High-order Implicit relaxation schemes for hyperbolic models

D. Coulette², <u>E. Franck¹²</u>, P. Helluy¹²

Enumath 2017, Voss, Norway

¹Inria Nancy Grand Est, France ²IRMA, university of Strasbourg, France

Outline

Physical and mathematical context

Relaxation methods

Discretization

Numerical results

Conclusion and perspectives

(nría-

Physical and mathematical context

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

27

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.

Inata-

- **Disruptions:** Violent instabilities which can critically damage the Tokamak.
- Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

Innia-

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- The simulation of these instabilities is an important subject for ITER.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

MHD in Tokamak I

Simplify Extended MHD

$$\begin{array}{l} & (\partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \boldsymbol{0}, \\ & \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \rho + \nabla \cdot \boldsymbol{\Pi} = \boldsymbol{J} \times \boldsymbol{B}, \\ & \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho + \rho \nabla \cdot \boldsymbol{u} + \nabla \cdot \boldsymbol{q} = \eta \mid \boldsymbol{J} \mid^2 \\ & \partial_t \boldsymbol{B} = -\nabla \times (-\boldsymbol{u} \times \boldsymbol{B} + \eta \boldsymbol{J}), \\ & \nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J}, \quad \nabla \cdot \boldsymbol{B} = \boldsymbol{0} \end{array}$$

with ρ the density, *p* the pressure, **u** the velocity, *B* the magnetic field, *J* the current, Π stress tensor and **q** the heat flux.

MHD specificities in Tokamak

- Strong anisotropic flows (direction on the magnetic field) ===> complex geometries and aligned meshes (flux surface or magnetic field lines).
- MHD scaling:
 - **B_{\parallel} direction**: compressible flow and large diffusion.
 - **B**_{\perp} direction: quasi incompressible flow and small diffusion.
- □ **MHD Scaling** ===> compressible code with no discontinuities + fast waves.
- Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.

Hyperbolic systems and implicit schemes

We consider the general problem

 $\partial_t \boldsymbol{U} + \partial_x (\boldsymbol{F}(\boldsymbol{U})) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U})$

- with $\boldsymbol{U}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ (idem for $\boldsymbol{F}(\boldsymbol{U})$) and D a matrix.
- In the following we consider the limit $\nu << 1$.

Implicit schemes

- **Implicit scheme**: allows to avoid the CFL condition filtering the fast phenomena.
- Problem: Direct solvers are not useful in 3D (too large matrices), we need iterative solvers.
- Conditioning of the implicit matrix: given by the ratio of the maximal and minimal eigenvalues.
- Implicit scheme :

$$\boldsymbol{U} + \Delta t \partial_x (\boldsymbol{F}(\boldsymbol{U})) - \Delta t \nu \partial_x (\boldsymbol{D}(\boldsymbol{U}) \partial_x \boldsymbol{U}) = \boldsymbol{U}^n$$

• At the limit $\nu \ll 1$ and $\Delta t \gg 1$ (large time step) we solve $\partial_x F(U) = 0$.

Issues of implicit schemes

Conclusion: for ν << 1 and Δt >> 1 the condition number of the full system closed to conditioning number of the steady hyperbolic model (the ratio of the speed waves).

Relaxation methods

General principle

We consider the following nonlinear system

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + \boldsymbol{G}(\boldsymbol{U})$$

- with U a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume community).

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \epsilon \partial_x ((\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \epsilon \partial_x \boldsymbol{G}(\boldsymbol{U}) + \boldsymbol{o}(\epsilon^2)$$

 \square with A(U) the Jacobian of F(U).

Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).

Stability: the limit system is dissipative if $(\alpha^2 - |A(U)|^2) > 0$.

General principle II

Generalization

The generalized relaxation is given by

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{R(\boldsymbol{U})}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) + \boldsymbol{H}(\boldsymbol{U}) \end{cases}$$

The limit scheme of the relaxation system is

 $\begin{aligned} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) &= \boldsymbol{G}(\boldsymbol{U}) \\ &+ \varepsilon \partial_x (\boldsymbol{R}(\boldsymbol{U})^{-1} (\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon \partial_x (\boldsymbol{A}(\boldsymbol{U}) \boldsymbol{G}(\boldsymbol{U}) - \boldsymbol{H}(\boldsymbol{U})) + \boldsymbol{o}(\varepsilon^2) \end{aligned}$

Treatment of small diffusion

□ Taking $R(\boldsymbol{U}) = (\alpha^2 - |A(\boldsymbol{U})|^2)D(\boldsymbol{U})^{-1}$, $\varepsilon = \nu$ and $H(\boldsymbol{U}) = A(\boldsymbol{U})\boldsymbol{G}(\boldsymbol{U})$: we obtain the following limit system

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + o(\nu^2)$

• Limitation of the method: the relaxation model cannot approach PDE with high diffusion.

Kinetic relaxation scheme

We consider the classical Xin-Jin relaxation for a scalar system $\partial_t u + \partial_x F(u) = 0$:

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \alpha^2 \partial_x u = \frac{1}{\varepsilon} (F(u) - v) \end{cases}$$

• We diagonalize the hyperbolic matrix $\begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix}$ and note f_+ and f_- the new variables. We obtain

$$\begin{cases} \partial_t f_- - \alpha \partial_x f_- = \frac{1}{\varepsilon} (f_{eq}^- - f_-) \\ \partial_t f_+ + \alpha \partial_x f_+ = \frac{1}{\varepsilon} (f_{eq}^+ - f_+) \end{cases}$$

• with
$$f_{eq}^{\pm} = \frac{u}{2} \pm \frac{F(u)}{2\alpha}$$

First Generalization

□ Main property: the transport is diagonal which can easily solved.

Remark

□ in the Lattice Boltzmann community the discretization of this model is called D1Q2.

Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0, \qquad \partial_t \eta(\boldsymbol{U}) + \partial_x \zeta(\boldsymbol{U}) \leq 0$$

- Lattice: $W = \{\lambda_1 ... \lambda_{n_v}\}$ a set of velocities.
- **•** Mapping matrix: P a matrix $n_c \times n_v$ $(n_c < n_v)$ such that U = Pf, with $U \in \mathbb{R}^{n_c}$.
- Kinetic relaxation system:

$$\partial_t \boldsymbol{f} + \Lambda \partial_x \boldsymbol{f} = \frac{R}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f})$$

Equilibrium vector operator $f^{eq}: R^{n_c} \to R^{n_v}$ such that $Pf^{eq}(U) = U$.

Consistance with the initial PDE:

$$\mathcal{C} \left\{ \begin{array}{c} P \boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{U} \\ P \Lambda \boldsymbol{f}^{eq}(\boldsymbol{U}) = F(\boldsymbol{U}) \end{array} \right.$$

- For source terms and small diffusion terms, it is the same that the first relaxation method.
- In 1D : same property of stability that the classical relaxation method.
- Limit of the system:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \varepsilon \partial_x \left(\left(P \Lambda^2 \partial \boldsymbol{f}_{eq} - | \partial \boldsymbol{F}(\boldsymbol{U}) |^2 \right) \partial_x \boldsymbol{U} \right)$$

Different kinetic models

ID models:

□ The $[D1Q2]^n$ model. Two transport equations (velocities λ_{\pm}) by physical variable.

□ The $[D1Q3]^n$ model. Three transport equations (velocities λ_{\pm} and λ_0) by physical variable. Based on flux-splitting method (Van-Leer etc).

Stability:

Kinetic entropy

$$H(\boldsymbol{f}) = \sum_{i=1}^{q} h_i(f_i^1, \dots, f_i^N)$$

is dissipate if

$$\sum_{i=1}^{q} h_i^*(\boldsymbol{\phi}) = \eta^*(\boldsymbol{\phi}), \quad \sum_{i=1}^{q} v_i h_i^*(\boldsymbol{\phi}) = \boldsymbol{\zeta}^*(\boldsymbol{\phi})$$

with η the macroscopic entropy, $\boldsymbol{\zeta}$ the entropy flux and $\boldsymbol{\phi} = \eta^{'}(\boldsymbol{U}).$

- \Box Entropy stability for the $[D1Q2]^n$ model.
- Entropy stability for the [D1Q3]ⁿ model if the flux splitting is entropy). Dissipative stability if not.

Models in d-dimension:

- □ The $[DdQ(2d)]^n$ model. Generalization of $[D1Q2]^n$ model with the same properties.
- □ The $[DdQ(2d+1)]^n$ model. Generalization of $[D1Q3]^n$. Same properties ?
- □ The $[DdQ(d^2)]^n$ model. Additional direction to have better accuracy for isotropic problem.

Discretization methods

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between transport and the relaxation.
- Key point: the macroscopic variables are conserved during the relaxation step. Therefore f^{eq}(U) explicit.

First order scheme

We define the two operators for each step :

$$T_{\Delta t} = I_d + \Delta t \Lambda \partial_x I_d$$

$$R_{\Delta t} = I_d - \Delta t \frac{\Delta t}{\varepsilon} (f^{eq}(U) - I_d)$$

- Asymptotic limit: Chapman-Enskog expansion.
- **Final scheme**: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$\partial_{t}\boldsymbol{U} + \partial_{x}\boldsymbol{F}(\boldsymbol{U}) = \frac{\Delta t}{2}\partial_{x}(\boldsymbol{P}\Lambda^{2}\partial_{x}\boldsymbol{f}) + \left(\frac{\Delta t}{2} + \varepsilon\right)\partial_{x}\left(\left(\boldsymbol{P}\Lambda^{2}\partial_{\boldsymbol{U}}\boldsymbol{f}^{eq} - \boldsymbol{A}(\boldsymbol{U})^{2}\right)\partial_{x}\boldsymbol{U}\right) \\ + O(\varepsilon\Delta t + \Delta t^{2} + \varepsilon^{2})$$

High-Order time schemes

Second-order scheme

- □ Scheme for transport step $T(\Delta t)$: Crank Nicolson or exact time scheme.
- □ Scheme for relaxation step $R(\Delta t)$: Crank Nicolson.
- Classical full second order scheme:

$$\Psi(\Delta t) = T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t) \circ T\left(\frac{\Delta t}{2}\right).$$

AP full second order scheme:

$$\Psi_{ap}(\Delta t) = T\left(\frac{\Delta t}{4}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{2}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{4}\right).$$

 $\ \ \square \ \ \Psi \ \ \text{and} \ \ \Psi_{ap}(0) = \textit{I}_d.$

High order scheme

Using composition method

$$M_{\rho}(\Delta t) = \Psi_{a\rho}(\gamma_{1}\Delta t) \circ \Psi_{a\rho}(\gamma_{2}\Delta t) \dots \circ \Psi_{a\rho}(\gamma_{s}\Delta t)$$

- □ with $\gamma_i \in [-1, 1]$, we obtain a *p*-order schemes.
- Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

°/₂₇

Space discretization - transport scheme

Whishlist

- Complex geometry, curved meshes (if possible),
- Flexibility, hp refinement,
- CFL-free,
- Matrix-free.

Candidates for transport discretization

- Implicit FV-DG schemes,
- Semi-Lagrangian schemes,
- Stochastic schemes (Glimm or particle methods).

Choice on Cartesian meshes: SL-scheme.

- Choice on Complex geometry: Implicit DG schemes.
 - Implicit Cranck-Nicholson scheme
 - Block -Triangular matrix (Upwind scheme) solved avoiding storage of the matrix.

Parallel transport solver

Complex algorithm

- Velocities: the transport equations are independent. Possible parallelism.
- Transport step: partial parallelism given the implicit upwind scheme.
- Two parallelism: complex to manage.

Solution: StarPu

- Task-based scheduling library developed at INRIA Bordeaux.
- User submits tasks in a sequential order. StarPU schedules the tasks in parallel if possible.
- Possible MPI extension

Parallel transport solver

Complex algorithm

- Velocities: the transport equations are independent. Possible parallelism.
- Transport step: partial parallelism given the implicit upwind scheme.
- Two parallelism: complex to manage.

Figure: task graph for a 3D Torus.

Solution: StarPu

- Task-based scheduling library developed at INRIA Bordeaux.
- User submits tasks in a sequential order. StarPU schedules the tasks in parallel if possible.
- Possible MPI extension

Parallelism results

- Full D2Q9 scheme on square grids. Constant dof number per macrocell. Number N of macrocells N from 1 to 64 = 8×8.
 - □ for 1 macrocell : saturation at $n_{core} = n_v$. This is expected.
 - \Box efficiency grows with N due to topological parallelism.

MPI scaling

□ Toroidal mesh : 720 macroelements × 3335 dof

Nthreads/Nmpi	1	2	3	4
14	6862	2772	1491	1014

Parallelism results

- D3Q15, D3Q19, D3Q27 models on a cube with 4x4x4 elements and 8000 dof per elements with eager scheduler.
 - □ for 1 macrocell : saturation at $n_{core} = n_v$. This is expected.
 - \Box efficiency grows with *N* due to topological parallelism.

MPI scaling

□ Toroidal mesh : 720 macroelements × 3335 dof

Nthreads/Nmpi	1	2	3	4
14	6862	2772	1491	1014

Numerical results

(nría-

Burgers : quantitatives results

Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho}{2}\right) = 0$$

- Kinetic model: (D1Q2) or D1Q3.
- Spatial discretization: SL-scheme, 5000 cells, order 7 space, order 2 time.
- Test 1: $\rho(t = 0, x) = sin(2\pi x)$, viscosity= 10^{-4} .

Figure: Left: comparison between different D1Q2 and D1Q3 for different time step (second order in time). Left up: $\Delta t = 0.001$ (CFL 5-10), Right up: $\Delta t = 0.005$ (CFL 20-50)

Burgers : quantitatives results

Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho}{2}\right) = 0$$

- Kinetic model: (D1Q2) or D1Q3.
- Spatial discretization: SL-scheme, 1000 cells, order 7 space, order 2 time.
- Test 2: rarefaction wave, no viscosity.

Figure: Left: comparison between different velocity set and time step . Left up: $\Delta t = 0.001$ (CFL 1-5). $V = \{-2.1, 2.1\}$ (violet) $V = \{0.9, 2.1\}$ (green) , $V = \{-2.1, 0, 2.1\}$ (yellow) and $V = \{0.9, 1.5, 2.1\}$ (blue), Right up: same for $\Delta t = 0.01$ (CFL 10-50).

Burgers : quantitatives results

Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho}{2}\right) = 0$$

• Kinetic model: (D1Q2) or D1Q3.

Figure: Left: comparison between different velocity set. $V = \{-2.1, 2.1\}$ (violet) $V = \{0.9, 2.1\}$ (green), $V = \{-2.1, 0, 2.1\}$ (yellow) and $V = \{0.9, 1.5, 2.1\}$ (blue). $\Delta t = 0.05$ (CFL 50-200)

- **Remark**: Choice of kinetic model important to minimize time numerical dispersion.
- **Remark:** Time numerical dispersion comes from to second order relaxation scheme $f^* = 2f^{eq} f^n$. More the wave structure is close to the original one more $|f^{eq} f^n|$ is small. Reduce the oscillations around f^{eq} .

1D isothermal Euler : Convergence

Model: isothermal Euler equation

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + c^2 \rho) = 0 \end{cases}$$

- **Lattice**: $(D1 Q2)^n$ Lattice scheme.
- For the transport (and relaxations step) we use 6-order DG scheme in space.
- **Time step**: $\Delta t = \beta \frac{\Delta x}{\lambda}$ with λ the lattice velocity. $\beta = 1$ explicit time step.
- First test: acoustic wave with $\beta = 50$ and $T_f = 0.4$, Second test: smooth contact wave with $\beta = 100$ and $T_f = 20$.

Figure: convergence rates for the first test (left) and for the second test (right).

1D Euler equations: quantitatives results

Model: Euler equation

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + p) = 0 \\ \partial_t \rho E + \partial_x (\rho E u + p u) = 0 \end{cases}$$

- Kinetic model: (D1Q2) or D1Q3.
- For the transport (and relaxations step) we use 11-order SL scheme in space.

$$\begin{aligned} u(t = 0, x) &= -\sqrt{\gamma} \operatorname{sign}(x) M (1.0 - \cos(2\pi x/L)) \\ p(t = 0, x) &= \frac{1}{M^2} (1.0 + M\gamma (1.0 - \cos(2\pi x/L))) \quad M = \frac{1}{11} \end{aligned}$$

Discretization: 4000 cells (for a domain L = [-20, 20]) and order 11.

Figure: Density for the different scheme and order 2 time scheme: D1Q2 with $\lambda = 16$ (violet), D1Q3 with $\lambda = 26$ (green) and reference (black). Left : $\Delta t = 0.01$ (CFL 1-5). Right: $\Delta t = 0.05$ (CFL 5-20).

1D Euler equations: quantitatives results

Model: Euler equation

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + p) = 0 \\ \partial_t \rho E + \partial_x (\rho E u + p u) = 0 \end{cases}$$

- Kinetic model: (D1Q2) or D1Q3.
- For the transport (and relaxations step) we use 11-order SL scheme in space.

$$\begin{aligned} u(t = 0, x) &= -\sqrt{\gamma} \operatorname{sign}(x) M (1.0 - \cos(2\pi x/L)) \\ p(t = 0, x) &= \frac{1}{M^2} (1.0 + M\gamma (1.0 - \cos(2\pi x/L))) \quad M = \frac{1}{11} \end{aligned}$$

Discretization: 4000 cells (for a domain L = [-20, 20]) and order 11.

Figure: Density for the different scheme and order 4 time scheme: D1Q2 with $\lambda = 16$ (violet), D1Q3 with $\lambda = 26$ (green) and reference (black). Left : $\Delta t = 0.05$ (CFL 5-20). Right: $\Delta t = 0.1$ (CFL 10-50).

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Inia

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D2 Q4)^n$. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- **Test case** : Rayleigh-Taylor instability.

2D case in annulus

3D case in cylinder

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D2 Q4)^n$. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- Test case : Rayleigh-Taylor instability.

2D case in annulus

2D cut of the 3D case

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Conclusion and perspectives

Inia

Conclusion

Idea

- Aim: solve a strongly coupled nonlinear problem N.
- We construct linear problem with source term L_{ε} such that $|| N L_{\varepsilon} || = O(\nu^2)$.
- We solve L_{ε} with the discretization L_{ε}^{h} simple to solve such that $\|L_{\varepsilon} L_{\varepsilon}^{h}\| = O(h^{\rho})$.
- We obtain an error homogeneous with $O(h^p + \varepsilon)$.

Computing

- The linear problem L_{ε}^{h} can be split between simple problems.
- Best implicit solver: SL, Glimm scheme or DG for transport (IKR) ?
- Parallelism: additional parallelism with the uncoupled simple models.

Advantages/defaults

- Advantages: CFL- free method, High order method, Matrix free method, complex geometry compatible method.
- Defaults: Large diffusion/dispersion at the order one/more. No limiting for discontinuities.

⁶/27

Perspectives

Numerical dispersion in time

- Main problem: for large time step (aim for implicit scheme) high dispersion for fast scales (acoustic for example).
- Solution:
 - □ Higher order scheme (4th and 6th).
 - □ Construct more efficient kinetic representation (additional zero velocity etc): current work.
 - □ Limiting or entropy dissipation methods for the relaxation step: future work.

Equilibrium

- This method not able to preserve steady states.
- Future work: modify the kinetic representation to preserve steady states.

Other future works

- Treatment of Complex boundary condition.
- AP method for low-mach regime.
- Convergence in the linear case.

