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Linear Solvers and preconditioning

B We solve a nonlinear problem G(U""!) = b(U", U""!). First order linearization

with 6U" = U™ — U", and J, = a%g{,ﬂ) the Jacobian matrix of G(U").

B Principle of the preconditioning step:
O Replace the problem JdUyx = R(U") by Pk(P;IJk)(SUk = R(UM).
U Solve the new system with two steps PxdUj = R(U") and (P 1 Jk)6Uy = dU}

B |f Py is easier to invert than J, and Py ~ Ji the solving step is more robust and
efficient.

Physic-based Preconditioning

B |n the GMRES context if we have a algorithm to solve PxU = b we have a
Preconditioning.

B Principle: construct an algorithm to solve P, U = b approximating and splitting the
equations and approximating the discretizations.
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Application: Linearized Euler equation
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Implicit scheme for wave equation

Linearized Euler equation:
{ dtp+a-Vp+cV-u=0

diu+a-Vu+cVp=0

B The hyperbolic part of the system admits the following eigenvalues and eigenvectors
A_=(an)—c Ag=(a,n) Ar=(an)+c

with n the direction of the wave.
B The implicit system is given by

p"t\ ([ AD, Div \"'/ R,
utl ) T\ Grad AD, Ru

B The solution of the system is given by

Pt N\ _ (1 AD,'Div AD;1 0 I 0 Ro
utl S0 0 P —GradAD, ' | Ry

with Pscpyr = AD, — Grad(AD, ') Div.
B Using the previous Schur decomposition, we can solve the implicit wave equation with
the following algorithm:
Predictor :  AD,p* = R,
Velocity evolution :  Pu™! = (—Gradp® + R,)

Corrector :  ADpp™*! = AD,p* — Divu,.1 ,6 \
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PC for linearized Euler equations

B The preconditioning is given by the previous algorithm [3]-[4].

Low Mach approximation:

0 We assume that a << c therefore we use the approximation
ADt = (lg+Ata- V) L& Uy

in the second and third step.

B We obtain
Predictor :  AD,p* = R,
Velocity evolution :  Pu""! = (—Gradp* + Ry)
Corrector :  p"™t = p* — Divu,,1
with

ADp = lg+Ata-V, and Py = lg + Ata-V — 2AL2V(V-)

U AD, for | a | At >> 1 is not easy to invert. Solution: specific PC or stabilization.

O Pgcpyr for | a| At >> 1 or cAt >> 1 is not easy to invert. Indeed
Ker(V(V -u)) = Span {u, V x u = 0}.

0 Solution: specific preconditioning and/or specific finite element methods.
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Results |

B To validate the PC we compare the number of iterations to converge when we change
the time step and the mesh.

B Steady test case for wave ( with ¢ =1 and a = 0).

h/At | At=001 | At=0.1 | At=1 | At=5 | At =50
16*16 1 1 1.2 5 9
32%32 1 1 1 1.2 6
64*64 1 1 1 1 1
B Unsteady test case for wave ( with ¢ =1 and a =0).
h/At | At=001 | At=01 | At=1 | At=5 | At =50
16*16 1 1.2 2 2 2
32*32 1 1 1 1 1
64*64 1 1 1 1 1

B Comparison of different PC.
B Number of iterations for different PC with Mesh 32 x 32.

At/ PC Jacobi | ILU(0) | ILU(4) | Pb-PC
At=0.1 X 70 20 1
At=1 X X X 1
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Result 11

B Now we propose to compare the efficiency of the Physic based preconditioning for
different value of the Mach number

o lal
(o}

B Test: Propagation of a perturbation of the pressure (¢ = 10~° for GMRES).

h/M=]0 [10%[ 10?01 1 10 100
16¥16 | 16 | 16 22 | 65 | >100 | > 100 | 19
32%32 | 8 9 17 | 53 | >100 | >100 | 16

B Test: Sinuosidal velocity and pressure (¢ = 1079 for GMRES).

h/M=]o0[10%]102]01]1]10] 100
16*16 3.5 5 7 [7]10] 7
32%32 |1 2 3 3 [5] 4 4

N
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Conclusion on PC for linearized Euler equations

Remark on global convergence :

0 The global convergence is lower as At increases. Indeed the PB-PC can be partially
interpreted as a splitting method (error depend of At).

U The global convergence is faster as h decreases. When h is smaller the error comes
only from the splitting. We kill the error like

| (V Div)y — V} Divy, |= O(hP)

U Generally the GMRES residue decreases a lot at the beginning and less after.

v

Remark on sub-systems

0 We solve the sub-systems with an accuracy a little bit smaller that for the full systems.

O Finding a good solver for each sub-system is essential [5]-[6] .

4

Remark on physical approximation

O As expected the method is less efficient when the Mach number increase. Have a high
accuracy for high mach number is an open question.

diffusion or stabilization.
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Application: Current Hole
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Current Hole and preconditioning associated

B Current Hole : reduced problem in cartesian coordinates.

B The model )
{ Oetp = [, u] +1(AY — Je)

9:Au = [Au, u] + [, Ap] + vA%u
with w = Au and j = Ay.
B |n this formulation we split evolution and elliptic equations.
B For the time discretization we use a Cranck-Nicholson scheme and linearized the
nonlinear system to obtain

(7 5)(ah)=(%)

or

Iy — At6[-, u"] — AtoA —A8[y", ] o "
( A n n n n 2 ) ( ou” ) - ( Rf )
—AtO[Y", A — AtO[, AY"] A — At([A, u"] + [+, Au"] + A?)

Low Mach PB-PC for Current Hole

Predictor :  Mdy; = Ry

potential update :  Pgcpy0u" = (—Lﬁlps + Ru))
Corrector : 6" = oy — Usu"

Elliptic update : (5zj" =A6Y", ow" = Adu”
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Approximation of the Schur complement
B Computation of Schur complement (slow flow approximation M~1 ~ At)

Pschur = % +u" - V(Adu) 4 du - V(Au") — BvAZ5u — 6°AtLU

B QOperator LU = B"-V(A*(B" - Véu)) + %BZO, -V(B"-Véu).

B B".Véu=—[¢", éu] and u" - Véu = —[bu, u"] et Su-Vu" = —[u", éu].

B Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves.

Properties of LU operator

0 We consider the L2 space. The operator LU is not self adjoint and not positive for all
Su

95"

< LUSu,8u > 2= [ |Vpoi(B - Vou)2 o

(Bpoy - Vou)(B" - Viu)

O We propose the following approximation LU?PP™* = B" . V(A*(B" - Véu)).

O The operator LU3PP™ is positive and self-adjoint.

B There are different methods to solve the Schur complement using splitting to solve

smaller and more simple operators. r-\
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Results Current Hole

B \We give some results on the Physic-Based PC for the resistive kink instability.

We use a small tolerance for the GMRES to avoid numerical instability linked to the
mesh.

B We give results for different tolerances of the GMRES. Total run (linear and nonlinear

phase).
At [ €gmres e=10°%[e=10"[e=10 10 [e=10""
At =1 Mesh=32%32 1 1-3 3-5 4-10
At = 10 Mesh=32*32 2-8 4-25 10-45 15-60
At = 10 Mesh=64*64 1-10 1-20 10-55 20-70

B Worst phase for convergence: the beginning.

B |n general the GMRES begin with a very good error and this error decreases slowly.

Good behavior for the coupling with inexact Newton method.

B Remark: solve the mesh problem to get fully pertinent results.
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Application: Reduced MHD without parallel velocity
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Current work: model 199

B Algorithm:
0 Step 1: Solve Grad-Shafranov on circular mesh using Picard method.
O Step 2: Construction of initial data using peq for the model 199.
0 Step 3: Loop in time (same model as JOREK).

B Remark: Currently no aligned grid (external grid).

B New matrix for the Preconditioning:

Iy — A([-, u"] +5A*) 0 0 A

M= 0 Iy — At([-, u"] + V- (DV")) 0
0 0 Iy — At([-, u") + V- (KV-))

and

Vool - (R20VS
Prchor ~ W + %u" -V(R2pASu) + %Ju -V (R20Bu") — 6vA2y,5u — 0 AtLU

B QOperator
LU ~ B"-V(A*(B" - Véu)) + % ([R%,0u - Vp" +p"V - bu))

with B" -V = — L [y", ] + %84,, du-Vp" = —R[p",éu] and p"V - du = —2p"dzéu

Current situation

B Stability of equilibrium started working two days ago. Next: Internal Kink instability
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Lattice Boltzmann schemes for MHD

New work with: P. Helluy, M. Mehrenberger, D. Coulette
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Lattice Boltzmann schemes

B Lattice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics

model.

Lattice Scheme

B For N velocities — compute equilibrium:
fi = wip (1+3(v; - u) + 3 (viv; — 31y) : uu)
B For N velocities — relaxation to the

equilibrium: 9:f; = 1 (£ — ;)

B For N velocities — transport :
d¢fi +v;i - V=0

B We compute the moments p =} ; f;,
pu =Y ;vjf; etc

B Advantage: local computation relaxation
and computation of moments. The matrices
computed are linear and sparse.

B Problem: physical limitation like small
Mach number.
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Lattice Boltzmann schemes for MHD

B | attice Boltzmann schemes could be used as a solver or as a preconditioning in the
Tokamak context.

Application to the MHD

B Additional moment: the energy.
B one kinetic equation for the fluid, three kinetic equations for magnetic field.

B More complex or different Lattice to increase the maximum Mach or Reynolds
Number.

Braginskii closure

B The choice of the relaxation coefficient allows to choose the viscosity and resistivity
coefficients.

B Multiple relaxation method: allows to obtain anisotropic viscosity.

Future extension

B To simulate instabilities like ELM's with Lattice it is important to extend the scheme
for [6] for more general tensor (with gyro-viscous effect) and generalized Ohm law.

19 /
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Conclusion and future work

Future work for physics

B Short time: validate the model 199 with kink instability, tearing and ballooning modes.
B More long time: Model 303 and x-point geometry.

Future work for informatics

B Short time:
U Parallelization Open MP-MPI and cleaning
O New construction of matrices (faster method),
O Construction of the matrices in the same time.

Future work for numerics

B Short time:
L Jacobian-free matrices
0 Specific preconditioning using GLT [5]-[6] for advection, diffusion and high-order
operators

B |mprove the Lattice Boltzmann approach (project EXAMAG and INRIA Nancy).
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