Lambda(\boldsymbol{U})P^{-1}(\boldsymbol{U})$

The Riemann invariants given by $P(\boldsymbol{U})\boldsymbol{U}$ are propagated at the speed velocities (eigenvalues of A) contained in the matrix $\Lambda(\boldsymbol{U})$.

Explicit scheme

 \Box CFL for explicit scheme: $\Delta t < \min\left(\frac{\Delta x}{\lambda_{max}}, \frac{\Delta x^2}{\nu}\right)$.

Problem of Explicit scheme

□ **Problem**: if $V << \lambda_{max}$ (with V the characteristic velocity of the phenomena studied), the CFL is too restrictive.

loría

Hyperbolic systems and explicit scheme

Implicit scheme

- Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.
- Problem of implicit scheme: need to invert large matrix. Direct solver not useful in 3D, we need iterative solvers.
- Conditioning of the implicit matrix: given by the ratio of the maximal and minimal eigenvalues.
- Implicit scheme :

$$\mathbf{U} + \Delta t \partial_{x}(\mathbf{F}(\mathbf{U})) - \Delta t \nu \partial_{x}(D(\mathbf{U})\partial_{x}\mathbf{U}) = \mathbf{U}^{n}$$

• At the limit $\nu << 1$ and $\Delta t >> 1$ (large time step) we solve $\partial_x F(U) = 0$

Problem of implicit scheme

■ Conclusion: for ν << 1 and Δt >> 1 the conditioning of the full system is closed to conditioning of the steady system given by the ratio of the speed waves to the hyperbolic system:

condi
$$pprox rac{\lambda_{max}}{\lambda_{min}}$$

lnia

³/41

Example of ill-conditioning systems

Euler equation

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0, \\ \partial_t (\rho \textbf{\textit{u}}) + \nabla \cdot (\rho \textbf{\textit{u}} \otimes \textbf{\textit{u}} + \rho \textbf{\textit{I}}_d) = 0, \\ \partial_t (\rho e) + \nabla \cdot (\rho \textbf{\textit{u}} e + \textbf{\textit{u}} \rho) = 0. \end{array} \right.$$

- Eigenvalues : $(\mathbf{u}, \mathbf{n}) \pm \mathbf{c}$ and (\mathbf{u}, \mathbf{n}) with \mathbf{c} the sound speed.
- Mach number : $M = \frac{|u|}{c}$
- Nondimensional eigenvalues :

$$M - 1$$
, M , $M + 1$

Conclusion: ill-conditioned system for

$$M \ll 1$$
 and $M = 1$

Same type of problem : Shallow - Water with sedimentation transport.

Ideal MHD

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0, \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \rho = \boldsymbol{J} \times \boldsymbol{B}, \\ \partial_t \boldsymbol{p} + \boldsymbol{u} \cdot \nabla \boldsymbol{p} + \rho \nabla \cdot \boldsymbol{u} = 0 \\ \partial_t \boldsymbol{B} = -\nabla \times (-\boldsymbol{u} \times \boldsymbol{B}), \\ \nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{B} = \boldsymbol{J}. \end{array} \right.$$

- Eigenvalues : $(\boldsymbol{u}, \boldsymbol{n}), (\boldsymbol{u}, \boldsymbol{n}) \pm V_a$ $(\mathbf{u}, \mathbf{n}) \pm \phi(\mathbf{c}, \mathbf{V}_{\mathbf{a}}, \theta)$ with \mathbf{c} the sound speed, V_a the Alfven speed and θ the angle between n and the B.
- Mach number : $M = \frac{|\mathbf{u}|}{\epsilon}$ and β-number : $\beta = \frac{c}{V}$
- Approximated Nondimensional eigenvalues for $\beta << 1$ (Tokamak)

$$\beta M$$
, $\beta M \pm 1$, $M\beta \pm (\beta + 1)$

- in the parallel direction of the magnetic field (different in the perpendicular region).
- Conclusion: for example we have an ill-conditioned system for

 $M \ll 1$, $\beta \ll 1$

Inria

Other problems of conditioning

Simple model

$$\nu u - \Delta u = f$$

- We define $\hat{u}(\theta)$ with $\theta \in [-\pi, \pi]^2$ the Fourier transform of u.
- lacksquare Applying the Fourier transform ${\mathcal F}$ we obtain

$$(\nu + \parallel \boldsymbol{\theta} \parallel^2) \hat{\boldsymbol{u}} = \hat{\boldsymbol{f}}$$

- After discretization more the mesh is fine more we have discrete low frequencies ($\theta \approx 0$) \longrightarrow ill conditioned discrete system.
- For fluids models (for v << 1 and $\Delta t >> 1$) the solutions are given by $\partial_x(\mathbf{F}_x(\mathbf{U})) + \partial_v(\mathbf{F}_y(\mathbf{U})) = 0$.
- Linearizing around a constant state we obtain $A(\boldsymbol{U}_0)\partial_x\delta\boldsymbol{U}+B(\boldsymbol{U}_0)\partial_y\delta\boldsymbol{U}=0.$ Applying $\mathcal F$ we obtain

$$\left(A(\boldsymbol{U}_0,\boldsymbol{\theta})+B(\boldsymbol{U}_0,\boldsymbol{\theta})\right)\hat{\boldsymbol{U}}=0\longleftrightarrow\Lambda(\boldsymbol{U}_0,\boldsymbol{\theta})(P^{-1}(\boldsymbol{U}_0,\boldsymbol{\theta})\hat{\boldsymbol{U}})=0$$

Example: eigenvalues of linearized Euler equation in Fourier space

$$(\boldsymbol{u},\boldsymbol{\theta})-c, \quad (\boldsymbol{u},\boldsymbol{\theta}), \quad (\boldsymbol{u},\boldsymbol{\theta})+c$$

- ☐ The Euler equations are ill-conditioned for the frequencies perp to the velocity.
- ☐ This type of problem existes for lot of fluid models and generate ill-conditioned matrices at the discrete level.

Idea

Limit of the classical method

- High memory consumption to store Jacobian and perhaps preconditioning.
- CPU time does not increase linearly comparing to the size problem (effect of the ill-condiitoning link to the physic).

Future of scientific computing

- Machines able to make lot of parallel computing.
- Small memory by node.

Idea: Divise and Conquer

- Propose algorithm with approximate the full problems by a collection of more simple one
- Perform the resolution of the simple problems.
- Avoid memory consumption using matrix-free.

8/41

lnría-

Physic-Based preconditioning and semi-implicit scheme

Linearized Euler equation

• We consider the 2D Euler equation in the conservative form,

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = 0 \\ \rho \partial_t T + \rho \mathbf{u} \cdot \nabla T + \gamma \rho T \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Linearization: $u = u_0 + \delta u$, $\rho = \rho_0 + \delta \rho$, $T = T_0 + \delta T$ and $\sqrt{\gamma T_0}$

$$\left\{ \begin{array}{l} \partial_t \delta \rho + \textbf{\textit{u}}_0 \cdot \nabla \delta \rho + \rho_0 \nabla \cdot \delta \textbf{\textit{u}} = 0 \\ \rho_0 \partial_t \delta \textbf{\textit{u}} + \rho_0 \textbf{\textit{u}}_0 \cdot \nabla \delta \textbf{\textit{u}} + \rho_0 \nabla \delta T + T_0 \nabla \delta \rho = 0 \\ \rho_0 \partial_t \delta T + \rho_0 \textbf{\textit{u}}_0 \cdot \nabla \delta T + \gamma \rho_0 T_0 \nabla \cdot \delta \textbf{\textit{u}} = 0 \end{array} \right.$$

• We multiply the first equation by T_0 and sum the first and third equations. After that we define $\delta p = \rho_0 \delta T + T_0 \delta \rho$

$$\begin{cases} \partial_t \delta \boldsymbol{\rho} + \boldsymbol{u}_0 \cdot \nabla \delta \boldsymbol{\rho} + \rho_0 c^2 \nabla \cdot \delta \boldsymbol{u} = 0 \\ \partial_t \delta \boldsymbol{u} + \boldsymbol{u}_0 \cdot \nabla \delta \boldsymbol{u} + \frac{1}{\rho_0} \nabla \delta \boldsymbol{\rho} = 0 \end{cases}$$

After normalization we obtain the final model.

Final model

$$\left\{ \begin{array}{l} \partial_t \boldsymbol{u} + \frac{\boldsymbol{M}}{\boldsymbol{a}} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} = 0 \\ \partial_t \boldsymbol{p} + \frac{\boldsymbol{M}}{\boldsymbol{a}} \cdot \nabla \boldsymbol{p} + \nabla \cdot \boldsymbol{u} = 0 \end{array} \right.$$

with $M \in [0, 1]$, and ||a|| = 1.

Schur preconditioning method

Implicit problem after time discretization:

$$\begin{pmatrix} \textit{I}_d + \frac{\textit{M}\lambda \textit{a} \cdot \nabla}{\lambda \nabla} & \lambda \nabla \cdot \\ \frac{\lambda}{\lambda \nabla} & \textit{I}_d + \frac{\textit{M}\lambda \textit{a} \cdot \nabla}{\lambda} \end{pmatrix} \begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} \textit{I}_d - \frac{\textit{M}\lambda \textit{a} \cdot \nabla}{\lambda \nabla} & \textit{I}_d - \frac{\textit{M}\lambda_e \textit{a} \cdot \nabla}{\lambda} \end{pmatrix} \begin{pmatrix} p^n \\ \mathbf{u}^n \end{pmatrix}$$

- \blacksquare with $\lambda = \theta \Delta t$ and $\lambda_e = (1 \theta) \Delta t$.
- The implicit system after linearization is given by

$$\begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} A & \lambda \nabla \cdot \\ \lambda \nabla & A \end{pmatrix}^{-1} \begin{pmatrix} R_p \\ R_u \end{pmatrix}, \quad \text{with } A = I_d + \mathbf{M} \lambda \mathbf{a} \cdot \nabla.$$

Applying the Schur decomposition we obtain

$$\left(\begin{array}{c} \boldsymbol{p}^{n+1} \\ \boldsymbol{u}^{n+1} \end{array} \right) = \left(\begin{array}{cc} \boldsymbol{I}_d & \boldsymbol{A}^{-1} \boldsymbol{\lambda} \nabla \cdot \\ \boldsymbol{0} & \boldsymbol{I}_d \end{array} \right) \left(\begin{array}{cc} \boldsymbol{A}^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{P}_{schur}^{-1} \end{array} \right) \left(\begin{array}{cc} \boldsymbol{I}_d & \boldsymbol{0} \\ -\boldsymbol{\lambda} \nabla \boldsymbol{A}^{-1} & \boldsymbol{I}_d \end{array} \right) \left(\begin{array}{cc} \boldsymbol{R}_p \\ \boldsymbol{R}_u \end{array} \right)$$

Using the previous Schur decomposition, we obtain the following algorithm:

$$\left\{ \begin{array}{ll} \operatorname{Predictor}: & Ap^* = R_p \\ \operatorname{Velocity} \ \operatorname{evolution}: & P_{\operatorname{schur}} \boldsymbol{u}^{n+1} = \left(-\lambda \nabla p^{n+1} + R_u\right) \\ \operatorname{Corrector}: & Ap^{n+1} = Ap^* - \lambda \nabla \cdot \boldsymbol{u}^{n+1} \end{array} \right.$$

Approximation (PC)

 \square $P_{schur}=A-\lambda^2 \nabla((A^{-1}) \nabla \cdot \approx A-\lambda^2 \nabla(\nabla \cdot)$ and $A\approx I_d$ in the third equation. The approximation is valid in the low Mach regime.

Results on PC

Firstly we consider the low Mach regime($M \approx 0$) with $\Delta t = 0.1$. We study the efficiency depending of the mesh.

PC n cells	16 * 16	32 * 32	64 * 64	128 * 128
no pc	250	90	20	25
PCu	5	5	2	1
PC_p	7	6	2	2

- We call PC_p (resp PC_u) the case where the elliptic operator in on p (resp u).
- Secondly, we consider the low Mach regime $M \approx 0$ with h = 1/64. We study the efficiency depending of the time step.

Preconditioning Δt	$\Delta t = 0.1$	$\Delta t = 0.2$	$\Delta t = 0.5$	$\Delta t = 1$	$\Delta t = 2$
no pc	20	35	70	130	230
PC _u	2	2	2	2	3
PC_p	2	2	2	3	3

Conclusion

- ☐ In the low Mach regime more the mesh is fine and the time step large more the PC is efficient.
- □ For Mach between 0.1 and 1 the efficiency for large time step is bad.

(nría-

Interpretation of PB-PC as splitting scheme

Splitting scheme:

$$\begin{cases}
\partial_t p + \mathbf{M} \mathbf{a} \cdot \nabla p = 0 \\
\partial_t \mathbf{u} = 0
\end{cases}, \quad
\begin{cases}
\partial_t p + \nabla \cdot \mathbf{u} = 0 \\
\partial_t \mathbf{u} + \mathbf{M} \mathbf{a} \cdot \nabla \mathbf{u} + \nabla p = 0
\end{cases} (1)$$

lacksquare Discretization each subsystem with a heta scheme and using a Lie Splitting we obtain

$$(I_d + A_p)(I_d + A_u + C) \begin{pmatrix} p^{n+1} \\ u^{n+1} \end{pmatrix} = \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$
 (2)

with

$$A_{p} = \left(\begin{array}{cc} I_{d} + \frac{\mathbf{M}\lambda \mathbf{a} \cdot \nabla}{0} & 0 \\ 0 & 0 \end{array}\right), A_{u} = \left(\begin{array}{cc} 0 & 0 \\ 0 & I_{d} + \frac{\mathbf{M}\lambda \mathbf{a} \cdot \nabla}{0} \end{array}\right), C = \left(\begin{array}{cc} 0 & \frac{\lambda}{\lambda} \nabla \cdot \\ \lambda \nabla & I_{d} \end{array}\right)$$

The first step correspond to the predictor step

$$(I_d + A_p) \begin{pmatrix} p^* \\ u^* \end{pmatrix} = \begin{pmatrix} R_p \\ R_{II} \end{pmatrix}$$

 The second step can be rewritten (which correspond to update-corrector step of PBPC)

$$(I_d + A_u + C) \begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} p^* \\ \mathbf{u}^* \end{pmatrix} \iff \begin{cases} P_{schur} \mathbf{u}^{n+1} = \left(-\lambda \nabla p^{n+1} + \mathbf{u}^* \right) \\ p^{n+1} = p^* - \lambda \nabla \cdot \mathbf{u}^{n+1} \end{cases}$$

Conclusion: The PB-PC is equivalent to a first order implicit splitting scheme.

Splitting schemes and numerical results

- Problem of PC :
 - Less accurate for Mach closed to one.
 - Discretization effect which limited the extension of the classical PC.
- Proposition : use directly splitting schemes.
- Different splitting schemes (first or second order version can be used):

Schemes	Formula
Ap-AuC	$(Id + A_p)(Id + A_u + C)$
A-C	$(Id + A_p + A_u)(Id + C)$
Au-ApC	$(Id + A_u)(Id + A_p + C)$

- Splitting error: Splitting error E= O(Mach).
- Numerical results (for Mach=0.5) :

	Ap-AuC		A-C		Au-ApC	
	Order 1	Order 2	Order 1	Order 2	Order 1	Order 2
$\Delta t = 0.5$	0.9	1.1	0.9	$9E^{-2}$	1.4	1.1
$\Delta t = 0.25$	0.5	0.5	0.4	0.18	0.8	0.21
$\Delta t = 0.125$	0.3	$1.2E^{-1}$	0.45	$5.9E^{-2}$	0.55	$6.7E^{-2}$
$\Delta t = 0.0625$	0.15	$3.3E^{-2}$	0.18	$1.5E^{-2}$	0.28	$1.7E^{-2}$
$\Delta t = 0.03125$	$7.2E^{-2}$	8.5 <i>E</i> ⁻³	$8.2E^{-2}$	$3.6E^{-3}$	0.14	$4.5E^{-3}$
$\Delta t = 0.015625$	$3.5E^{-2}$	$2.1E^{-3}$	$4.0E^{-2}$	$9.0E^{-4}$	$7.0E^{-2}$	$1.1E^{-3}$

Results: expected order for the different splitting.

We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M = 10^{-4}$	$M = 10^{-2}$	$M = 10^{-1}$	M = 0.5
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_p - A_u C$	101.7	102.8	103	115.2
Sp $A_u - A_p C$	98.2	99.6	99.6	111.4
Sp $A - C_u$	90.4	92.1	92.7	102.3
Sp $A - C_p C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). **Test**: acoustic wave with M=0.5.
- Implicit time step : $\Delta t = 0.01$ (2 CFL time step)

Figure: Left: solution for implicit scheme, Right: solution for Sp scheme $A_u - A_p C$

(nría-

We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M = 10^{-4}$	$M = 10^{-2}$	$M = 10^{-1}$	M = 0.5
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_p - A_u C$	101.7	102.8	103	115.2
Sp $A_u - A_p C$	98.2	99.6	99.6	111.4
Sp $A - C_u$	90.4	92.1	92.7	102.3
Sp $A - C_p C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). **Test**: acoustic wave with M=0.5.
- Implicit time step : $\Delta t = 0.01$ (2 CFL time step)

Figure: Left: solution for Sp scheme $A_p - A_u C$, Right: solution for Sp scheme A - C

We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M = 10^{-4}$	$M = 10^{-2}$	$M = 10^{-1}$	M = 0.5
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_p - A_u C$	101.7	102.8	103	115.2
Sp $A_u - A_p C$	98.2	99.6	99.6	111.4
Sp $A - C_u$	90.4	92.1	92.7	102.3
Sp $A - C_p C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). **Test**: acoustic wave with M=0.5.
- Implicit time step : $\Delta t = 0.05$ (10 CFL time step)

Figure: Left: solution for implicit scheme, Right: solution for Sp scheme $A_u - A_pC$

lnia

We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M = 10^{-4}$	$M = 10^{-2}$	$M = 10^{-1}$	M = 0.5
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_p - A_u C$	101.7	102.8	103	115.2
Sp $A_u - A_p C$	98.2	99.6	99.6	111.4
Sp $A - C_u$	90.4	92.1	92.7	102.3
Sp $A - C_p C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). **Test**: acoustic wave with M=0.5.
- Implicit time step : $\Delta t = 0.05$ (10 CFL time step)

Figure: Left: solution for Sp scheme $A_p - A_u C$, Right: solution for Sp scheme A - C

lnia

Compressible Navier-Stokes equation splitting

Compressible Navier-Stokes equation. Extension of previous method: three-step splitting:

$$\begin{cases}
 \partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\
 \rho \partial_{t} \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = \nu \Delta \mathbf{u} + (\nu + \lambda) \nabla (\nabla \cdot \mathbf{u}) - \rho \mathbf{g} \\
 \rho \partial_{t} T + \rho \mathbf{u} \cdot \nabla T + \gamma \rho T \nabla \cdot \mathbf{u} = \nu (\nabla \mathbf{u})^{2} + (\nu + \lambda) (\nabla \cdot \mathbf{u})^{2} + \nabla \cdot (\eta \nabla T)
\end{cases} (3)$$

First solution:

$$\left\{ \begin{array}{l} \partial_t \rho = 0 \\ \rho \partial_t \mathbf{u} = \nu \Delta \mathbf{u} + (\nu + \lambda) \nabla (\nabla \cdot \mathbf{u}) \\ \rho \partial_t T = \nu (\nabla \mathbf{u})^2 + (\nu + \lambda) (\nabla \cdot \mathbf{u})^2 + \nabla \cdot (\eta \nabla T) \end{array} \right\} \\ \begin{array}{l} \mathsf{Diffusion} \longrightarrow \mathsf{CN} + \mathsf{finit} \; \mathsf{element} \\ \end{array}$$

□ Step 2:

$$\left\{ \begin{array}{l} \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0 \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} = 0 \\ \rho \partial_t T + \rho \boldsymbol{u} \cdot \nabla T = 0 \end{array} \right\} \\ \text{Transport} \longrightarrow \\ \text{Semi Lagrangian}$$

Step 3:

Splitting Error: O(Mach + Diffusion)

Compressible Navier-Stokes equation splitting

Compressible Navier-Stokes equation. Extension of previous method: three-step splitting:

$$\begin{cases}
 \partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\
 \rho \partial_{t} \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = \nu \Delta \mathbf{u} + (\nu + \lambda) \nabla (\nabla \cdot \mathbf{u}) - \rho \mathbf{g} \\
 \rho \partial_{t} T + \rho \mathbf{u} \cdot \nabla T + \gamma \rho T \nabla \cdot \mathbf{u} = \nu (\nabla \mathbf{u})^{2} + (\nu + \lambda) (\nabla \cdot \mathbf{u})^{2} + \nabla \cdot (\eta \nabla T)
\end{cases} (3)$$

Second solution:

$$\left\{ \begin{array}{l} \partial_t \rho = 0 \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} = \nu \Delta \boldsymbol{u} + (\nu + \lambda) \nabla (\nabla \cdot \boldsymbol{u}) \\ \rho \partial_t T = 0 \end{array} \right\} \\ \text{Burgers} \longrightarrow \text{CN + FE or ?? (next part))}$$

□ Step 2:

$$\left\{ \begin{array}{l} \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0 \\ \rho \partial_t \boldsymbol{u} = 0 \\ \rho \partial_t T + \rho \boldsymbol{u} \cdot \nabla T = \nu (\nabla \boldsymbol{u})^2 + (\nu + \lambda) (\nabla \cdot \boldsymbol{u})^2 + \nabla \cdot (\eta \nabla T) \end{array} \right\} \\ \begin{array}{l} \text{Convection diffusion} \longrightarrow \mathsf{CN} \\ \end{array}$$

□ Step 3:

$$\left\{ \begin{array}{l} \partial_t \rho + \rho \nabla \cdot \boldsymbol{u} = 0 \\ \rho \partial_t \boldsymbol{u} + \nabla \rho = -\rho \boldsymbol{g} \\ \rho \partial_t T + \gamma \rho T \nabla \cdot \boldsymbol{u} = 0 \end{array} \right. \quad \begin{array}{l} \mathsf{Acoustic} + \mathsf{gravity} \longrightarrow \mathsf{CN} + \mathsf{parabolization} + \mathsf{FE} \\ \end{array}$$

- Splitting Error: O(Mach + Diffusion)
- Assumption: First solution better for low diffusion (opposite for large diffusion).

loría

Implicit scheme for linear MHD equation

Final model

$$\left\{ \begin{array}{ll} \partial_t \textbf{\textit{u}} + (\textbf{\textit{M}}\sqrt{\beta}\textbf{\textit{V}}_a)\textbf{\textit{a}} \cdot \nabla \textbf{\textit{u}} + \nabla p & = \frac{\textbf{\textit{V}}_a^2}{|\textbf{\textit{B}}_0|} \left((\nabla \times \textbf{\textit{B}}) \times \textbf{\textit{b}}_0 \right) \\ \partial_t p + (\textbf{\textit{M}}\sqrt{\beta}\textbf{\textit{V}}_a)\textbf{\textit{a}} \cdot \nabla p + \beta \textbf{\textit{V}}_a^2 \nabla \cdot \textbf{\textit{u}} & = 0 \\ \partial_t \textbf{\textit{B}} + (\textbf{\textit{M}}\sqrt{\beta}\textbf{\textit{V}}_a)\textbf{\textit{a}} \cdot \nabla \textbf{\textit{B}} + \mid \textbf{\textit{B}}_0 \mid \nabla \times (\textbf{\textit{b}}_0 \times \textbf{\textit{u}}) & = \frac{\textbf{\textit{M}}\sqrt{\beta}\textbf{\textit{V}}_a}{R_m} \nabla \times (\nabla \times \textbf{\textit{B}}) \end{array} \right.$$

with $M \in]0,1]$, $\beta \in]10^{-6}$, 10^{-1}], $| a | = | b_0 | = 1$.

- We use a implicit scheme.
- We propose to apply PB-PC or splitting $A_p A_uC$ method. At the end we must invert three operators

Operators of the PB-PC

$$\begin{split} I_d + \left(\boldsymbol{M} \sqrt{\beta} \lambda \right) \boldsymbol{a} \cdot \nabla I_d - \frac{\boldsymbol{M} \sqrt{\beta} \lambda}{R_m} \Delta I_d, \quad I_d + \left(\boldsymbol{M} \sqrt{\beta} \lambda \right) \boldsymbol{a} \cdot \nabla I_d \\ P = \left(I_d + \boldsymbol{M} \sqrt{\beta} \lambda \boldsymbol{a} \cdot \nabla I_d - \beta \lambda^2 \nabla (\nabla \cdot I_d) - \lambda^2 \left(\boldsymbol{b}_0 \times (\nabla \times \nabla \times \left(\boldsymbol{b}_0 \times I_d \right) \right) \right) \end{split}$$
 with $|\boldsymbol{a}| = 1$, $\boldsymbol{M} << 1$, $\boldsymbol{\beta} \in]10^{-4}, 10^{-1}]$ and $\boldsymbol{\lambda} = \boldsymbol{V}_a \Delta t$.

(nría-

Relaxation methods

General principle

We consider the following nonlinear system

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \nu \partial_x (D(\mathbf{U}) \partial_x \mathbf{U}) + \mathbf{G}(\mathbf{U})$$

- Aim: Find a way to approximate this systemwith a suite of simple systems.
- Idea: Xin-Jin relaxation method (finite volume method).

$$\left\{ \begin{array}{l} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) + \boldsymbol{H}(\boldsymbol{U}) \end{array} \right.$$

Limit of relaxation scheme

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \varepsilon \partial_x ((\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon \partial_x \boldsymbol{G}(\boldsymbol{U}) - \varepsilon \partial_x \boldsymbol{H}(\boldsymbol{U}) + o(\varepsilon^2)$$

- \square with $A(\boldsymbol{U})$ the Jacobian of $\boldsymbol{F}(\boldsymbol{U})$.
- Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).
- **Stability**: the limit system is dissipative if $(\alpha^2 \mid \rho \mid^2) > 0$.

General principle II

Generalization

■ Replacing $\frac{1}{c}I_d$ by \mathcal{E}^{-1} with

$$\mathcal{E} = \nu D(\mathbf{U})(\alpha^2 - |\rho|^2)^{-1}$$

and taking $\boldsymbol{H}(\boldsymbol{U}) = A(\boldsymbol{U})\boldsymbol{G}(\boldsymbol{U})$: we obtain the following limit system

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \mathbf{G}(\mathbf{U}) + \nu \partial_x (D \mathbf{U} \partial_x \mathbf{U}) + o(\nu^2)$$

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Key method: Splitting between source and linear hyperbolic part.

Solver for linear part

■ The system

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \\ \partial_t \mathbf{V} + \alpha^2 \partial_x \mathbf{U} = 0 \end{cases}$$

- can be rewritten as N independent wave systems.
- Wave solver: Schur complement. We solve two mass matrices and one Laplacian to obtain the solution of the implicit wave problem.

Exemple 1: 1D Burgers equation

■ Model : Viscous Burgers equation

$$\partial_t \rho + \partial_x \left(\frac{1}{2} \rho^2 \right) = \partial_x (\nu \partial_x \rho) + f$$

- Classical implicit scheme : Cranck-Nicholson + linearization + Newton.
- Relaxation system:

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x u = f \\ \partial_t u + \alpha^2 \partial_x \rho = \frac{1}{\varepsilon} \left(\frac{\rho^2}{2} - u \right) \end{array} \right.$$

Limit of relaxation scheme

□ The limit scheme is given by

$$\partial_t \rho + \partial_x \left(\frac{1}{2} \rho^2 \right) = \varepsilon \partial_x ((\alpha^2 - |\rho|^2) \partial_x \rho) + f + o(\varepsilon^2)$$

- \Box taking $\varepsilon = \frac{\nu}{\alpha^2 |\rho|^2}$ we recover the initial equation.
- □ Stability condition: $\alpha > |u|$.

Exemple 1: Time scheme for Burgers

Step:

■ Transport step $(T(\Delta t))$:

$$\left(\begin{array}{cc} I_d & \theta \Delta t \partial_x \\ \alpha^2 \theta \Delta t \partial_x & I_d \end{array} \right) \left(\begin{array}{c} \rho^* \\ u^* \end{array} \right) = \left(\begin{array}{cc} I_d & -(1-\theta)\Delta t \partial_x \\ -\alpha^2 (1-\theta)\Delta t \partial_x & I_d \end{array} \right) \left(\begin{array}{c} \rho^n \\ u^n \end{array} \right)$$

■ Relaxation step $(R(\Delta t))$:

$$\left\{ \begin{array}{l} \rho^* = \rho^n + \Delta t f \\ u^* = \frac{\Delta t}{\varepsilon + \theta \Delta t} \frac{\rho^2}{2} + \frac{\varepsilon - (1 - \theta) \Delta t}{\varepsilon + \theta \Delta t} u \end{array} \right.$$

- First order time scheme: $T(\Delta t) \circ R(\Delta t)$ with $\theta = 1$
- Second order time scheme: $T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t) \circ T\left(\frac{\Delta t}{2}\right)$ or inverse with $\theta = 0.5$.

Consistency at the limit

■ The first order scheme at the limit is consistent with

$$\partial_t \rho + \partial_x \left(\frac{1}{2} \rho^2 \right) = (\varepsilon + \frac{\Delta t}{2}) \partial_x ((\alpha^2 - |\rho|^2) \partial_x \rho) + \frac{\Delta t}{2} \partial_x (\alpha^2 \partial_x u) + f + o(\varepsilon^2 + \Delta t^2 + \varepsilon \Delta t)$$

- **Model** : We consider the Burgers equation without viscosity with source term.
- We choose as source term $f = g\rho$ to obtain a steady solution given by

$$\rho(t,x) = 1.0 + 0.1e^{-\frac{x^2}{\sigma}}, \quad g(t,x) = -\frac{2x}{\sigma}e^{-\frac{x^2}{\sigma}}$$

• We consider the final time T=0.1 and a fine mesh (10000 cells with third order polynomials). The first and second order schemes are compared for different time step.

	Order 1		Order 2	
	Error	Order	Error	Order
$\Delta t = 0.02$	$1.58E^{-2}$	-	$3.1E^{-4}$	-
$\Delta t = 0.01$	$9.47E^{-3}$	0.74	7.75 <i>E</i> ⁻⁵	2.0
$\Delta t = 0.005$	$5.18E^{-3}$	0.87	$1.95E^{-5}$	2.0
$\Delta t = 0.0025$	$2.7E^{-3}$	0.94	$4.86E^{-6}$	2.0
$\Delta t = 0.00125$	$1.38E^{-3}$	0.97	$1.21E^{-6}$	2.0

Table: Error and order for the test 1 one with the relaxation scheme.

 The splitting scheme allows to obtain first and second order scheme without CFL condition.

lnría-

 $\frac{23}{41}$

- Model: Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition: Gaussian.
- **Explicit time step** : stable if for $\Delta t = 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$

Figure: Left: numerical solution for first order and second order schemes for $\Delta t = 0.001$, Right: Zoom

- Remark: for discontinuous solution (or strong gradient solution) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

(nría-

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- **Explicit time step** : stable if for $\Delta t = 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$ (only for first order).

Figure: Left: numerical solution for first order scheme, Right: numerical solution for second order scheme. $\nu=10^{-3}$

- Remark: for discontinuous solution (or strong gradient solution) the scheme admits high numerical dispersion and instabilities.
 - **Instability**: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition: Gaussian.
- **Explicit time step** : stable if for $\Delta t = 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$.

Figure: Left: numerical solution for first order scheme, Right: numerical solution for second order scheme. $\nu=10^{-2}$

- Remark: for discontinuous solution (or strong gradient solution) the scheme admits high numerical dispersion and instabilities.
 - **Instability**: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

- Model : Viscous Burgers model.
- Conditioning : well-conditioning system in 1D.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition: Gaussian.
- **Explicit time step** : stable if for $\Delta t = 1.0E^{-5}$

Figure: Left: Comparison between fine solution, CN and relaxation numerical solutions. Right: zoom. $\nu=10^{-10}$, $\Delta t=0.002$

 Conclusion: the Relaxation method is a little more dispersive that the Cranck-Nicholson method.

- **Model**: Viscous Burgers model.
- Conditioning : well-conditioning system in 1D.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition: Gaussian.
- **Explicit time step** : stable if for $\Delta t = 1.0E^{-5}$

Figure: Left: Comparison between fine solution, CN and relaxation numerical solutions. Right: zoom. $\nu=10^{-10},\,\Delta t=0.005$

 Conclusion: the Relaxation method is a little more dispersive that the Cranck-Nicholson method.

- Model : Viscous Burgers model.
- Conditioning : well-conditioning system in 1D.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- **Explicit time step** : stable if for $\Delta t = 1.0E^{-5}$

Figure: Left: Comparison between fine solution, CN and relaxation numerical solutions. Right: zoom. $\nu=10^{-10}$, $\Delta t=0.01$

 Conclusion: the Relaxation method is a little more dispersive that the Cranck-Nicholson method.

- Model : Viscous Burgers model with $\nu = 10^{-12}$.
- Comparison of CPU time between two methods.

	CN method			Relax	cation me	ethod
Δt cells	5.10^{3}	10 ⁴	2.10^4	5.10^{3}	10^{4}	2.10^4
$\Delta t = 0.005$	67	217.5	980	75.5	240	1100
$\Delta t = 0.01$	35	114	518	41	122.5	561
$\Delta t = 0.02$	18	61	280	20	63	294
$\Delta t = 0.05$	9.5	32.5	144	8	29	126

Remark

- ☐ The Relaxation method is competitive when the solver converges slowly for the classical method (high time step in this case).
- The assembly time is negligible in 1D not in 2D and 3D. The 1D burgers equation is not an ill-posed problem contrary multi-D hyperbolic systems or low Mach Euler equations.
- ☐ Therefore for complex models or in multi-D.

Future optimization:

CN scheme does not use a PC and the relaxation scheme solves sequentially the independent subsystems.

Civila E. Franck

Exemple II: 1D Navier-Stokes equation

Model : Viscous Burgers equation

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + \rho) = \partial_x (\nu(\rho) \partial_x u) - \rho g \\ \partial_t E + \partial_x (E u + \rho u) = \partial_x (\nu(\rho) \partial_x \frac{u^2}{2}) + \partial_x (\eta \partial_x T) - \rho v g \end{array} \right.$$

We apply the relaxation method: three additional variables.

Stability

- □ The relaxation scheme is stable if $\alpha^2 |A|^2 > 0$ with A the Jacobian.
- □ Classical choice: $\alpha > u + c$.

Diffusion

Innin-

☐ To obtain the physical diffusion matrix:

$$\mathcal{E} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ -\frac{\nu(\rho)u}{g} & \frac{\nu(\rho)}{\rho} & 0 \\ -\eta \frac{3}{2}\eta(\gamma - 1)E - \nu(\rho)u^2 & \nu(\rho) - (\gamma - 1)\rho\eta & (\gamma - 1)\rho\eta \end{array} \right) (\alpha^2 - \mid A\mid^2)^{-1}$$

Results for Navier-Stokes equation I

Simple test case: $\rho(t,x) = 1 + G(x - ut)$, u(t,x) = 2 and T(t,x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0E^{-3}$	$\Delta t = 2.5E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	$8.8E^{-3}$	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	5.7 <i>E</i> ⁻⁴	$1.4E^{-4}$	$3.6E^{-5}$

- Conclusion: the relaxation scheme converges with the second order as expected.
- Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green) $\Delta t = 0.01$

Results for Navier-Stokes equation I

Simple test case: $\rho(t,x) = 1 + G(x - ut)$, u(t,x) = 2 and T(t,x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	$8.8E^{-3}$	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	5.7 <i>E</i> ⁻⁴	$1.4E^{-4}$	$3.6E^{-5}$

- Conclusion: the relaxation scheme converges with the second order as expected.
- Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green)

 $\Delta t = 0.02$

Results for Navier-Stokes equation I

 $\blacksquare \ \, \mathsf{Simple test case:} \,\, \rho(t,x) = 1 + \mathit{G}(x-\mathit{ut}), \,\, \mathit{u}(t,x) = 2 \,\, \mathsf{and} \,\, \mathit{T}(t,x) = 0.$

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0E^{-3}$	$\Delta t = 2.5E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	2.25 <i>E</i> −3	5.7 <i>E</i> ⁻⁴	$1.4E^{-4}$	$3.6E^{-5}$

- Conclusion: the relaxation scheme converges with the second order as expected.
- Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green) $\Delta t = 0.05$

The two methods (CN and relaxation) capture well the fine solution.

Results II

- Model : Compressible Navier-Stokes equation model with $\varepsilon = 10^{-10}$.
- Initial data: Constant pressure with a perturbation of density. Initial velocity null.
- **Test**: Propagation of acoustic wave.

	CN method			Relaxation method		
Δt / cells	5.10^{3}	10 ⁴	2.104	5.10^{3}	10 ⁴	2.10 ⁴
$\Delta t = 0.005$	170	580	2550	135	420	1890
$\Delta t = 0.01$	100	345	1500	70	215	980
$\Delta t = 0.02$	60	205	920	40	120	525
$\Delta t = 0.05$	30	120	525	20	65	270

Conclusion:

- The 1D Navier-Stokes problem is ill-conditioned comparing to Burgers. In this case the efficiency of Relaxation comparing to Cranck-Nicholson is better.
- In this case the Relaxation method is competitive with the classical scheme without important optimization (no parallelization of the problem, etc).

²⁹/₄₁

lnría-

Problem of relaxation solvers

Problem for Relaxation solver I: high diffusion

$$\partial_t \mathbf{U} + \nabla \cdot \mathbf{F}(\mathbf{U}) = \nabla \cdot (D(\mathbf{U})\nabla \mathbf{U}) + \mathbf{G}(\mathbf{U}) + O(|D(\mathbf{U})|^2)$$

- **Conclusion**: For |D(U)| << 1 the relaxation system is valid.
- Tokamak MHD context: the anisotropic diffusion in the parallel direction is in O(1) for Tokamak. We must adapt the method.
- Toy model:

$$\left\{ \begin{array}{l} \partial_t T + \nabla \cdot (\boldsymbol{u}T) = \nabla \cdot (D(\boldsymbol{b})\nabla T), \quad D(\boldsymbol{b})\nabla T = (\boldsymbol{b} \otimes \boldsymbol{b})\nabla T + \kappa \nabla T \end{array} \right.$$

- There exists different relaxation schemes for the diffusion.
- The first results (we need more results) show difficulty to treat large time steps if we use implicit schemes.
- Possible solution: modification of the relaxation method (keeping a part of relaxation step in the transport step) to treat high time step.
- Problem for Relaxation solver II: more numerical and physical dispersion (more critical problem)
- Possible solution: adaptive time scheme? limiter or other treatment for discontinuities, high order scheme in time?

30/₄₃

Lattice Boltzmann schemes

 Lattice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics model.

Lattice Scheme

- For N velocities \rightarrow compute equilibrium: $f_i = w_i \rho \left(1 + 3(\boldsymbol{u}_i \cdot \boldsymbol{u}) + \frac{9}{2}(\boldsymbol{u}_i \boldsymbol{u}_i - \frac{1}{2} I_d) : \boldsymbol{u} \boldsymbol{u} \right)$
- For N velocities \rightarrow relaxation to the equilibrium: $\partial_t f_i = \frac{1}{2} (f_i^{eq} f_i)$
- For N velocities \rightarrow transport : $\partial_t f_i + v_i \cdot \nabla f_i = 0$
- We compute the moments $\rho = \sum_i f_i, \ \rho \mathbf{u} = \sum_i \mathbf{u}_i f_i$ etc
- Advantage: In DG context the transport matrices are triangular by block and can be solved by a up-down algorithm without stocking
- Problem: physical limitation. Example D2Q9 is consistent with isothermal Navier-Stokes + a destabilizing diffusion homogeneous to O(Mach³).
- **Solution**: use $DdQ(d+1)^n$ lattice we obtain a relaxation system where the transport is diagonal with properties closed to the Jin-Xin relaxation.

Elliptic problems

Elliptic problems for "Splitting" implicit schemes

Resume:

- All the methods proposed before split the complex systems between some simple systems.
- Simples systems:
 - □ Laplacian : $\nu u \lambda \Delta u = f$
 - Advection: $vu + \lambda a \cdot \nabla u = f$
 - □ Div-Div and Curl-Curl: $\nu \boldsymbol{u} \frac{\lambda}{\lambda} \nabla (\nabla \cdot \boldsymbol{u}) = \boldsymbol{f}, \quad \nu \boldsymbol{u} \frac{\lambda}{\lambda} \nabla \times (\nabla \times \boldsymbol{u}) = \boldsymbol{f}$
 - □ Alfven Curl-Curl: $\nu \mathbf{u} \frac{\beta \lambda}{\lambda} \nabla (\nabla \cdot \mathbf{u}) \frac{\lambda}{\lambda} (\mathbf{b}_0 \times (\nabla \times \nabla \times (\mathbf{b}_0 \times \mathbf{u}))) = \mathbf{f}$
 - ☐ For the last operator, we have additional complexity, but the scale can be probably separate using a formulation parallel-perp of the MHD and PC.
- Conclusion: to obtain efficient methods in time we need efficient methods for all these systems.
- **Efficient solvers**: solvers with an accuracy independent of λ , the order and the size of the mesh. Parallelized solvers.

³³/₄₁

GLT principle

- PDE : Lu = g after discretization gives $L_n u_n = g_n$ with $\{L_n\}_n$ a sequence of matrices.
- It is often the case that the matrix L_n is a linear combination, product, inversion or conjugation of these two simple kinds of matrices
 - $\ \square$ $T_n(f)$, i.e., a Toeplitz matrix obtained from the Fourier coefficient of $f:[-\pi,\pi] \to \mathbb{C}$, with $f \in L^1([-\pi,\pi])$.
 - \square D(a), i.e., a diagonal matrix such that $(D_n(a))_{ii}=a(\frac{i}{n})$ with $a:[0,1]\to\mathbb{C}$ Riemann integrable function.

In such a case $\{L_n\}_n$ is called a **GLT sequence**.

Fundamental property

□ Each GLT sequence $\{L_n\}_n$ is equipped with a "symbol", a function $\chi:[0,1]\times[-\pi,\pi]\to\mathbb{C}$ which describes the asymptotic spectral behaviour of $\{L_n\}_n$:

$$\{L_n\}_n \sim \chi$$

E.g.: if $L_n = D_n(a) T_n(f)$, then $\{L_n\}_n \sim \chi = a \cdot f$

 Advantage of this tool: studying the symbol we retrieve information on the conditioning and propose new preconditioning based on this symbol.

lnia

 $^{34}/_{41}$

GLT for stiffness matrix

Application: B-Splines discretization of the model

$$-\Delta u = f, \quad \text{in } [0,1]^d.$$

■ The basis functions are given by $\phi_i(x)$ a tensor product of 1D B-Splines functions.

Symbol of the problem

$$\begin{split} \left\{ n^{d-2} L_n \right\}_n &\sim \frac{1}{n} \left(\Pi_{k=1}^d m_{p_k-1}(\theta_k) \right) \left(\sum_{k=1}^d \mu_k^2 (2 - 2 \cos(\theta_k)) \Pi_{j=1, j \neq k}^d w_{p_j}(\theta_j) \right) \\ \text{with } \theta_k \in [-\pi, \pi] \text{ and } w_n(\theta) := m_n(\theta) / m_{n-1}(\theta). \end{split}$$

- Remark 1: The symbol has a zero in $\theta = (0, ..., 0) \Rightarrow n^{d-2}L_n$ is ill-conditioned in the low frequencies. Classical problem solved by MG preconditioning.
- **Remark 2**: The symbol has infinitely many exponential zeros at the points θ with $\theta_j = \pi$ for some j when $p_j \to \infty \Rightarrow n^{d-2}L_n$ is ill-conditioned in the high frequencies. Non-canonical problem solvable by GLT theory.
- **Preconditioning**: Using the symbol we can construct a smoother for MG valid for high-frequencies. (i.e. CG preconditioned with a Kronecker product whose jth factor is $T_{\mu_j n + \rho_j 2}(m_{\rho_j 1})$).
- Extension: the method can be extended to the case with mapping (general geometries) and more general operators.

(nría

 $\frac{35}{4}$

- Solver: Comparison between classical multi-grid solver and MG with CG + GLT preconditioning smoother.
- Model: 2D Laplacian with Homogeneous Dirichlet BC
- Efficiency of the multi-grid method depending to the polynomial degree.

■ Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

(nría-

E. Franck

- Solver: Comparison between classical multi-grid solver and MG with CG + GLT preconditioning smoother.
- Model: 2D Laplacian with Homogeneous Dirichlet BC
- Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.
- The efficiency of the multi-grid method + GLT PC method depending on the polynomial degree.

E. Franck

Conclusion: the MG + CG-GLT is efficient for all high-order polynomial degrees.

lnría-

 $\frac{36}{41}$

- Solver: Comparison between classical multi-grid solver and MG with CG + GLT preconditioning smoother.
- Model: 2D Laplacian with Homogeneous Dirichlet BC
- **Conclusion**: the MG (as expected) is not efficient for high-order polynomial degrees.

Degree/Scheme	MG + GLT	MG
1	1.32	1.76
2	2.56	2.75
3	2.58	4.42
4	3.42	21.62
5	6.35	170.48
6	15.71	677.17*
7	25.99	825.56*
8	27.89	800.72*
9	58.03	1098.94*

Table: Computational cost comparison for the Laplacian operator -2D 64*64 elements

Conclusion

E. Franck

□ The GLT preconditioning allows to avoid the problem of conditioning for high degree polynomial and limit CPU time.

(nría-

30/

- The GLT preconditioning is based on the "symbol" which describe the eigenvalues linked to the mass matrix.
- Conclusion: it can be also used as a PC for the mass matrix (closed to Kronecker product preconditioning).
- Result inverting the mass matrix with CG + GLT.

Degree	PCG	CG	Degree	PCG	CG
3	10	111	3	10	117
5	25	449	5	23	533
7	40	1777	7	38	2166

Table: Left: Number of iterations-mass matrix on a square 32*32. Right on a square 64*64

Degree	PCG	CG	Degree	PCG	CG
3	50	210	3	71	340
5	83	796	5	118	1711
7	125	2639	7	186	>3000

Table: Left: Number of iterations-mass matrix on a circle 32*32. Right on a circle 64*64

Conclusion: the GLT PC is also a good PC for the mass matrix.

Vectoriel elliptic problems and advection

- Study of the conditioning problem using Fourier analysis.
- Fourier transform for Advection

$$[\nu + i(\mathbf{a} \cdot \mathbf{\theta})]\hat{u} = 0$$

- For $\nu << 1$ the system is ill-conditioning to the orthogonal frequencies to the velocity ${\it a}$.
- Fourier transform for vectorial elliptic problems (ex grad div problem):

$$\left[\nu I_d + \begin{pmatrix} \theta_1^2 & \theta_1 \theta_2 \\ \theta_1 \theta_2 & \theta_2^2 \end{pmatrix}\right] \hat{\boldsymbol{u}} = 0$$

$$\left[\nu I_d + \begin{pmatrix} 0 & 0 \\ 0 & \|\boldsymbol{\theta}\|^2 \end{pmatrix}\right] P^{-1} \hat{\boldsymbol{u}} = 0$$

- For small ν the vectorial problems are ill-conditioning.
- In the future: GLT analysis to find additional problems due to the numerical discretization.
- Aim: find preconditioning for these problems. Open problem for advection. Auxiliary space or GLT with diagonalization for vectorial problems.

Conclusion

Conclusion

First way: Splitting method. M. Gaja Phd and NMPP group.

Physic-based method

- Advantages:
 - Efficient method for low Mach method.
 - Compatible with equilibrium conservation.
 - Few memory consumption if coupled with Jacobian free.
- Defaults:
 - Nonlinear matrices (important cost)
 - Less efficient is the regime Mach closed to one.
 - Efficiency of PC depend also to the mesh, discretization etc (not clear)
 - Need Preconditioning for advection ?

Semi Implicit

- Advantages:
 - Probably efficient for all Mach regimes between zero and one.
 - Compatible with equilibrium conservation.
 - Few memory consumption if coupled with Jacobian free
- Defaults:
 - Nonlinear matrices (important cost)
 - Efficiency of PC depend also to the mesh, discretization etc (not clear)
 - Need Preconditioning for advection ?

40/4

Conclusion

Second way: Relaxation method. INRIA Tonus team and NPP group.

Relaxation

- Advantages:
 - ☐ Few memory consumption (derivates matrices and perhaps mass).
 - \square Good parallelization (models + domain decomposition).
 - Able to treat lots of regimes.
- Defaults:
 - □ Not directly able to treat high diffusion (on going work).
 - $\hfill \Box$ Lose of parallelization for complex BC.
 - ☐ A little bit more numerical dispersion.
 - not compatible with equilibrium conservation.

Remark

- All the methods needs preconditioning for mass, Laplacian and vectorial elliptic problems.
- All the methods needs stabilization or other treatment in the nonlinear phase for the numerical dispersion.
- Find 4th order schemes for the two methods could be possible and useful (ongoing work in TONUS team)

⁴¹/₄₁

lnría-