B-Splines Finite element and Physic-Based
preconditioning for Tokamak Plasma

a .
@» EUROfusion

Lnria Nancy Grand Est and IRMA Strasbourg, France
2Max-Planck-Institut fiir Plasmaphysik, Garching, Germany

3University of Insubria, Como, ltaly ,1/ \
&’L;‘a’_ E. Franck \ 16‘




Outline

Mathematical and physical context

Time discretization

Solver for simple operators

E. Franck \ 4



Plasma Physics

B Thermonuclear fusion: Nuclear
. . Inner Poloidal field coils

reaction between deuterium and (Primary transformer circuity
tritium (high energy physic Poloidal magnetic field
phenomena), which can generate
energy. For these very high
temperatures, the gas are ionized
and gives a plasma.

Outer Poloidal field coils
(for plasma positioning and shap

B Tokamak : The plasma is confined
in a toroidal room (Tokamak) by
powerful magnetic field.

B |n the Tokamak some instabilities
can appear in the plasma. The
simulation of these instabilities is an
important subject for ITER.

B The instabilities like ELM's

Resulting Helical Magnetic field Toroidal field coil

(periodic edge instabilities) are Flasmaelectric currnt i Torolaslmaenaticlisig
linked to the very large gradient of (secondary transformer creat)

pI:ESSLClire and very large current at Figure: Tokamak

the edge.

‘3/16

E. Franck \ 4
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Equilibrium

B Tokamak equilibrium (u = 0):

JxB=Vp

B |n a Tokamak we assume that

F(y, Z 1
B :ﬂo%etp‘F E(Vl/’ X eg)

B Equation defining the equilibrium :
Grad-Shafranov

d dF
A*lﬂ — 7]40R2 p(l,b) _ VZF(UJ) dE;P)

dip v

with 1
A*l/) — R23R (ﬁaRlp) -‘razzlp

B |nstabilities study: perturbation of the

axisymmetric equilibrium.

Figure: poloidal cut of equiIibriumh
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MHD model

Single fluid resistive MHD

atp—f—V(pu) =0, -
pdtu+pu-Vu+Vp=JxB-V-N,
otp+u-Vp+pV-u+V-(KVT)=0
tB=-Vx(—uxB+nJ),
V-B=0, VxB=J.

Spatial discretization

O Parabolic problems with free-divergence ===> Compatible Finite element methods.

£ Strongly anisotropic problem ===> high-order methods and aligned grids.

Time problem
B Jow Mach and Low f regime

O=|ull<<c<< V,

with ¢ = /T and V, = \/‘1’37‘0

B Direction of B : Apin =|| u [|<< Amax = V;

B Direction of B : Apin &l u | << Amax & €
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Exemple of Anisotropic problem: diffusion
® Model :
”T—V- ((kH ka)(b®b)VT+kLVT) =0
with k” >> k.

B The magnetic field is construct solving the equilibrium.
B In this case k| =100 and k; =0 .The diffusion is along the magnetic lines.

Figure: Left: solution after time T = 0.5. Right: solution after time T =7

B Aligned grids: the actual physic code aligne the poloidal grid with the magnetic
surfaces. In the future we want 3D meshes aligned to magnetic lines. r-\
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Euler linearized and implicit scheme

B We solve hyperbolic systems with small diffusion using implicit schemes.
® [ll-conditioned systems when At >> 1 since

O i‘ﬁ” >> 1 in the Jacobian,
5 Amin = 0 in the Jacobian.

O Idea: Use operator splitting and reformulation to approximate the Jacobian by a series
of suitable simple problems (advection, diffusion or mass problems).

Linearized Euler equation

l8,:u-|—Ma~Vu—i—Vp =0
c0tp+Ma-Vp+V-u =0

with M €]0,1], and | a |= 1.

B [mplicit problem after time discretization:

Iy +Mia-V AV- p"N _ [(ly—M)a-V AV- p"
AV Iy + MAa-V utt ) AV Iy — MAa-V u”
B with A = 0.5cAt the numerical acoustic length. /\
7
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Schur preconditioning method

B Example of Algorithm : Schur preconditioning.

B The implicit system after linearization is given by

P\ [ Ag, Div\'[R,
utl ) T\ Grad Ad Ru
B with A, and A, the advection terms linked to p (resp u), Div and Grad the coupling
terms which gives the acoustic waves.

B Applying the Schur decomposition we obtain

PN A,;}pDiv Al o Iy 0 Ry
R AN I ¥ 0 P, —GradA;t Iy Ry

B Using the previous Schur decomposition, we obtain the following algorithm:

Predictor : Ap,p* =R,
Velocity evolution :  Pscpyrtt” ! = (—Gradp™ ™t + Ry)
Corrector :  A,p"t1 = A,p* — Divu,yq

B with Py = Ay — Grad(A;l)Div ~ A, — GradDiv. The approximation is valid in the

low Mach regime. r\
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Numerical results

B First test case. We compare the PC for different mesh and different time step.
® c=1and a=(0,0). Number of iteration to converge :

Gmres Gmres + PBPC
At=01| At=05| At=1 | A=01 | A=05| A=1
64*64 25 4000 1.0E+5 4 35 60
128*128 | 30 7800 2.0E+5 4 50 75

B The method allows to reduce the number of iteration to converge. The method is
efficient if the sub-steps are treat efficiently.

B The algorithm depend of the boundary conditions. Additional optimization mus be
add.

B Now we study the Mach dependency. We take a mesh 64*64 and At = 0.25

Mach [ M=10° [ M=103 [ M=102 [ M=101 [ M=05
10 11 12 35 80

B Conclusion : the algorithm is less efficient for Mach around one, since the
approximation of the Schur complement is less good.
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Simple operators

B Applying the algorithm in time ( Schur preconditioning or other splitting and
reformulation methods) we obtain simples operator to solve

A=l4+MAa-V,  L=I4+AA,  Dg=Ilg+AV(V:),  De=Ilg+AVx(Vx)

B with M << 1land A >> 1.
B Numerical problems :
U At the limit A >> 1, Dy and D, have a infinite dimensional kernel. Therefore the

operators are ill-conditioned for large A.
' Numerical example for Dy with 3-order Hdiv B-Splines

A/ size mesh | 32*%32 | 64*%64 | 128*128
A =0.01 480 1060 3000
At=0.1 2250 7500 14000

At=1 7500 29000 112000
At =10 27000 | 280000 nc

' When the polynomial ordre is large all the operators are ill-conditioned.
O Advection diffusion problem with M = 0.1, A =1 (Gmres + Jacobi) :

A/sizemesh | p=3 | p=5| p=7| p=9
Mesh 32 % 32 60 260 2200 70000
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GLT principle
B PDE : Lu = g after discretization gives Lyu, = g, with {L,}, a sequence of matrices.

B |t is often the case that the matrix L, is a linear combination, product, inversion or
conjugation of these two simple kinds of matrices
0 Th(f), i.e., a Toeplitz matrix obtained from the Fourier coefficient of
f:l-m ] = C, with f € LY([~m, n]).
U D(a), i.e., a diagonal matrix such that (Dn(a)); = a(%) with a: [0,1] — C
Riemann integrable function.
In such a case {L,}, is called a GLT sequence.

Fundamental property

O Each GLT sequence {L,}, is equipped with a "symbol”, a function
X :[0,1] x [—7, r] — C which describes the asymptotical spectral behaviour of {L,}:

{Ln}n ~X

E.g.: if L, = Dn(a)Ty(f), then {Lp}, ~x=a-f

B Advantage of this tool: studying the symbol we retrieve information on the
conditioning and propose new preconditioning based on this symbol.
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GLT for stiffness matrix

B Application: B-Splines discretization of the model

—Au=f, inl0,1].

B The basis functions are given by ¢;(x) a tensor product of 1D B-Splines functions.

Symbol of the problem

{ 2L, } ® = (Hk 1Mp,—1(0k) ) (Zk 1#7(2 — 2 cos(6,) )TIS 1,j7ékWPj(9j)>
with 6, € [—7, 7] and w,(8) := my(0)/mp—_1(6).

P
(%)" < mp-a(6) < mpa(0) = 1.
B Remark 1: The symbol has a zero in 6 = (0, ...,0) = n9=2L, is ill-conditioned in the
low frequencies. Classical problem solved by MG preconditioning.

B Remark 2: The symbol has infinitely many exponential zeros at the points 6 with
0; = 7 for some j when p; — co = n9=2L, is ill-conditioned in the high frequencies.
Non-canonical problem solvable by GLT theory.

B Preconditioning: Using the symbol we can construct a smoother for MG valid for
high-frequencies. (i.e. CG preconditioned with a Kronecker product whose jth factor is
Tptjn+Pj—2(ij—1))-

B Extension: the method can be extended to the case with mapping (general

geometries) and more general operators. r'\
12/
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Numerical results for GLT
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GLT for curl-curl problem: a 2D example

B Application: compatible B-Splines discretization based on a discrete De Rham
sequence of the variational problem:

Find u € H(curl, [0,1]?) such that
(VxuVxv)+v(uv)=(fv), YveH(url,0,1]?),

where v > 0 and H(curl, [0,1]?) := {u € (L?([0,1]?))? s.t. V x u € L?([0,1]?)}.

B Coefficient matrix AY: is a 2 x 2 block matrix.
B Spectral symbol fV:
U 2D problem = fV is bivariate;

U vectorial problem = f" is 2 x 2 matrix-valued function. In such cases, we have to
look at the eigenvalue functions of V.

v ~ L v
A1 (f¥(61,62)) = s mp-1(61)mp-1(62) —

X2 (F/(01,0)) = mpa (02)mp-1(02) [43(2 ~ 2c08(82)) + 4 (2 ~ 2cos(61)) + 1]

B Continuum: the curl-curl operator has infinite dimensional kernel and on the
complement behaves as a second order operator.

B Spectral counterpart: when v =0, A1(f”) =0, while A2(f") is the symbol of the 2D
Laplacian operator.

14
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GLT for curl-curl problem

B How to use our spectral analysis?: an equispaced sampling of the eigenvalues
functions in [—7t, ]2 gives an approximation of the eigenvalues of AY,.

AL(FY) A2 (fY)
Comparison between the eigenvalues of A}, (colored dots) and A, (f"), k = 1,2, when
n=40, p=3 v=102 (matrix-size 3612).
B As for IgA stiffness matrices: A, ("), k = 1,2 satisfy the following properties
O for v =0, A»(f") has an analytic zero in (61,62) = (0,0) of order 2;
O both A1(f") and Ay(f") possess infinitely many numerical exponential zeros at the
points (61,62) with 6; = 7 when p becomes large.
B Solver proposal: Using the symbol we can construct a smoother for MG valid for
high-frequencies. (i.e. CG preconditioned with a direct sum of Toeplitz matrices

generated by the mass symbol mp_1(61)mp—_1(62)). r-\
1
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==
Conclusion

Conclusion about time-scheme

U Schur preconditioning: Very efficient in the low-mach regime. Less when the mach is
close to one.

O Other possibilities:

B Coupling implicit acoustic scheme (with Schur pc) and explicit transport.
B Linearization and decoupled approximate model adding variables and using
splitting.

O General remark: these algorithms are efficient if we have efficient solvers for simple
models.

Conclusion about simple solvers

0 GLT: the method allows to understand the problem of conditioning linked to different
operators discretized with B-Splines.

O GLT 4+ MG: the method allows to design smoother for Multi-grids methods for these
operators.

O Vectorial elliptic operators: coupling GLT and auxiliary spaces method allows to
design solver for div-div and curl-curl operators.

-
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