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Iter Project

B Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. Free energy is released. At
those energies, the atoms are ionized
forming a plasma (which can be )
controlled by magnetic fields). Deuterium Helium

B Tokamak: toroidal chamber where the 3 & ‘

plasma is confined using powerful ‘ \ "i'
magnetic fields. \ /

B Difficulty: plasma instabilities. ' \
U Disruptions: Violent instabilities
which can critically damage the 4 /

Energy
Tokamak.
U Edge Localized Modes (ELM): “
Periodic edge instabilities which can Tritium Neutron

damage the Tokamak.

B The simulation of these instabilities is
an important topic for ITER.
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MHD in a Tokamak

Simplified Extended MHD

Orp+V - (pu) =0,
potu+pu-Vu+Vp=(VxB)xB+vV-N

p+V - (pu)+(y—1)pV-u=V-q+71 |V xB>+vN:Vu
9:B —V x (ux B)=nV x (V x B)

V-B=0

B with p the density, p the pressure, u the velocity, B the magnetic field, J the current,
N stress tensor and q the heat flux.

MHD specificities in Tokamak

0 Strong anisotropic flows (direction of the magnetic field) ===
and aligned meshes ( flux surface or magnetic field lines).

0 MHD scaling:

B Diffusion: Large Reynolds and magnetic Reynolds number.
B B direction: compressible flow and small Prandit number.
B B, direction: quasi incompressible flow and large Prandlt number.

0 MHD Scaling ===> compressible code with no discontinuities + fast waves.

0 Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.

E. Franck
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Problem of implicit discretization

B Solution for implicit schemes:

U Direct solver. CPU cost and consumption memory too large in 3D.
U lterative solver. Problem of conditioning.

Problem of conditioning

B Huge ratio between the physical wave speeds (low Mach regime) ==> huge ratio
between discrete eigenvalues.

B Transport problem: anisotropic problem ==> huge ratio between discrete eigenvalues.

B High order scheme: small/high frequencies ==> huge ratio between discrete
eigenvalues.

B Possible solution: preconditioning (often based on splitting and reformulation).

Storage problem

| A

B Storage the matrix and perhaps the preconditioning: large memory consumption.

B Possibility: Jacobian free method ( additional cost, but store only vectors).

4
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Implicit Relaxation method and results
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General principle

B We consider the following nonlinear system
0:U + 0«F(U) = vox(D(U)oxU) + G(U)

B with U a vector of N functions.

Aim: Find a way to approximate this system with a sequence of simple systems.

B |dea: Xin-Jin (95) relaxation method (very popular in the hyperbolic and finite volume
community).

0:U + 8,V = G(U)
0V + 20U = 1(F(U)_ V)
g

Limit of the hyperbolic relaxation scheme

O The limit scheme of the relaxation system is
B:U + 8xF(U) = G(U) + 20x((0®— | A(U) |?)0xU) + 85 G(U) + o(?)

O with A(U) the Jacobian of F(U).

B Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in €).

B Stability: the limit system is dissipative if (a?— | A(U) |?) > 0. /\
8
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General principle Il

Generalization

0 The generalized relaxation is given by

8:U+ 8,V = G(U)
9V + a0 U = R(U)

SEAFW) - V) + H)
O The limit scheme of the relaxation system is

8:U + 6xF(U) = G(U)
+ 0 (R(U)"L(?— | A(U) |?)0xU) + €05 (A(U)G(U) — H(U)) + o(e?)

Treatment of small diffusion

0 Taking R(U) = (a?— | A(U) |)D(U)~%, e = v and H(U) = A(U)G(U): we obtain
the following limit system

0:U + 8xF(U) = G(U) + vdx(D(U)dxU) + o(+?)

y

B Limitation of the method: the relaxation model cannot approach PDE with high /\
9

diffusion. /
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==
Kinetic relaxation scheme

B We consider the classical Xin-Jin relaxation for a scalar system 9:u + 0xF(u) = 0:

Oru+0Oxv =0
1

Bev + aP8yu = = (F(u) — v)
g

B We diagonalize the hyperbolic matrix ( C?Q é ) and note f and f_ the new
variables. We obtain 1
Of— — adif- = g(f; —-f)
Lot
6tf+ +Ot8xf+ = g(feq - f+)
B with fif = 4+ 20,

First Generalization

0 Main property: the transport is diagonal which can be easily solved.

O In the Lattice Boltzmann community the discretization of this model is called D1Q2.

£
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Generic kinetic relaxation scheme

Kinetic relaxation system

B Considered model:

U+ 0F(U)=0,  dm(U)+d:¢(U) <0

B |attice: W = {\1,...., \n, } a set of velocities.
B Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".
B Kinetic relaxation system:

OeF + NoF = Z(Fea(u) — £)
g

B Equilibrium vector operator 9 : R" — R" such that Pf*I(U) = U.

B Consistence with the initial PDE (R. Natalini 00, F. Bouchut 99-03 ...) :

PFI(U) =U
C{ PAFEI(U)=F(U)

B For source terms and small diffusion terms, it is the same as the first relaxation
method.

B In 1D : same property of stability that the classical relaxation method.

B Limit of the system:

0:U + 0<F(U) = €0, ((PN0f eg— | OF(U) |?) 8xU) m
/ 37,
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.

B Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £¢9(U) explicit.

First order scheme

B \We define the two operators for each step :

TAt = Id =+ AtABXId

At
Rat = lg — At—(FI(U) — l4)
€

B Asymptotic limit: Chapman-Enskog expansion.
B Final scheme: Ta: o Ra; is consistent with
At At
U+ 0,F(U) = 7aX(P/\QaXf) o (7 4 e> dx ((PN20yfeT — A(U)?) 9, U)
+ O(eAt + At? +£2)

éL’; »»»»»»»» E. Franck

7
{

/ 37,



High-Order time schemes

Second-order scheme

0 Scheme for transport step T(At): Crank Nicolson or exact time scheme.
O Scheme for relaxation step R(At): Crank Nicolson.
O Classical full second order scheme:

w(a) =T <A2t) oR(AD) o T <%) :

0 Numerical test: second order but probably only for the macroscopic variables.
0 AP full second order scheme:

0= () o (2) o1 (Ao (&) o (21).

0 W and V,, symmetric in time. W,,(0) = Iy.

High order scheme

| A\

0 Using composition method
Mp(At) = Wap(11At) 0 Wap(12AtL)..... 0 Wap(vsAt)

O with +; € [-1, 1], we obtain a p-order schemes.
[ Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

&’L’; -------- E. Franck
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Space discretization - transport scheme

Whishlist

B Complex geometry, curved meshes or unstructured meshes,
B CFL-free,
B Matrix-free.

| A

Candidates for transport discretization

B | BM-like: exact transport solver,
B Implicit FV-DG schemes,

B Semi-Lagrangian schemes,

B Stochastic schemes (Glimm or particle methods).

LBM-like method: exact transport

B Advantages:

0 Exact transport at the velocity A = "AA;.
B Drawbacks:

O Link time step and mesh: complex to manage large time step, unstructured grids
and multiply kinetic velocities.

Very very cheap cost.

14/37
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Space discretization

Semi Lagrangian methods

B Forward or Backward methods. Mass or nodes interpolation/projection.
B Advantages:

L Possible on unstructured meshes. High order in space.
U Exact in time and Matrix-free.

B Drawbacks:
L No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods

B |mplicit Crank Nicolson scheme + FV DG scheme
B Advantages:

| A

O Very general meshes. High order in space. Dissipation to stabilize.
L Upwind fluxes ==> triangular block matrices.

B Drawbacks:
[ Second order in time: numerical time dispersion.

B Current choice 1D: SL-scheme.

B Current choice in 2D-3D: DG schemes. 20 RN 2
U Block - triangular matrix solved " 5 »
avoiding storage. B <

0 Solve the problem in the topological

order given by connectivity graph. Yo (15 \
\ / 37,
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Burgers : quantitative results

B Model: Viscous Burgers equations

2
Oep + O (%) =0

B Spatial discretization: SL-scheme, 5000 cells, degree 7 in space, order 2 time.
B Test 1: p(t =0, x) = sin(2mx), viscosity= 10~*.

Figure: Comparison for different time step. Violet: At = 0.001 (CFL 5-30), Green:
At =0.005 (CFL 20-120), Blue At = 0.01 (CFL 50-300), Black : reference

‘ 16/37
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1D isothermal Euler : Convergence

Model: isothermal Euler equation

Orp + Ox(pu) =0
Bepu + Ox(pu? + c2p) =0

Lattice: (D1 — Q2)" Lattice scheme.

For the transport (and relaxations step) we use 6-order DG scheme in space.

Time step: At = 5% with X\ the lattice velocity. 8 = 1 explicit time step.

First test: acoustic wave with 8 =50 and Tf = 0.4, Second test: smooth contact
wave with 8 = 100 and Ty = 20.

log10(delta_x) .
-26 -24 -22 -2 -18 -16 -22-21 -2 -19-18-17-16-15"
-2 loglo@elta x) -

log10(error)

rrrrr slope =4 slope = 6 -~ slope=4 slope = 6
order 4 (suzuki_5) order 6 (kahan_li_9) order 4 (suzuki_5) order 6 (kahan_li_9)

Figure: convergence rates for the first test (left) and for the second test (right). h
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1D isothermal Euler : shock

B Test case: discontinuous initial data (Sod problem). No viscosity, 8 = 3. 6 order
space-time scheme.

Figure: density (left) and velocity (right).
B With refinement in space we can reduce the oscillations.
B Test case: Sod problem. v =5.10"%, 3 = 5. 6 order space-time scheme.
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
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Kinetic representation of hyperbolic systems
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Key point: design of the kinetic representation

Main idea

B Target: Nonlinear problem N.

B First: we construct the kinetic problem K. such that || Kc — N ||< C.e
B Second: we discretize K. such that || K. — K/At ||< CarAtP + Cyrh9

B \We obtain a consistent method by triangular inequality.

| A

First point: Analysis of the error

B Assuming: large time step and high order in space. Main problem: time error.
The error in time comes from the transport step and relaxation step.

If we use SL-scheme no time error in the transport step.

Main problem: time error relaxation/splitting (order 1/2: diffusion/dispersion).

This error homogeneous to (PA20feq— | OF(U) [?). The closer the wave structure of
Keps is to the one of N, the smaller this error.

| A

Second point: stability

B The kinetic model must be stable with the minimal sub-characteristic stability
condition.

£
\

2
/ 37,
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Classical kinetic representation

"Physic” kinetic representations

B Kinetic representation mimics the moment model construction of Boltzmann equation.

B Example: Euler isothermal
Bep+ De(pu) = 0
Oepu + Ox(pu? + c?p) =0

B D1Q3 model: three velocities {—X, 0, A}. Equilibrium: quadrature of Maxwellian.

3(pu(u = X) + c?p)
p="Ff_+fo+f, qg=pu=-—-Axf_+0xfo+Axfy, feq: p()\z—uz—cz)
3 (pu(u +A) + ¢?p)
. . Otp + Ox(pu) =0
B Limit model : tP
fmit mode { Depu + Ox(pu? + c?p) = ¢ (Oxxtr + 1P 0xp)

B Good point: no diffusion on p equation. Bad point: stable only for low mach.
.

Vectorial kinetic representations

B Vectorial kinetic model (B. Graille 14): [D1Q2]? one relaxation model {—X, A}
(previous slide) by equation.

B Good point: stable on sub-characteristic condition A > Apax.

B Bad point: large error. Wave propagation approximated by transport at maximal

velocity in the two directions. 63 \
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==
New kinetic models. Scalar case |

Design vectorial kinetic model with un-symmetric velocities and additional central
velocity (typically zero).

Problem: Stability not trivial. Idea: use entropy construction (F. Dubois 13).

We consider 9;p + OxF(p) with the entropy equation 9:n(p) + 9x¢(p) < 0.
We consider a model D1Q3 with V = {A_, Ao, A+ }. We take

p="Ff+fo+Ff, F(p)=I_f—+Xofo+Atft

We define an entropy H = h_(f_) + ho(fo) + h+(fy) with hg, h+ convex functions.
We define ¢ = 9,m(p) and n*(¢) the dual entropy (by the Legendre transform).

Lemma

If the following condition are satisfied

n*(¢) =h—+ho+hy, (7(P) = A_h— + Aoho + Aphy

We have 9:H(f) < 0 and this entropy admits a minimum defined by
Oh¥
(F) = ==
09

")
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==
Scalar case Il

Design kinetic model

B Method: choose a physical entropy. Compute the atomic dual entropies and the
equilibrium.

B Stability condition: convex condition of the atomic entropy.

B We fix arbitrary hj(¢) consequently we obtain the following solution

B (6)=— [€*(¢) — >\+n*(f)]_+ (A+ — o) hg ()

A=)
vy ¢ (@) = >\JI*£¢)] + (A= = Xo)h§(#)
M (9)= A+ =2A2)

B The function hy(¢) which "saturate” the convex conditions on the three equations.
B Using final atomic entropies we derivate to obtain the equilibrium.

eq _ __ o _ F
(B PV U L v

eq _ ( _ (_F'(p) _ _F(p)

5= (o - (0% +(()A0—A_)))
A F

frl = _>\+—0A, pt A+—§o

with FE— /[(aF(p) — o)l + Cx

B This model D1Q3 upwind is stable on the condition A < F’(p) < Ay
B Advantage: adaptation of the model depending on the flow direction. ,25/ \
37
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==
Vectorial case

B We consider the equation

0tU +0xF(U) =0, 0m(U)+0x¢(U)<0
B Vectorial [D1Q3]" model (to simplify Ao = 0). One D1Q3 model by equation.
B Same theory with
H=h_(f, . Y+ ho(fg, ... ) + by (FL, ., FY)

B Problem: At the end, we must integrate the positive/ negative part of the Jacobian to
compute foeq. Not possible in general (idem in the flux-splitting theory).

D1Q3 flux-splitting model

U ldea: we choose an entropic flux-splitting F(U) = F~(U) + F*(U) such as
On + 3XC_(U) + 8><C+(U) <o0.

0 We obtain: . L
T —tF’(U)
_ Fru) | F (Y
5= (- (52 +59))
e 1
7= 3-F"(U)

O Stability: \_/y < D < .y with D the eigenvalues matrix of 9F (U).

7/, E. Franck k




Multi-D extension and relative velocity

B Extension of the vectorial scheme in 2D and 3D
B 2D extension: D2q(4 * k) or D2Qq(4 * k + 1) with k =1 or k = 2.
B 3D extension: D3q(6 * k), D2Qq(6 * k + 1) with k =1, k = 2 ore more.

G- - - P 5
1 A i
| 1
| 1
| 1
1
| |
|
3= > 1
} i
| 1
| 1
1
| |
! \ 4 X
T s 8

D2Q9
B Increase k ==> increase the isotropic property of the kinetic model.

B The vectorial models with 0 velocity are not currently extended to 2D.

B Related future work: Extension to the relative velocity idea (T. Fevrier 15) at the
vectorial models.

B Relative velocity: Relax the moment of the kinetic model in a repair moving at a

given velocity (analogy with ALE). r‘\
2
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P ———
Advection equation
B Equation
dtp + 9x(a(x)p) = 0
B with a(x) > 0 and 9xa(x) > 0. Dissipative equation.
B Test 1: Velocity is given by a(x) = 1.0 + 0.05x2 with the domain [0,5] and T; = 1.

B We compare the numerical dispersion in time due to the models:
O D1Q2 model: M2 (A+ = £1.5), M2 (A+ = {0,1.5}), M2 (A+ = {0.75,1.5}).

O D1Q3 model: M} (A_,+ = {-15,0,15}), M} (A_po+ = {0,0.75,1.5}), M}
{0.75,1.1,1.5})

Figure: Left: comparison between different D1Q2 (violet Mg, green MO, blue M?,
dark ref solution ). Right: comparison between different D1Q3 (violet Mg, green Mg,

blue M}, dark ref solution ) At = 0.1 (CFL ~ 100 — 300).
‘28/37
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P ———
Advection equation
B Equation
Brp+ Dr(a(x)p) = 0
B with a(x) > 0 and dya(x) > 0. Dissipative equation.
B Test 1: Velocity is given by a(x) = 1.0 4 0.05x? with the domain [0,5] and T; = 1.

B \We compare the numerical dispersion in time due to the models:
0 D1Q2 model: M2 (A+ = £1.5), M2 (A+ = {0,1.5}), M2 (A+ = {0.75,1.5}).

O D1Q3 model: M} (A_ o+ ={—1.50,15}), M} (A_o4 ={0,0.75,15}), M}
{0.75,1.1,1.5})

Figure: Left: comparison between different D1Q2 (violet Mg, green M9, blue MCO,
dark ref solution ). Right: comparison between different D1Q3 (violet M;, green I\/Ig,

blue M}, dark ref solution ) At = 0.2. (CFL = 200 — 500).
‘28/37
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R R R R RRRRRERERRERERRREEEE==S=————————
Burgers

B Model: Viscous Burgers equations

2
8tp+8x (%) =0

B Kinetic model: (D1Q2) or D1Q3.

B Spatial discretization: SL-scheme, 1000 cells, order 7 space, order 2 time.
B Test 2: rarefaction wave, no viscosity.

Figure: Left: comparison between different velocity set. V = {—2.1,2.1} (violet)
V ={0.9,2.1} (green) , V ={-2.1,0,2.1} (yellow) and V = {0.9,1.5,2.1} (blue).
At = 0.05 (CFL 50-200)

B Remark: Choice of kinetic model important to minimize time numerical dispersion. r-\
29
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1D Euler equations: quantitatives results

B Model: Euler equation

depu+ Ox(pu® +p) =0
OtpE + Ox(pEu + pu) =0

B Kinetic model: (D1Q2) or D1Q3.
B For the transport (and relaxations step) we use 11-order SL scheme in space.

u(t =0,x) = —/7sign(x)M(1.0 — cos(2mx/L))

Pt =0,3) = (10 + Ma(L0 — cos(2mx/L))) M=

{ Otp + 6X(pu) =0

B Discretization: 4000 cells (for a domain L = [—20, 20]) and order 11.

Figure: Density. Second time scheme: D1Q2 with A = 16 (violet), D1Q3 with

A = 26 (green) and reference (black). Left : At =0.01 (CFL 1-5). Right: At = 0.05

(CFL 5-20). 30/
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R R R R RRRRRERERRERERRREEEE==S=————————
1D Euler equations: quantitatives results

B Model: Euler equation

depu+ Ox(pu® +p) =0
OtpE + Ox(pEu + pu) =0

B Kinetic model: (D1Q2) or D1Q3.
B For the transport (and relaxations step) we use 11-order SL scheme in space.

{ Otp + 6X(pu) =0

u(t =0,x) = —/7sign(x)M(1.0 — cos(2mx/L))

Pt =0,3) = (10 + Ma(L0 — cos(2mx/L))) M=

M2
B Discretization: 4000 cells (for a domain L = [—20, 20]) and order 11.

Figure: Density. Second time scheme: D1Q2 with A\ = 16 (violet), D1Q3 with

A = 26 (green) and reference (black). Left : At =0.05 (CFL 5-20). Right: At = O.r\

(CFL 10-50). 0 /37
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Other works
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Current Work I: equilibrium

B (Classical problem: 9:U + 0xF(U) = S(U). Steady-state important to preserve:
OxF(U) = S(U)

B Problem: kinetic relaxation scheme not appropriate for that.

[ First problem: construct kinetic source to have equilibrium in relaxation step.
0 Main problem: time and spatial error in the transport step.

B Example: Euler with gravity. Equilibrium between gradient pressure and gravity.

logy(€/erer)

—o— M

—e— M; collapsed

-5 —4 -3 -2 -1 0
log, (At/Atres)

B Result: convergence with second order in time but no preservation of the steady stater\

E. Franck \32/37
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Current Work |l: diffusion

B We want solve the equation:  9¢p + Ox(up) = DIxxp
B Kinetic system proposed (S. Jin, F. Bouchut):

of — 2o = %(fe; —f)

i
8tf+ + gaxﬂ» = ?( e: — f+)

B with fif = £ + W) The limit is given by:

Orp+0x(up) = BX(()\2*52 | OF (p) ‘z)axp)+)‘2523X(‘9XXF(P)+6F(P)XXP)*/\Zgzaxxxxp
We introduce o >| 8F(p) |. Choosing D = X\? — £2a® we obtain

Oep + 0x(up) = 0x(Ddxp) + O(”)
B Results (At >> Agp) (Order 1. Left: 2% = 0.1, Middle: 2! = 1, Right: 4 = 10):

0.9 i t= 0.1‘ 0.9 i t= 0.1‘ 20 i t= 0.1‘
0.8t 0.8

07t 0.7 150

0.6 0.6

05t 0.5

0.4f 04 S

0.3t 0.3

0.2 0.2 0.51

01t 0.1

0.05 < 0.0% 0.05
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Current Work |l: diffusion

B We want solve the equation:  9¢p + Ox(up) = DIxxp
B Kinetic system proposed (S. Jin, F. Bouchut):
A 1, -
Of — —Oxf— = i—2(feq —f)
8tf+ + gaxﬂ» = g( e: — f+)
B with fif = £ + W) The limit is given by:
Otp+0x(up) = BX(()\2*52 | OF (p) ‘z)axp)+)‘2523X(‘9XXF(P)+6F(P)XXP)*/\Zgzaxxxxp
B We introduce a >| F(p) |. Choosing D = A2 — £2a? we obtain
Oep + 0x(up) = 0x(Ddxp) + O(”)

B Results (Order 2. Left: & = 0.1, Middle: &f =1, Right: £f = 10):
0.9 i t= 0.1‘ 18 i t= 0.1‘ 20 i t= 0.1‘
08} 16f
07} 14f 15|
0.6 12t
05} 10f
0.4f 08F Lor
03} 0.6
0.2t 0.4+ 05F
01} 0.2}
00} . 00} . 00}
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Current Work |l: diffusion

B We want solve the equation:  9:p + Ox(up) = DIxxp
B Kinetic system proposed (S. Jin, F. Bouchut):

B with fif = £ + W) The limit is given by:
Otp+0x(up) = BX(()\2*52 | OF (p) ‘2)axp)+)‘2523X(‘9XXF(P)+8F(P)XXP)*/\Zszaxxxxp
® We introduce  >| F(p) |. Choosing D = A\? — e2a? we obtain
dep + Ox(up) = Ox(Ddxp) + O(<?)

B Consistency limit condition: £ > At. ¢ is a non physical parameter. We can choose
e = alAt with a >>1

a =10 a =50
Error order Error order
At =0.02 1.7E2 . 3561 =
At =0.01 4.4E% 5.3 15E-! 1.2
At = 0.005 1.4E—° 5 3.36E—2 2.1
At = 0.0025 5.6E—° 1.3 1.78E—3 4.2

B Convergent only for @ >> 1 since spitting scheme are not AP. Future work: Design

AP scheme. (33 \
\ /37
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Current Work Il1: Positive discretization

B Most important error: the error due to the relaxation.

B Time numerical dispersion: when ¢ is zero the second order relaxation scheme is
f* =2F% — f". We oscillate around the equilibrium.

B More the wave structure is close to the original one more || £¢7 — f" || is small.
Reduce the oscillations around 9.

Limiting/entropic technic for relaxation

B Relaxation step: ™1 = £9 4 wy(e)(F" — £°9) with wy(e) = %
O Entropic correction (I. V. Karlin 98): find € such that
H(f® 4+ wy(e)(f" — £°9)) = H(f") with H the entropy.
O Limiting technic: We have w; = —1 ordre 2. w; = 0 ordre 1.

O £ = £e9 4 p(wi(e))(F" — £9) with ¢ a limiter such that ¢(wi) ~ —1 if
|| £" — £9 ||< tol and ¢(wi) =~ O if || F7 — F°9 || >> 1.

v

Spatial dispersion

B Limiting technic for DG solver. Problem: time dispersion of transport DG solver.
Open question

B SL- Scheme: SL method based on bounded polynomial (B. Després 16), positive
FV-SL or DG-SL.

0’5'7"":2 E. Franck
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Current Work 1V: Low Mach Limit

Otp+V - (pu) =0, L
Or(pu) + V- (pu ® u) + WVP =0

B We need \ > % Order one : huge diffusion, ordrr two: huge dispersion for M << 1.

B Similar problem: stationary MHD vortex. A = 20

B | eft: init, middle: order 1 t = 30, right: order 2 t = 150.

B Kinetic model with zero velocity + SL for transport ( non error in time)

B Two scales kinetic model with order 1 only for the fast scale.

135
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Conclusion

B |nitial problem: invert a nonlinear conservation law is very difficult. High CPU cost
(storage and assembly of problem. Slow convergence of iterative solvers).

B Advantage of method: replace the complex nonlinear problem (with a huge and
increasing cost) by some simple independent problems (with a small and stable cost).

Drawbacks

| A

B High-time error (diffusion/dispersion) since we overestimate the transport. Order 1:

Euler imp D1Q2 FV-DG
S0 (A(U)20,U) | BE(0x(N2ly + N21y — A(U)?)0x )
D1Q2 SL D1Q3 SL

SE(0x(IgX? — A(U)?)0xU) | EE(0x(laX | Av(U) | —A(U)?)0xU)

B Additional error is reduced using transport SL scheme, good kinetic representation
(and limiting technic for second order).

B Second drawback: With this method we reformulate the equations. Some points are
more complex: BC, equilibrium etc.

Perspectives

B BC, Equilibrium, Positivity, Diffusion, low-Mach limit, MHD, SL on general meshes.

36
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==
Conclusion 11

B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV = 100, CFL HO =~ 300.
B (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

B |eft: scheme (1). Right: scheme (2), Black: reference solution.

‘37/37
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==
Conclusion 11

B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV = 100, CFL HO ~ 300.
B (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

B | eft: scheme (1). Right: scheme (3), Black: reference solution.
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==
Conclusion 11

B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV =~ 100, CFL HO = 300.
B (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

B | eft: scheme (1). Right: scheme (4), Black: reference solution.
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Conclusion |l
B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.

B At =0.04: CFL FV ~ 100, CFL HO ~ 300.
B (1) Implicit CN 4 FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

B |eft: scheme (1). Right: scheme (4), Black: reference solution.

B Conclusion: as expected D1Q3 SL closed to CN implicit scheme.
B CPU time difficult to compare since the code are different.

B But: 170 sec for (1), 110 sec for (2), 1.6 sec for (3), 1.7 sec for (4)
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