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JOREK Team, DJANGO Team

1Inria Nancy Grand Est and IRMA Strasbourg, France
2Max-Planck-Institut für Plasmaphysik, Garching, Germany
3EPLF, lausanne, switzerland

E. Franck Fluid models for Tokamak plasma 1/29

1/29



Outline

Introduction

Hierarchy of Models

Derivation and study of Fluid models

Wave and stability

Equilibrium and reduced models

E. Franck Fluid models for Tokamak plasma 2/29

2/29



Introduction

E. Franck Fluid models for Tokamak plasma 3/29

3/29



Plasma Physics

� Plasma: For very high
temperatures, the gas are ionized
and gives a plasma which can be
controlled by magnetic and electric
fields.

� Thermonuclear fusion: The MHD
allows to describe some
configuration where the collision are
not so small or for long time
behavior.

� Astrophysics: The MHD describe a
lot of astrophysics configuration:
supernovae explosion, solar wind
and instabilities etc.

� Context: in the case we consider
the application of the MHD to the
simulation of Tokamak instabilities.
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Hierarchy of Models

� Microscopic model: N-Body model. We write the dynamical Newton equation for
each particle: {

dγmv i
dt = ∑j q(E j + v i ×B j )

dx i
dt = v i

� Unrealistic approach: we must solve N coupled equations with N ≈ 1016 − 1020.

� Mesoscopic model: Kinetic Vlasov model. Taking the limit of the N-Body model we
obtain an equation on the distribution of the particles:

∂t f (t, x , v ) + v · ∇f + F ext · ∇v f = Q(f , f )

with F ext the external force (gravity, Lorentz force, etc).

� Macroscopic model: Fluid models (moment models). If we are close to the
equilibrium, taking the three first moments of the distribution function we obtain:

∂t U +∇ · F (U) + ε∇ · (D(∇U)) = 0

� Examples : hyperbolic models (Euler, Euler-Lorentz, ideal MHD), parabolic models
(Navier-Stokes, Resistive MHD).
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Example of Application : MHD and ELM

� In the tokamak some instabilities can
appear in the plasma.

� The simulation of these instabilities is an
important subject for ITER.

� Example of Instabilities in the tokamak :

� Disruptions: Violent instabilities which
can critically damage the Tokamak.

� Edge Localized Modes (ELM): Periodic
edge instabilities which can damage the
Tokamak.

� These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

� Many aspects of these instabilities are
described by fluid models (MHD resistive
and diamagnetic or extended)

� ELM simulation
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Derivation and study of Fluid models
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Vlasov equations and equilibrium
� First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.
� We define fs (t, x, v) the distribution function associated with the species s. x ∈ Dx

and v ∈ R3.

Two-species Vlasov equation
∂t fs + v · ∇xfs +

qs

ms
(E + v×B) · ∇vfs = Cs = ∑

t

Cst ,

1
c2 ∂tE −∇×B = −µ0J,

∂tB = −∇× E ,
∇ ·B = 0, ∇ · E = σ

ε0
.

Invariants (no collisional case)

� Mass and momentum:

d

dt

(
1

2 ∑
s

∫
ms fs dxdv

)
= 0,

d

dt

(
1

2 ∑
s

∫
ms fs vdxdv

)
= 0.

� Total energy:

d

dt

(
1

2 ∑
s

∫
ms fs | v |2 dxdv +

1

2µ0c2

∫
| E |2 dx +

1

2µ0

∫
| B |2 dx

)
= 0.
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Collisional operator and invariants
� Derivation of fluid model:

� Collisional regime: w << ν with w and ν the plasma and collision frequencies.

∂t fs + v · ∇xfs +
qs

ms
(E + v×B) · ∇vfs =

1

ε
Cs (f , f )

� We define the equilibrium distribution: the Maxwellian Ms (v) defined by

Ms (t, x, v) =
ns

(2πTs /ms )
3
2

e−
ms
2T (v−us )2

with ns the number of particles, Ts the temperature and us the average velocity.

� Properties of the collision operator
� For each species:

∫
R3 ms vCss dv = 0,

∫
R3

1
2 ms | v |2 Css dv = 0,

� No conversion of particles:
∫

R3 ms vCs1s2 dv = 0
� Global momentum and energy conservation:

∫
R3 g (v)s Cst dv +

∫
R3 g (v)t Cts dv = 0

with g (v) = ms v or g (v) = ms
1
2 | v |2

Asymptotic Study

� We plug the Chapman-Enskog expansion fs (t, x, v) = f 0
s + εf 1

s + ε2f 2
s to obtain that

fs (t, x, v) = Ms (v) + εf 1
s + O(ε2)

� Pugging this expansion and taking the moment we obtain fluid models.
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Two-fluid model
� Computing the moments of the Vlasov equation we obtain the following two fluid

model

Two fluid moments

∂t ns +∇x · (ms nsus ) = 0,

∂t (ms nsus ) +∇x · (ms nsus ⊗ us ) +∇xps +∇x ·Πs = σsE + Js ×B + Rs ,

∂t (ms ns εs ) +∇x · (ms nsus εs + psus ) +∇x ·
(

Πs · us + qs

)
= σsE · us + Qs + Rs · us ,

1
c2 ∂tE −∇×B = −µ0J,

∂tB = −∇× E ,
∇ ·B = 0, ∇ · E = σ

ε0
.

� ns =
∫

R3 fs dv the particle number , ms nsus =
∫

R3 ms vfs dv the momentum, εs the
total energy and ρs = ms ns the density.

� The isotropic pressures are ps , the stress tensors Πs and the heat fluxes qs .
� Rs and Qs are associated with the interspecies collision (force and energy transfer).
� The current is given by J = ∑s Js = ∑s σsus with σs = qs ns .

Energy conservation

d

dt

(∫
Dx

(ρe εe + ρi ε i ) +
1

2µ0c2

∫
Dx

| E |2 dx +
1

2µ0

∫
Dx

| B |2 dx

)
= 0
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MHD: assumptions and generalized Ohm’s law

MHD: assumptions
� quasi neutrality assumption: ni = ne =⇒ ρ ≈ mi ni + O(me

mi
), u ≈ u i + O(me

mi
)

� Magneto-static assumption : ∇×B = µ0J + O( V0
c ).

� We define ρ = ρi + ρe and u = ρi u i+ρeue
ρ .

Velocity relation

� Consequence of the quasi-neutrality:

ue = u − mi

eρ
J + O

(
me

mi

)

� Summing the mass and moment equation for the two species we obtain:

∂t ρ +∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = J ×B−∇ ·Π + O

(
me

mi

)
� For the pressure equation, we replace the electronic velocity by full velocity using the

previous relation.
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MHD: derivation
� Ohm law: Relation between the electric field and the other variables.

� Taking the electron density and momentum equations we obtain

me (∂t (neue ) +∇ · (neue ⊗ ue )) +∇pe = −eneE + Je ×B −∇ ·Πe + Re ,

� We multiply the previous equation by −e and we define Je = −eneue , we obtain

me

e2ne
(∂tJe +∇ · (Je ⊗ ue )) = E + ue ×B +

1

ene
∇pe +

1

ene
∇ ·Πe −

1

ene
Re ,

� Using the quasi neutrality Re = η e
mi

ρJ and ue = u − mi
eρ J we obtain

Generalized Ohm’s law

E + u ×B︸ ︷︷ ︸
drift velocity

= ηJ︸︷︷︸
resistivity

+
mi

ρe
J ×B︸ ︷︷ ︸

hall term

−mi

ρe
∇pe −

mi

ρe
∇ ·Πe︸ ︷︷ ︸

pressure term

+O

(
me

mi

)
.

Final simplification (
me

mi

)
<< 1

(
V0

c

)
<< 1
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Extended MHD: model

Extended MHD



∂t ρ +∇ · (ρu) = 0,

ρ∂tu + ρu · ∇u +∇p = J ×B−∇ ·Π,

1

γ− 1
∂t pi +

1

γ− 1
u · ∇pi +

γ

γ− 1
pi∇ · u +∇ · qi = −Πi : ∇u,

1

γ− 1
∂t pe +

1

γ− 1
u · ∇pe +

γ

γ− 1
pe∇ · u +∇ · qe =

1

γ− 1

mi

eρ
J ·
(
∇pe − γpe

∇ρ

ρ

)
−Πe : ∇u + Πe : ∇

(
mi
eρ J

)
+ η|J |2,

∂tB = −∇×
(
−u ×B + ηJ−mi

ρe
∇ ·Πe −

mi

ρe
∇pe +

mi

ρe
(J ×B)

)
,

∇ ·B = 0, ∇×B = J.

� Remark: We can write easily the equation on the total pressure pe + pi . Possible
simplification pe = p

2 .

� In Black: ideal MHD. In Black and blue: Viscous-resistive MHD. All the term: Extended
MHD.
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MHD Invariants

MHD Invariants

� The mass ρ the momentum ρu and the total energy E = ρ |u|
2

2 + |B |2
2 + 1

γ−1 p with

p = ρT are conserved in time.

Sketch of proof
� Mass and momentum conservation: divergence form + the flux-divergence theorem +

null BC.

� Total energy: multiply the first equation by |u|
2

2 the second by u and the last one by
B we obtain

∂t E +∇ ·
[
u
(

ρ
|u|2

2
+

γ

γ− 1
p

)
− (u ×B)×B

]
+∇ · q +∇ · (Π · u) + η∇ · (J ×B)

+∇ ·
[

mi

ρe

(
(J ×B)×B −∇pe ×B −∇ ·Πe ×B − γ

γ− 1
peJ − J ·Πe

)]
= 0

with Π = Πi + Πe and q = qi + qe .

� We conclude with the divergence-flux theorem + BC null.
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Tokamak Ordering

Tokamak Ordering

� We define ρi ion Larmor radius, Vi thermal velocity, wi gyro frequency.

� Tokamak Ordering: Small flow V0
Vi

= O(δ) and very low frequency w0
wi

= O(δ2) with

δ = ρi
L

Extended MHD with ordering



δ2∂t ρ + δ2∇ · (ρu) = 0,

δ3ρ∂tu + δ3ρu · ∇u + δ∇p = δJ ×B − δ∇ ·Π,

δ2

(
1

γ− 1
∂t p +

1

γ− 1
u · ∇p +

γ

γ− 1
p∇ · u +∇ · q

)
= δ2

(
1

γ−1
mi
eρ J ·

(
∇pe − γpe

∇ρ
ρ

)
−Π : ∇u + Πe : ∇

(
mi
eρ J

)
+ η|J |2

)
,

δ2∂tB = −δ2∇×
(
−u ×B + ηJ−mi

ρe
∇ ·Πe −

mi

ρe
∇pe +

mi

ρe
(J ×B)

)
,

∇ ·B = 0, δ∇×B = J.
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Closure I

� Closure: Write the dependency of Π and q with the variables p, u and ρ.
� Taking fs = Ms (v) + O(ε) and neglecting the ε terms, we obtain

Π = 0 and q = 0

� This approximation gives ideal MHD or Euler equation (in the dynamic gas context).
� Taking fs = Ms (v) + εf1 + O(ε2) and neglecting the ε2 terms, we obtain

Π = Π(W, b, p) q = q(T , b)

with W = ∇u +∇uT − 2
3∇ · u and b = B

|B | .
� This approximation gives viscous MHD and Navier-Stokes equation (in the gas

dynamic context).

Heat flux and anisotropic diffusion

� qi ,e = −ni ,e

(
χi ,e
‖ (b · ∇Ti ,e )b + χi ,e

c b×∇Ti ,e + χi ,e
⊥ b× (b×∇Ti ,e )

)
� Ordering: χi ,e

‖ = O
(

λi ,e
L

)2
, χi ,e

c = O
(

ρi ,e
L⊥

)
, χi ,e
⊥ = O

(
ρi ,e
L⊥

)2
and

λi ,e
L >>

ρi ,e
L⊥

.
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Closure and simplification

Stress tensor

� Total Stress tensor Π = Πi + Πe ≈ Πi since |Πi |
|Πi |

= O(me
mi

).

� Tokamak Ordering: Small flow V0
Vi

= O(δ) and very low frequency w0
wi

= O(δ2).

� Stress tensor expansion Π = Π‖ + δ2Πgv + δ4Π⊥ =⇒ Π ≈ Π‖ + δ2Πgv .

� The term ∇ ·Π‖ dissipate energy (compensated by the viscous parallel heating

Π : ∇u).

� The term ∇ ·Πgv does not dissipate energy (Πgv : ∇u = 0)

Simplification of the velocity

� Velocity expansion

‖ B ‖2 u = (u, B)B︸ ︷︷ ︸
u‖

+ (E ×B)︸ ︷︷ ︸
uE

+
mi

ρe
(B ×∇pi )︸ ︷︷ ︸

ui

+O(δ)

� This approximation is used in JOREK.
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Wave and stability
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Linearization of the MHD

Linearization of ideal MHD
� We consider a flow u = u0 + δu (with u0 constant), B = B0 + δB, p = p0 + δp and

ρ = ρ0 + δρ.

� We obtain

∂t δρ = −∇ · (ρδu), ∂t δp = −δu · ∇p0 − γp0∇ · δu, ∂t δB = ∇× (δu ×B0)

and
ρ0∂t δu + ρ0u0 · ∇δu +∇δp = δJ ×B0 + J0 × δB

� We define the Lagrangian displacement ∂t ξ = δu. Using this definition and taking all
term together we obtain

Linearized force operator
� Lagrangian displacement

ρ∂tt ξ = ρ0u0 · ∇(∂t ξ) + Fa(B0)ξ + Fp(p0)ξ

with

Fa(B0)ξ =
1

µ0
[∇× (∇× (ξ ×B0)))×B0 + J0 × (∇× (ξ ×B0))]

Fp(p0)ξ = ∇(ξ · ∇p + γp0∇ · ξ)
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Plane wave study of MHD
� Plane wave analysis : we consider a solution

ξ(t, x) = ξ0f (k · x −ωt) ,

with ξ0 a vector independent of t and x . Plugging the Plane wave in the model we
obtain A(k, ω)ξ0 = 0.

� To have a non-trivial solution, the kernel of A(k, ω) must be non-trivial. The
dispersion relation generate a non-trivial Kernel.

� We consider B0, ρ0 and p0 constant. We define k = k‖ + k⊥, c2 = γ p0
ρ0

and

V 2
a = |B0 |2

µ0ρ0
.

� Dispersion matrix A(k, ω):

−ρ0

[
(w2 + w (k · u0))ξ − c2(k · ξ)k +

1

ρ0µ0
(k × ((k ·B0)ξ − (k · ξ)B0)×B0)

]
= 0

−ρ0

[
(w2 + w (k · u0))ξ − (c2 + V 2

a )(k · ξ)k +
(k ·B0)

ρ0µ0
((k, B0)ξ − (B0 · ξ)k − (k · ξ)B0)

]
= 0

Remark

� MHD specific: the speed wave depend strongly of the magnetic field direction.
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Final wave structure of MHD

Wave Structure of the MHD
� Alfvén velocity and Sound velocity :

Va =

√
B2

0
ρ0

and c =
√

γp0
ρ0

� Four types of waves in plasma:

� The matter wave λ0 = (u0, n),
� The Alfven wave λa = (u0, n)±Va
� The slow wave

λs = (u0, n)±
(

1
2 (V

2
a + c2)−Vac

) 1
2

� The fast wave

λs = (u0, n)±
(

1
2 (V

2
a + c2) + Vac

) 1
2

with n = k
‖k‖ and

Vac = ((V 2
a + c2)2 − 4v2

a c2cos2θ)
1
2

Tokamak
� Classical regime: Va >> c >>‖ u ‖.
� Close to X-point: Va >> c and c≈‖ u ‖.
� Extended MHD: two additional dispersive waves.
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Stability I

Stability of Linearized ideal MHD

� We consider a flow with a velocity u0 = 0. We consider ξ(x, t) = ξ0(x)e−iwt .

� As written before, the Lagrangian displacement satisfies

ρ0∂tt ξ = F (p0, B0)ξ =⇒ −ρ0w2ξ = F (p0, B0)ξ

� The operator F is self-adjoint (energy conservation). Therefore the w2 are purely real
(w purely real or imaginary )

� Stability : depends on the sign of the imaginary part since

� w2 > 0 stable oscillations.
� w2 < 0 exponential instability

Energy conservation

� Energy conservation: ∂t (δK + δW ) = cts with

δK =
1

2

∫
ρ | ∂t ξ |2, δW = − 1

2

∫
ξ · F (ξ)
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Stability II

Results of stability
� Using the conservation energy and some property we obtain that

w2 =
δW (ξ, ξ)

K (ξ, ξ)

� Therefore the instability depends on the sign of the potential energy δW (ξ, ξ).

Potential energy

δW =
1

2

∫ (
| ∇ × (ξ ×B0) |2 + | B0(∇ · ξ⊥ + 2ξ⊥ · (b · ∇b)) |2 + γp0 | ∇ · ξ |2

)
−
∫ (

2(ξ⊥ · ∇p0)(b0 · ∇b0 · ξ⊥) + J‖,0(ξ⊥ × b0) · (∇× (ξ ×B0)
)

� Red term magnetic field line bending (Alfvén wave) =⇒ stabilizing
� Blue term magnetic field compression (fast wave) =⇒ stabilizing
� Green term compression (slow wave) =⇒ stabilizing
� Violet term pressure gradient =⇒ destabilizing
� Orange term parallel current =⇒ destabilizing
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Equilibrium and reduced models
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JOREK code

JOREK
� Models: reduced MHD models

(reduction of the solution space)
using potential formulation of the
fields.

� Physics in models: two fluid and
neoclassical effect, coupling with
neutral ...

� Typical run of JOREK:

� Computation of the equilibrium
on a grid aligned to the
magnetic surfaces.

� Computation of the MHD
instabilities perturbing the
axisymmetric equilibrium. Figure: Aligned grid

Numerical methods
� Spatial Discretization: 2D Cubic Bezier finite elements + Fourier expansion.

� Temporal discretization: Implicit scheme + Gmres + Toroidal modes Block Jacobi
preconditioning
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Equilibrium I
� We consider the resistive MHD with a uniform flow u = 0. We obtain the following

equilibrium 
u = 0
J ×B = ∇p
∂tB = η

ν0
∆B

� τ << τdiff with τ the characteristic time and τdiff = µ0L2

η the characteristic time of

the diffusion.

MHD equilibrium

� The equilibrium is mainly defined by the force balanced

J ×B = ∇p

� The equilibrium induces that B · ∇p = 0, ∇ · J = 0 and we assume that ∇p · eφ = 0.
� In a Tokamak we assume that

B = µ0
F (ψ, Z )

R
eφ +

1

R
(∇ψ× eφ)

� with ψ the poloidal magnetic flux.
� By definition of the magnetic field, we have:

µ0J =
1

R
∇ (µ0F (ψ, Z ))× eφ −

1

R
∆∗ψeφ with ∆∗ = R2∇ ·

(
1

R
∇·
)
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Equilibrium II
� Plugging the previous results in the equilibrium and taking this in the toroidal direction

µ0∂R (F (ψ)) ∂Z ψ− µ0∂Z (F (ψ))∂R ψ = ∇P · eφ = 0

� Since B · ∇p = 0 we have 1
R [ψ, p] = 0 which gives p = p(ψ).

� Using the fact that P and F depend only of ψ, plugging the definition B and J in the
equilibrium and taking this in the direction we obtain the equilibrium.

Grad-Shafranov equation

∆∗ψ = −µ0R2 dp(ψ)

dψ
− µ2

0F (ψ)
dF (ψ)

dψ

� Equilibrium: given by a nonlinear second order elliptic equation (Picard or Newton
solver).

Aligned grid

� Computation of the equilibrium on polar grid

� Computation of new grid aligned on the iso-surface of ψ.

� Computation of the equilibrium of the new grid.

E. Franck Fluid models for Tokamak plasma 27/29

27/29



Grad-Shafranov Shift and β plasma

Shift
� Property of GS operator:

induce a shift of the
magnetic surface

� Shift estimation: ∆
r ≈ βp

r
R0

� with r and R0 the minor
and major radius.

� βp = 2µ0 |p|
|Bp | the ratio of the

pressure and poloidal
magnetic pressure.

Limit
� No reasonable physics equilibrium when the shift is equal to minor radius.

Consequently

βp =
| Bφ |2

| Bp |2
β <

R0

r

� At the end we can deduce a maximum value of β. A typical example:

| Bφ |2≈ 10 | Bp |2, R0 = 3r =⇒ βmax = 0.03
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Grad-Shafranov Shift and β plasma

Shift
� Property of GS operator:

induce a shift of the
magnetic surface

� Shift estimation: ∆
r ≈ βp

r
R0

� with r and R0 the minor
and major radius.

� βp = 2µ0 |p|
|Bp | the ratio of the

pressure and poloidal
magnetic pressure.

Figure: GS solution for β fixed, r = 1 and R0 = 10

Limit
� No reasonable physics equilibrium when the shift is equal to minor radius.

Consequently

βp =
| Bφ |2

| Bp |2
β <

R0

r

� At the end we can deduce a maximum value of β. A typical example:

| Bφ |2≈ 10 | Bp |2, R0 = 3r =⇒ βmax = 0.03
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Grad-Shafranov Shift and β plasma

Shift
� Property of GS operator:

induce a shift of the
magnetic surface

� Shift estimation: ∆
r ≈ βp

r
R0

� with r and R0 the minor
and major radius.

� βp = 2µ0 |p|
|Bp | the ratio of the

pressure and poloidal
magnetic pressure.

Figure: GS solution for β fixed, r = 1 and R0 = 3

Limit
� No reasonable physics equilibrium when the shift is equal to minor radius.

Consequently

βp =
| Bφ |2

| Bp |2
β <

R0

r

� At the end we can deduce a maximum value of β. A typical example:

| Bφ |2≈ 10 | Bp |2, R0 = 3r =⇒ βmax = 0.03
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Geometry of the poloidal equilibrium

Definition
� Divertor: device to evacuate

impurities and excess heat.

� X-Point : saddle point of the
poloidal magnetic flux (no
poloidal magnetic field at this
point).

� Separatrix: last closed magnetic
surface of the magnetic field.

� Scrape-off layer: (plasma region
characterized by the open field
lines).

Numerical difficulties
� Singularity: The X-point generates a singularity in the mapping between the logical

and physical mesh.

� Boundary condition: no trivial Bohm BC condition at the x-point (mach number
closed to one).
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Reduced MHD: assumptions and principle of derivation
� Aim: Reduce the number of variables and eliminate the fast waves in the reduced

MHD model.
� We consider the cylindrical coordinate (R, Z , φ) ∈ Ω× [0, 2π].

Reduced MHD: Assumption

B =
F0

R
eφ +

1

R
∇ψ× eφ, u = −R∇u × eφ︸ ︷︷ ︸

=
E×Bφ

|Bφ |2

+v||B + τIC
R

ρ

(
eφ ×∇p

)
︸ ︷︷ ︸

=
Bφ×∇p

|Bφ |2

with u the electrical potential, ψ the magnetic poloidal flux, v|| the parallel velocity.

� To avoid high order operators, we introduce the vorticity w = ∆pol u and the toroidal

current j = 4∗ψ = R2∇ · ( 1
R2∇pol ψ).

� Derivation: we plug B and u in the equations + some computations. For the
equations on u and v|| we use the following projections

eφ · ∇ × R2 (ρ∂tu + ρu · ∇u +∇p = J ×B + ν∆u)

and
B · (ρ∂tu + ρu · ∇u +∇p = J ×B + ν∆u) .
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