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Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. Free energy is released. At
those energies, the atoms are ionized
forming a plasma (which can be
controlled by magnetic fields).

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

The simulation of these instabilities is
an important subject for ITER.

Difficulty: plasma instabilities.

U Disruptions: Violent instabilities
which can critically damage the
Tokamak.

U Edge Localized Modes (ELM):
Periodic edge instabilities which can
damage the Tokamak.
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MHD in Tokamak |

Simplify Extended MHD

BthrV(pu):O,
pdtu+pu-Vu+Vp+ V-1 =J x B,
0p+u-Vp+pV-u+V-q=n|J?
0:B=—-Vx(—uxB+nJ),
VxB=pd, V-B=0

B with p the density, p the pressure, u the velocity, B the magnetic field, J the current,
IT stress tensor and q the heat flux.

MHD specificities in Tokamak

0 Strong anisotropic flows ( direction on the magnetic field) ===> complex
geometries and aligned meshes ( flux surface or magnetic field lines).

£ MHD scaling:

u BH direction: compressible flow and large diffusion.
B B direction: quasi incompressible flow and small diffusion.

0 MHD Scaling ===> compressible code with no discontinuities + fast waves.

0 Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.
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Hyperbolic systems and implicit schemes

B We consider the general problem
0:U + 04 (F(U)) = vox(D(U)oxU)

B with U: R" — R" (idem for F(U)) and D a matrix.
B |n the following we consider the limit v << 1.

Implicit schemes

B Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.

B Problem: Direct solvers are not useful in 3D (too large matrices), we need iterative
solvers.

B Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

B Implicit scheme :

U + Atdy (F(U)) — Atvd (D(U)3, U) = U"

B At the limit v << 1 and At >> 1 (large time step) we solve d,F(U) = 0.

B Conclusion: for v << 1 and At >> 1 the condition number of the full system closed
to conditioning number of the steady hyperbolic model (the ratio of the speed waves)
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General principle

B We consider the following nonlinear system
0:U 4+ 9xF(U) = vox(D(U)o,U) + G(U)

B with U a vector of N functions.
B Aim: Find a way to approximate this system with a sequence of simple systems.

Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume
community).

:U+3,V=G(U)
9:V +a20,U = %(F(U) -V)

Limit of the hyperbolic relaxation scheme

O The limit scheme of the relaxation system is
9:U+0,F(U) = G(U) + 0, ((a>— | A(U) |?)9xU) + €9, G(U) + o(£?)

O with A(U) the Jacobian of F(U).

B Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ¢).

B Stability: the limit system is dissipative if (a>— | A(U) |?) > 0. /\
8
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General principle Il

Generalization

O The generalized relaxation is given by

R(U)

9:U+0,V =G(U)
9:V + 420, U = —.(F(U)=V)+H(U)

O The limit scheme of the relaxation system is

3:U +a,F(U) = G(U)
+e9x(R(U) " (a® = | A(U) [*)3xU) + €35 (A(U) G (U) — H(U)) + o(€?)

y

Treatment of small diffusion

O Taking R(U) = (&>~ | A(U) |?)D(U)7Y, e=v and H(U) = A(U)G(U): we obtain
the following limit system

3:U + 3 F(U) = G(U) +1dx(D(U)3U) + o(1?)

y

B Limitation of the method: the relaxation model cannot approach PDE with high
diffusion. ’9 \
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==
Kinetic relaxation scheme

B We consider the classical Xin-Jin relaxation for a scalar system 9;u + 0xF (u) = 0:

diu+0xv =0
dev + a2 = <+ (F(u) ~v)

B We diagonalize the hyperbolic matrix ( 02

variables. We obtain

(1) ) and note . and f_ the new
ef —adef = *
€

(fg—£)

eq

atﬂ, +1x8xf+ = (feg —f+)

1
€

First Generalization

£) Main property: the transport is diagonal which can easily solved.

U in the Lattice Boltzmann community the discretization of this model is called D1Q2.

{10
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Generic kinetic relaxation scheme

Kinetic relaxation system

B Considered model:

9:U +0xF(U) =0, 9t17(U) +0xL(U) <0
B lattice: W = {A1....A,, } a set of velocities.
B Mapping matrix: P a matrix nc X n, (nc < n,) such that U = Pf, with U € R".
B Kinetic relaxation system:

af + AdF = g(feq(U) —f)

B Equilibrium vector operator f¢9 : R" — R™ such that Pf*(U) = U.

B Consistance with the initial PDE:
c PfeI(U) =U
PAf®(U)=F(U)

B For source terms and small diffusion terms, it is the same that the first relaxation
method.

B |n 1D : same property of stability that the classical relaxation method.

B Limit of the system:

U + 3, F(U) = edyx ((PA%3feq— | OF (U) ) 3, V) r-\
1/
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Different kinetic models

E 1D models:
0 The [D1Q2]" model. Two transport equations (velocities A1) by physical variable.
0 The [D1Q3]" model. Three transport equations (velocities A1 and Ag) by physical
variable. Based on flux-splitting method ( Van-Leer etc).

B Stability:
' Kinetic entropy

is dissipate if

q q
Y hi (@) =n'(p), Y vihi(p)=T"(9)
i=1 i=1
with 7 the macroscopic entropy, { the entropy flux and ¢ = 17/(U).
U Entropy stability for the [D1Q2]" model.
O Entropy stability for the [D1Q3]" model if the flux splitting is entropy).
Dissipative stability if not.

B Models in d-dimension:
O The [DdQ(2d)]" model. Generalization of [D1Q2]" model with the same
properties.
O The [DdQ(2d + 1)]" model. Generalization of [D1Q3]". Same properties ?
0 The [DdQ(d2)]" model. Additional direction to have better accuracy for isotropic

problem. h
1

2
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation.

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £¢9(U) explicit.

First order scheme

B \We define the two operators for each step :

Tar = lg + AtAodxly

A
Rae = Iy — At S5 (F9(U) — 1)

B Asymptotic limit: Chapman-Enskog expansion.

B Final scheme: Ty; o Ry; is consistent with

9:U+0,F(U) = %aX(PMaXf) + <% +e> ax ((PA%9yfe — A(U)?) 3, U)

+ O(eAt + At + &2)

E. Franck
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High-Order time schemes

Second-order scheme

0 Scheme for transport step T (At): Crank Nicolson or exact time scheme.
0 Scheme for relaxation step R(At): Crank Nicolson.

At A
(7) R(At) 0 r( ;)
O AP full second order scheme

=) 2(5) 7 (2)n (273

O Y and ¥, symmetric in time. ¥,,(0)

U Classical full second order scheme:

).

High order scheme

| A

O Using composition method
Mp(At) = ¥ap(718t) 0 ¥ap(2At)..... 0 Vap(7sAtL)
O with 9; € [—1,1], we obtain a p-order schemes.

U Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p = 6.
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Space discretization - transport scheme

Whishlist

B Complex geometry, curved meshes (if possible),
B Flexibility, hp refinement,

B CFL-free,
u

Matrix-free. )

Candidates for transport discretization

B Implicit FV-DG schemes,
B Semi-Lagrangian schemes,

B Stochastic schemes (Glimm or particle methods).

B Choice on Cartesian meshes: NA 10 10 10 10
SL-scheme. 2 val 2
9 /2 Y5 V8 /10

B Choice on Complex geometry: Implicit

DG schemes.

U Implicit Cranck-Nicholson scheme

0 Block -Triangular matrix (Upwind L, ., ., I
scheme) solved avoiding storage of 9 0 3 6 10

the matrix. 2 2 2 (1 \

6
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Parallel transport solver

NA 10 10 10 10

N
N
N

Complex algorithm

B Velocities: the 0o o 1
transport equations are
independent. Possible

parallelism.
) 2 2 2
B Transport step: partial
. . A z
parallelism given the 9 /0 3 6 4 10
implicit upwind scheme. 2 2 2
B Two parallelism: 9 9 9 9 NA

complex to manage.

Solution: StarPu

B Task-based scheduling library developed at INRIA Bordeaux.

B User submits tasks in a sequential order. StarPU schedules the tasks in parallel if
possible.

B Possible MPI extension

17
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Parallelism results

B Full D2Q9 scheme on square grids. Constant dof number per macrocell. Number N of
macrocells N from 1 to 64 = 8x8.
U for 1 macrocell : saturation at neoe = n,. This is expected.
O efficiency grows with N due to topological parallelism.

25 r T T T
T+ 1x1x3375 D2Q9
+ + 2x2x3375 D2Q9
20 [+ + 3x3x3375 D209 1
4 + 4x4x3375 D2Q9 4T
a + + 8x8x3375 D2Q9 iihr
_g 150 igeal +$+++ +
& +i$+++++++++
2 10F $¥++++
*
£33 I S
5+ S I EE o : +
0 H i i i
0 5 10 15 20 25
B MPI scaling cores
L Toroidal mesh : 720 macroelements x 3335 dof
Nthreads/Nmpi 1 2 3 4
14 6862 2772 1491 1014

" X X

18
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==
Parallelism results

B D3Q15, D3Q19, D3Q27 models on a cube with 4x4x4 elements and 8000 dof per

elements with eager scheduler.
U for 1 macrocell : saturation at neoe = n,. This is expected.
O efficiency grows with N due to topological parallelism.

25 T T T T
+ + 4x4xax8000 nv 15
+ + 4xdx4x8000 nv 19
20 [+ + 4xax4x8000 nv 27

B MPI scaling cores

U Toroidal mesh : 720 macroelements x 3335 dof
Nthreads/Nmpi 1 2 3 4
6862 2772 1491 1014

! @
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Burgers : quantitatives results

B Model: Viscous Burgers equations
0¢p + 0x (g) =0

B Kinetic model: (D1Q2) or D1Q3.
B Spatial discretization: SL-scheme, 5000 cells, order 7 space, order 2 time.
B Test 1: p(t = 0,x) = sin(27x), viscosity= 1074.

Figu re: Left: comparison between different D1Q2 and D1Q3 for different time step (
second order in time). Left up: At = 0.001 (CFL 5-10), Right up: At = 0.005 (CFL
20-50)
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Burgers : quantitatives results

B Model: Viscous Burgers equations

atp+ax(§) =0

B Kinetic model: (D1Q2) or D1Q3.
B Spatial discretization: SL-scheme, 1000 cells, order 7 space, order 2 time.

B Test 2: rarefaction wave, no viscosity.

Figure: Left: comparison between different velocity set and time step . Left up:
At =0.001 (CFL 1-5). V = {—-2.1,2.1} (violet) V = {0.9,2.1} (green) ,
V ={-2.1,0,2.1} (yellow) and V = {0.9,1.5,2.1} (blue), Right up: same for

At = 0.01 (CFL 10-50).
(0,
/27
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Burgers : quantitatives results

B Model: Viscous Burgers equations
3o + Ox (g) =0

B Kinetic model: (D1Q2) or D1Q3.

Figure: Left: comparison between different velocity set. V = {—2.1,2.1} (violet)
V ={0.9,2.1} (green) , V = {-2.1,0,2.1} (yellow) and V = {0.9,1.5,2.1} (blue).
At = 0.05 (CFL 50-200)

B Remark: Choice of kinetic model important to minimize time numerical dispersion.
B Remark: Time numerical dispersion comes from to second order relaxation scheme
f* =2f° — f". More the wave structure is close to the original one more | 7 — " |

is small. Reduce the oscillations around €9. (2 \

0
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1D isothermal Euler : Convergence

Model: isothermal Euler equation

9ep + dx(pu) =0
dtpu + dx(pu? + c?p) =0

Lattice: (D1 — Q2)" Lattice scheme.

For the transport (and relaxations step) we use 6-order DG scheme in space.
Time step: At = ﬁ% with A the lattice velocity. f = 1 explicit time step.

First test: acoustic wave with B =50 and T = 0.4, Second test: smooth contact
wave with = 100 and T¢ = 20.

log10(delta_x)
-26 -24 -22 -2 -18 -16 -22-21 -2 -19-18-17- 16 15
-2 log10(delta_x)

log 1 0(error)

rrrrr slope =4 slope = - slope =4 slope =
order 4 (suzuki_$) order 6 Ckahan 1i_9) order 4 (suzuki_$) order 6 Ckahan 1i_9)

Figure: convergence rates for the first test (left) and for the second test (right). ’21 \
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1D Euler equations: quantitatives results

B Model: Euler equation

9:pu+ dx(pu? +p) =0

atp + ax(pu) =0
0¢pE + 0x(pEu+ pu) =0

B Kinetic model: (D1Q2) or D1Q3.
B For the transport (and relaxations step) we use 11-order SL scheme in space.
u(t =0,x) = —/7sign(x)M(1.0 — cos(27tx/L))
1
- M2
B Discretization: 4000 cells (for a domain L = [—20, 20]) and order 11.

(1.0 + My(1.0 — cos(27x/L))) M = Tll

p(t=0,x)

Figure: Density for the different scheme and order 2 time scheme: D1Q2 with

A =16 (violet), D1Q3 with A = 26 (green) and reference (black). Left : At = 0.01

(CFL 1-5). Right: At = 0.05 (CFL 5-20). ‘2
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1D Euler equations: quantitatives results

B Model: Euler equation

9:pu+ dx(pu? +p) =0

atp + ax(pu) =0
0¢pE + 0x(pEu+ pu) =0

B Kinetic model: (D1Q2) or D1Q3.
B For the transport (and relaxations step) we use 11-order SL scheme in space.
u(t =0,x) = —/7sign(x)M(1.0 — cos(27tx/L))
1
- M2
B Discretization: 4000 cells (for a domain L = [—20, 20]) and order 11.

(1.0 + M (1.0 — cos(27tx/L))) M= =

p(t=0,x) 11

Figure: Density for the different scheme and order 4 time scheme: D1Q2 with

A =16 (violet), D1Q3 with A = 26 (green) and reference (black). Left : At =0.05 r‘\

(CFL 5-20). Right: At =0.1 (CFL 10-50). 22/
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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B Model : compressible ideal MHD.
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Numerical results: 2D MHD drifting vortex

Model : compressible ideal MHD.

Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
Test case : advection of the vortex (steady state without drift).

Parameters : p = 1.0, po = 1, ugp = by = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2)]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
|

|

Test case : advection of the vortex (steady state without drift).
Parameters : p = 1.0, pp = 1, ug = by = 0.5, ugsi = [1,1]%, h(r) = exp[(1 — r?) /2]
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Numerical results: 2D MHD drifting vortex

Model : compressible ideal MHD.
Kinetic model : (D2 — Q4)". Symmetric Lattice.
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugire = [1,1]%, h(r) = exp[(1 — r?)/2]
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B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
B Test case : advection of the vortex (steady state without drift).
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B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugire = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
B Test case : advection of the vortex (steady state without drift).
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugire = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D-3D fluid models

B Model : liquid-gas Euler model with gravity.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
B Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models

B Model : liquid-gas Euler model with gravity.

B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
|

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
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Conclusion and perspectives
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==
Conclusion

Aim: solve a strongly coupled nonlinear problem N.
We construct linear problem with source term L¢ such that || N — L. [|= O(v?).
We solve L, with the discretization Lf simple to solve such that || L. — L |= O(hP).

We obtain an error homogeneous with O(hP +¢).

4

B The linear problem LQ can be split between simple problems.

B Best implicit solver: SL, Glimm scheme or DG for transport (IKR) ?

B Parallelism: additional parallelism with the uncoupled simple models.

4

Advantages/defaults

B Advantages: CFL- free method, High order method, Matrix - free method, complex
geometry compatible method.

B Defaults: Large diffusion/dispersion at the order one/more. No limiting for
discontinuities.

v
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Perspectives

Numerical dispersion in time

B Main problem: for large time step (aim for implicit scheme) high dispersion for fast
scales ( acoustic for example).

B Solution:
O Higher order scheme (4th and 6th).
0 Construct more efficient kinetic representation (additional zero velocity etc):
current work.
O Limiting or entropy dissipation methods for the relaxation step: future work.

v

Equilibrium

B This method not able to preserve steady states.

B Future work: modify the kinetic representation to preserve steady states.

4

Other future works

B Treatment of Complex boundary condition.

B AP method for low-mach regime.

B Convergence in the linear case.

27
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