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Hyperbolic systems and implicit scheme
We consider the general problem
0:U + 0x(F(U)) = vox(D(U)o,U)
with U : R" — R" (idem for F(U)) and D a matrix.

In the following we consider the limit v << 1.

Implicit scheme

B |mplicit scheme: allows to avoid the CFL condition filtering the fast phenomena.
Problem: Direct solver, not useful in 3D (too large matrices), we need iterative solvers.

Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

B |mplicit scheme :
U+ Atdx(F(U)) — Atvax(D(U)oxU) = U"

B At the limit v << 1 and At >> 1 (large time step) we solve o,F(U) = 0.

Problem of the implicit scheme

B Conclusion: for v << 1 and At >> 1 the conditioning number of the full system
closed to conditioning number of the steady model (the ratio of the speed waves).

B Exemples: low-Mach Euler equation, low-Mach and low-f MHD.
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Idea

Limit of the classical method
B High memory consumption to store Jacobian and perhaps preconditioning.

B CPU time does not increase linearly with respect to the problem size ( effect of the
ill-conditioning linked to the physic).

Future of scientific computing

B Machines able to make lots of parallel computing.

B Small memory by node.

| A

B Propose algorithm which approximates the full problem by a collection of simpler ones.

B Perform the resolution of the simple problems.

B Limit memory consumption using matrix-free method.
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Outline of the session

B Present implicit methods for compressible full (no potential formulation) models based
on Divide and Conquer with small memory consumption.

Relaxation methods
B Classical relaxation method (my talk)

O Presentation of the generalized Xin-Jin relaxation method: approximation of the
classical model by simpler and linear larger model.
O Time schemes. Application in the FE/IGA context and results.

B Kinetic relaxation method (D. Coulette talk’s)

O Alternative version of relaxation method based on kinetic formalism.
O DG context and task-based parallelization ( key point ).

y

Splitting method and Compatible FE

B M. Gaja talk's

U Presentation of splitting method + compatible space to separate the time scale in
the matrices.

U Efficients solver for simple (elliptic) models in the IGA context.

V
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General principle

B We consider the following nonlinear system
0:U 4+ 9xF(U) = vox(D(U)o,U) + G(U)

B with U a vector of N functions.
B Aim: Find a way to approximate this system with a sequence of simple systems.

Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume
community).

:U+3,V=G(U)
9:V +a20,U = %(F(U) -V)

Limit of the hyperbolic relaxation scheme

O The limit scheme of the relaxation system is
9:U+0,F(U) = G(U) + 0, ((a>— | A(U) |?)9xU) + €9, G(U) + o(£?)

O with A(U) the Jacobian of F(U).

B Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ¢).

B Stability: the limit system is dissipative if (a>— | A(U) |?) > 0. /\
8/19
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General principle Il

Generalization

L The generalized relaxation is given by

{ 3V +a’d U = g(F(U) —V)+H(U)

O The limit scheme of the relaxation system is

U+, F(U) = G(U) + 0, (R L(a®— | A(U) |2)0,U) +¢(3xG(U) — dxH(U)) + o(¢?)

v

Treatment of small diffusion

U Taking R = («®>— | A(U) |?)D(U)™, e=v and H(U) = A(U)G(U): we obtain the
following limit system

AU + 04 F(U) = G(U) + 19, (D(U)ax U) + o(v?)

B Limit of the method: the relaxation model cannot approach pde with high diffusion.
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation.

First order scheme

B \We define the three operator for each steps :

0 Jx
Tar = lg + At ( 20, )
Sar = Id+At( G(la) 8 )

0 0
Rar = Iy + At
e = e ( ~BF(y) Bly—H(y) )

B The final scheme Tj; 0 Sp¢ © Ra; is consistant with

9:U +9xF(U) = G(U) + %ax(lx?axu) + <g +£> Ox (R7 (a®ly — A(U)?) 9 U)

| A

2
+ O(eAt + At? + €2)

y

B Remark: the viscosity induced by the splitting have the same form that the viscosity

induced by the relaxation. (10 \
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Discretization of the transport step

Main property

B Transport part:
atU + axv = 0
9:V +a%,U=0

B Can be rewritten as N independent acoustic wave problems.

B We propose a efficient way to solve a single wave equation in the FE/IGA context.

Id BAtBX u* _ Id 7(1 — O)Atax u”
a?0Atd, Iy v )T —a?(1—0)Ata, Iy vn

B Now we propose to apply a Schur decomposition to the implicit matrix.

Final algorithm problem

Predictor : v* =v"— (1—0)Atu
Update :  (lg — a?02At20,, )u"t1 = —0Atd,v* + (u" — (1 — 0)Atv")
Corrector : v = v* — a20Atd, v 11

B Systems to solve: 2 mass matrices and on laplacian by wave equations.

B Parallelization (simple BC): N independent mass matrices, N independent stiffness
matrices, N independent mass matrices.

¥ Parallelization (complex BC): N independent mass matrices, one linear matrix of the

size N (N laplacian weakly coupled by the boundary), N independent mass matrices./\
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2D- Extension

Generalization

B The generalized relaxation is given by
0tU+0xV,+9,V, =0

Qux Qy
0tV + a?Bdx U + 0? By 9, U = — (F(U) = Vi) + Ty(Fy(U) -V,
Ok QO
9eVy +a2BpdxU +a?Byydy U = =2 (Fx(U) = Vi) + —2(Fy(U) = V)
B The limit scheme of the relaxation system is

3:U + 3Fx(U) +0,F,(U) = eV - (Q 1 (a?B — AT)VU) + o(?)

B Remark: classical choice for B is Byx = By, = I and Byx = By, =0
B B can be a way to reduce the diffusion adding null wave in the linear system.

B Discretization: same space, time discretization and algorithm that in 1D.

Parallelization of the models

B Transport step (simple BC): d x N independent mass matrices, N independent
stiffness matrices, N independent mass matrices.

B Transport step (complex BC): d * N independent mass matrices, one linear matrix of
the size N (structure depend of B), d * N independent.

B Relaxation step: d * N independent mass matrices.
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High-Order time schemes

Second-order scheme

0 Scheme for transport step T (At): Semi Lagrangian for (KRS) or Cranck-Nicholson
(KRS with DG or HRS).

0 Scheme for relaxation step R(At): Cranck-Nicholson (KRS and HRS).
U Classical full second order scheme:

w7 (%) omr ().

0 AP full second order scheme

v (2)on(3) (1) (2)7(2)

O Y and ¥,, symmetric in time. ¥,,(0)

High order scheme

| \

O Using composition method
Mp(At) = ¥ap(7188)Fap(72AL).... ¥ap(7sAt)
O with 7; € [—1, 1], we obtain a p-order schemes.

O Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p = 6.
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Results Burgers |

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable for At < 1.0E~5.

B Implicit time step : At = 1.0E~3

Figure: Left: numerical solution for the first order and the second order schemes for
At = 0.001, Right: Zoom

® Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.

B |nstability: oscillations — « increase and « increase — oscillations increase. r‘\
1
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Results Burgers |
B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

B Explicit time step : stable for At < 1.0E~5.

B Implicit time step : At = 1.0E~3, At = 5.0E73 and At = 1.0E2 (only for first order
and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
for the second order scheme. v = 103

B Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.
B |nstability: oscillations — & increase and & increase — oscillations increase. (1 \
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Results Burgers |
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Results Burgers |

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable for At < 1.0E~5.
B |mplicit time step : At = 1.0E~3, At =5.0E~3 and At = 1.0E~2.

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
for the second order scheme. v = 102

B Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.
B |Instability: oscillations — « increase and & increase — oscillations increase. h
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Results Navier-Stokes |

B Model: compressible Navier-Stokes equation

dep + dx(pu) =0
{ 9tpu + dx(pu? + p) = 0x(v(p)9xu) — pg

0cE + 0y (Eu+ pu) = 0y (v(0)0x %) + 0 (10 T) — pvg
B Test: Propagation of acoustic wave (no viscosity, no gravity).
B CPU Time for initial Mach = 0:
CN method Relaxation method
At / cells 5.10° | 10* | 2.10* | 5.10° | 10* | 2.10%
At = 0.005 160 540 | 2350 135 430 | 1920
At =0.01 90 315 | 1550 70 220 | 1000
At =0.02 55 175 765 40 125 530
At =0.05 30 100 420 20 65 270
B CPU Time for initial Mach = 0.5:

CN method Relaxation method
At [ cells | 5.10° | 10* | 2.10* | 5.10° | 10* | 2.10%
At =0.01 145 480 | 2150 100 320 | 1470
At =0.02 80 290 | 1200 60 200 970

O In this case the Relaxation method is competitive with the classical scheme without
important optimization (no parallelization of the problem, etc).

115
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=5.0E 3 | At=25E3 | At=125E3
CN scheme 8.8E3 2.25E3 57E3 1.4E73
Relaxation scheme 2.25E3 5.7E*% 1.4E° 36E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M =0, At =0.01

(o
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B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=50E 3 [ At=25E 3 | At =1.25E3
CN scheme 8.8E3 2.25E3 5.7E3 1.4E73
Relaxation scheme 2.25E3 5.7E*% 1.4E° 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M =0, At =0.02
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=5.0E 3 | At=25E3 | At=1.25E3
CN scheme 8.8E3 2.25E3 57E3 1.4E73
Relaxation scheme 2.25E3 5.7E*% 1.4E° 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.
B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green),
M =0, At =0.05

B The two methods (CN and relaxation) capture well the fine solution.
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E? | At=50E 3 | At=25E 3 | At =125E3
CN scheme 8.8E3 2.25E73 5.7E3 1.4E73
Relaxation scheme 2.25E3 57E* 1.4E7% 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M = 0.5, At =0.01
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Results Navier-Stokes I
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Results 2D |

B Model: 2D compressible isothermal Navier-Stokes equation

dep+ V- (pu) = Srp
{ de(pu) + V- (pu@ u+ Pply) = pAu+ (u+A)V(V - u) + S,u
B Test I: Steady state between source and spatial part. Order of convergence:
Error Order
At =0.025 1.6E2 x
At = 0.0125 3863 X
At =0.00625 | 9.3E*% X
At =0.003125 | 2.3E~* X
B Test Il: Propagation of acoustic wave (no viscosity, no gravity).
B CPU Time for initial Mach = 0:
CN method CN Newton Relaxation method
At /[ cells | 100 | 2007 | 400¢ | 100° | 200° | 400 | 100% | 200% | 4007
At=0.01 | 340 | 1320 | 5650 | 610 | 2410 | 9800 | 330 | 1260 | 5040
At=0.02 | 170 670 | 3060 | 310 | 1250 | 6850 | 165 650 | 2555
At =0.05 75 300 | 1290 | 140 555 | 3080 70 275 | 1115
At =0.1 45 170 760 100 380 | 2190 40 155 625

0 The Relaxation method is competitive with the classical schemes (linearized of
Newton) without important optimization (no parallelization of the problem, etc).
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Results 2D Il

B Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step At = 0.01.
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Results 2D Il

B Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step At = 0.05.
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Results 2D Il

B Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step At = 0.1.
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Results 2D Il

B Test I: Acoustic wave for isothermal Euler equation.

1.030

1.020]

1.010

1.000

0.990

0.980

0.970

1.030]

1.020

1.010

1.000]

0.990

0.980]

0.970

0.960

0.5
Distance

Figure: 1D cut. Fine solution (black), CN method (red), Newton (green) and relaxation
(blue). At =0.05 (left) and At = 0.1 (right)
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Future works on relaxation methods
Diffusion

B Propose relaxation for diffusion equation (main point the nonlinearitly must be local).
B Model:

9tp — 0x(D(p)Vp) = f

| A

Baby MHD model

B Propose relaxation for a baby model with the additional difficulties linked to the MHD
B Model:
9:B + V x (u>< B+PLOVT) =7V x (V x B)

2T—V- ((kH —kl)(b®b)VT+leT) =0

B Difficulties: anisotropic diffusion and divergence free constrains

B Div free constrains: Powell method + classical relaxation or specific relaxation for curl
and compatible FE space.

| A

Equilibrium

B Since we over transport all the quantities decoupling the variables we create additional
numerical diffusion in time not compatible with equilibrium conservation.

B Aim : find method to preserve with a better accuracy the equilibrium. ,-\
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