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Linear Solvers and preconditioning

� We solve a nonlinear problem G (Un+1) = b(Un, Un−1). First order linearization(
∂G (Un)

∂Un

)
δUn = −G (Un) + b(Un, Un−1) = R(Un),

with δUn = Un+1 −Un, and Jn = ∂G (Un)
∂Un the Jacobian matrix of G (Un).

� Principle of the preconditioning step:

� Replace the problem JkδUk = R(Un) by Pk (P
−1
k Jk )δUk = R(Un).

� Solve the new system with two steps PkδU∗k = R(Un) and (P−1
k Jk )δUk = δU∗k

� If Pk is easier to invert than Jk and Pk ≈ Jk the solving step is more robust and
efficient.

Physic-based Preconditioning
� In the GMRES context if we have a algorithm to solve PkU = b we have a

Preconditioning.

� Principle: construct an algorithm to solve PkU = b approximating and splitting the
equations and approximating the discretizations.
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Application: Linearized Euler equation
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Implicit scheme for wave equation

Linearized Euler equation:{
∂tp + a · ∇p + c∇ · u = 0
∂tu + a · ∇u + c∇p = 0

� The hyperbolic part of the system admits the following eigenvalues and eigenvectors

λ− = (a, n)− c λ0 = (a, n) λ+ = (a, n) + c

with n the direction of the wave.
� The implicit system is given by(

pn+1

un+1

)
=

(
ADp Div
Grad ADu

)−1 (
Rp

Ru

)
� The solution of the system is given by(

pn+1

un+1

)
=

(
I AD−1

p Div
0 I

)(
AD−1

p 0

0 P−1
schur

)(
I 0
−GradAD−1

p I

)(
Rp

Ru

)
with Pschur = ADu −Grad(AD−1

p )Div .
� Using the previous Schur decomposition, we can solve the implicit wave equation with

the following algorithm:
Predictor : ADpp

∗ = Rp

Velocity evolution : Pun+1 = (−Gradp∗ + Ru)
Corrector : ADpp

n+1 = ADpp
∗ −Divun+1
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PC for linearized Euler equations
� The preconditioning is given by the previous algorithm [3]-[4].

Low Mach approximation:

� We assume that a << c therefore we use the approximation

AD−1
p = (Id + ∆ta · ∇)−1 ≈ Id

in the second and third step.

� We obtain 
Predictor : ADpp

∗ = Rp

Velocity evolution : Pun+1 = (−Gradp∗ + Ru)
Corrector : pn+1 = p∗ −Divun+1

with
ADp = Id + ∆ta · ∇, and Pschur = Id + ∆ta · ∇ − c2∆t2∇(∇·)

Remarks :

� ADp for | a | ∆t >> 1 is not easy to invert. Solution: specific PC or stabilization.

� Pschur for | a | ∆t >> 1 or c∆t >> 1 is not easy to invert. Indeed
Ker(∇(∇ · u)) = Span {u,∇× u = 0}.

� Solution: specific preconditioning and/or specific finite element methods.
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Results I

� To validate the PC we compare the number of iterations to converge when we change
the time step and the mesh.

� Steady test case for wave ( with c = 1 and a = 0).

h / ∆t ∆t = 0.01 ∆t = 0.1 ∆t = 1 ∆t = 5 ∆t = 50
16*16 1 1 1.2 5 9
32*32 1 1 1 1.2 6
64*64 1 1 1 1 1

� Unsteady test case for wave ( with c = 1 and a = 0).

h / ∆t ∆t = 0.01 ∆t = 0.1 ∆t = 1 ∆t = 5 ∆t = 50
16*16 1 1.2 2 2 2
32*32 1 1 1 1 1
64*64 1 1 1 1 1

� Comparison of different PC.

� Number of iterations for different PC with Mesh 32× 32.

∆t/PC Jacobi ILU(0) ILU(4) Pb-PC
∆t = 0.1 x 70 20 1
∆t = 1 x x x 1
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Result II

� Now we propose to compare the efficiency of the Physic based preconditioning for
different value of the Mach number

M =
| a |
c

� Test: Propagation of a perturbation of the pressure (ε = 10−9 for GMRES).

h / M= 0 10−4 10−2 0.1 1 10 100
16*16 16 16 22 65 > 100 > 100 19
32*32 8 9 17 53 > 100 > 100 16

� Test: Sinuosidal velocity and pressure (ε = 10−9 for GMRES).

h / M= 0 10−4 10−2 0.1 1 10 100
16*16 2 3.5 5 7 7 10 7
32*32 1 2 3 3 5 4 4
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Conclusion on PC for linearized Euler equations

Remark on global convergence :

� The global convergence is lower as ∆t increases. Indeed the PB-PC can be partially
interpreted as a splitting method (error depend of ∆t).

� The global convergence is faster as h decreases. When h is smaller the error comes
only from the splitting. We kill the error like

| (∇Div)h −∇h Divh |= O(hp)

� Generally the GMRES residue decreases a lot at the beginning and less after.

Remark on sub-systems :

� We solve the sub-systems with an accuracy a little bit smaller that for the full systems.

� Finding a good solver for each sub-system is essential [5]-[6] .

Remark on physical approximation:

� As expected the method is less efficient when the Mach number increase. Have a high
accuracy for high mach number is an open question.

� The method is perhaps more efficient using an inexact Newton method and with
diffusion or stabilization.
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Application: Current Hole

E. Franck PC for reduced MHD 11/21

11/21



Current Hole and preconditioning associated
� Current Hole : reduced problem in cartesian coordinates.
� The model  ∂tψ = [ψ, u] + η(∆ψ− je )

∂t∆u = [∆u, u] + [ψ, ∆ψ] + ν∆2u

with w = ∆u and j = ∆ψ.
� In this formulation we split evolution and elliptic equations.
� For the time discretization we use a Cranck-Nicholson scheme and linearized the

nonlinear system to obtain(
M U
L D

)(
∆ψn

∆un

)
=

(
Rψ

Ru

)
or Id − ∆tθ[·, un ]− ∆tθ∆ −∆θ[ψn, ·]

−∆tθ[ψn, ∆·]− ∆tθ[·, ∆ψn ] ∆− ∆tθ([∆·, un ] + [·, ∆un ] + ∆2)

( δψn

δun

)
=

(
Rψ

Ru

)

Low Mach PB-PC for Current Hole
Predictor : Mδψn

p = Rψ

potential update : Pschur δun =
(
−Lδψn

p + Ru)
)

Corrector : δψn = δψn
p −Uδun

Elliptic update : δznj = ∆δψn, δwn = ∆δun
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Approximation of the Schur complement
� Computation of Schur complement (slow flow approximation M−1 ≈ ∆t)

Pschur =
∆δu

∆t
+ un · ∇(∆δu) + δu · ∇(∆un)− θν∆2δu − θ2∆tLU

� Operator LU = Bn · ∇(∆∗(Bn · ∇δu)) + ∂jn

∂ψn Bn
pol · ∇(Bn · ∇δu).

� Bn · ∇δu = −[ψn, δu] and un · ∇δu = −[δu, un ] et δu · ∇un = −[un, δu].

� Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves.

Properties of LU operator

� We consider the L2 space. The operator LU is not self adjoint and not positive for all
δu

< LUδu, δu >L2=
∫
|∇pol (Bn · ∇δu)|2 −

∫
∂jn

∂ψn
(Bn

pol · ∇δu)(Bn · ∇δu)

� We propose the following approximation LUapprox = Bn · ∇(∆∗(Bn · ∇δu)).

� The operator LUapprox is positive and self-adjoint.

� There are different methods to solve the Schur complement using splitting to solve
smaller and more simple operators.
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Results Current Hole

� We give some results on the Physic-Based PC for the resistive kink instability.

� We use a small tolerance for the GMRES to avoid numerical instability linked to the
mesh.

� We give results for different tolerances of the GMRES. Total run (linear and nonlinear
phase).

∆t / εgmres ε = 10−8 ε = 10−9 ε = 10−10 ε = 10−11

∆t = 1 Mesh=32*32 1 1-3 3-5 4-10
∆t = 10 Mesh=32*32 2-8 4-25 10-45 15-60
∆t = 10 Mesh=64*64 1-10 1-20 10-55 20-70

� Worst phase for convergence: the beginning.

� In general the GMRES begin with a very good error and this error decreases slowly.

� Good behavior for the coupling with inexact Newton method.

� Remark: solve the mesh problem to get fully pertinent results.
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Application: Reduced MHD without parallel velocity
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Current work: model 199
� Algorithm:

� Step 1: Solve Grad-Shafranov on circular mesh using Picard method.
� Step 2: Construction of initial data using ψeq for the model 199.
� Step 3: Loop in time (same model as JOREK).

� Remark: Currently no aligned grid (external grid).

� New matrix for the Preconditioning:

M =

 Id − ∆([·, un ] + η∆∗) 0 0
0 Id − ∆t([·, un ] +∇ · (D∇·)) 0
0 0 Id − ∆t([·, un ] +∇ · (K∇·))


and

Pschur ≈
∇pol · (R2ρ∇δu)

∆t
+

1

R2
un ·∇(R2ρ∆δu)+

1

R2
δu ·∇(R2ρ∆un)− θν∆2

pol δu− θ2∆tLU

� Operator

LU ≈ Bn · ∇(∆∗(Bn · ∇δu)) +
1

R

(
[R2, δu · ∇pn + γpn∇ · δu]

)
with Bn · ∇ = − 1

R [ψ
n, ·] + F0

R2 ∂φ, δu · ∇pn = −R [pn, δu] and pn∇ · δu = −2pn∂Z δu

Current situation
� Stability of equilibrium started working two days ago. Next: Internal Kink instability
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Lattice Boltzmann schemes for MHD

New work with: P. Helluy, M. Mehrenberger, D. Coulette
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Lattice Boltzmann schemes
� Lattice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics

model.

Lattice Scheme
� For N velocities → compute equilibrium:

fi = wiρ
(
1 + 3(vi · u) + 9

2 (vivi −
1
2 Id ) : uu

)
� For N velocities → relaxation to the

equilibrium: ∂t fi =
1
τ (f

eq
i − fi )

� For N velocities → transport :
∂t fi + vi · ∇fi = 0

� We compute the moments ρ = ∑i fi ,
ρu = ∑i vi fi etc

� Advantage: local computation relaxation
and computation of moments. The matrices
computed are linear and sparse.

� Problem: physical limitation like small
Mach number.
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Lattice Boltzmann schemes for MHD

Idea
� Lattice Boltzmann schemes could be used as a solver or as a preconditioning in the

Tokamak context.

Application to the MHD
� Additional moment: the energy.

� one kinetic equation for the fluid, three kinetic equations for magnetic field.

� More complex or different Lattice to increase the maximum Mach or Reynolds
Number.

Braginskii closure
� The choice of the relaxation coefficient allows to choose the viscosity and resistivity

coefficients.

� Multiple relaxation method: allows to obtain anisotropic viscosity.

Future extension
� To simulate instabilities like ELM’s with Lattice it is important to extend the scheme

for [6] for more general tensor (with gyro-viscous effect) and generalized Ohm law.
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Conclusion and future work

Future work for physics
� Short time: validate the model 199 with kink instability, tearing and ballooning modes.

� More long time: Model 303 and x-point geometry.

Future work for informatics
� Short time:

� Parallelization Open MP-MPI and cleaning
� New construction of matrices (faster method),
� Construction of the matrices in the same time.

Future work for numerics
� Short time:

� Jacobian-free matrices
� Specific preconditioning using GLT [5]-[6] for advection, diffusion and high-order

operators

Other work
� Improve the Lattice Boltzmann approach (project EXAMAG and INRIA Nancy).
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