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Hyperbolic systems and implicit scheme
We consider the general problem

∂tU + ∂x (F (U)) = ν∂x (D(U)∂xU)

with U : Rn −→ Rn (idem for F (U)) and D a matrix.

In the following we consider the limit ν << 1.

Implicit scheme
� Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.

� Problem: Direct solver, not useful in 3D (too large matrices), we need iterative solvers.

� Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

� Implicit scheme :
U + ∆t∂x (F (U))− ∆tν∂x (D(U)∂xU) = Un

� At the limit ν << 1 and ∆t >> 1 (large time step) we solve ∂xF (U) = 0.

Problem of the implicit scheme
� Conclusion: for ν << 1 and ∆t >> 1 the conditioning number of the full system

closed to conditioning number of the steady model (the ratio of the speed waves).

� Exemples: low-Mach Euler equation, low-Mach and low-β MHD.
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Idea

Limit of the classical method
� High memory consumption to store Jacobian and perhaps preconditioning.

� CPU time does not increase linearly with respect to the problem size ( effect of the
ill-conditioning linked to the physic).

Future of scientific computing
� Machines able to make lots of parallel computing.

� Small memory by node.

Idea: Divide and Conquer
� Propose algorithm which approximates the full problem by a collection of simpler ones.

� Perform the resolution of the simple problems.

� Limit memory consumption using matrix-free method.
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Outline of the session

Aim
� Present implicit methods for compressible full (no potential formulation) models based

on Divide and Conquer with small memory consumption.

Relaxation methods
� Classical relaxation method (my talk)

� Presentation of the generalized Xin-Jin relaxation method: approximation of the
classical model by simpler and linear larger model.

� Time schemes. Application in the FE/IGA context and results.

� Kinetic relaxation method (D. Coulette talk’s)

� Alternative version of relaxation method based on kinetic formalism.
� DG context and task-based parallelization ( key point ).

Splitting method and Compatible FE
� M. Gaja talk’s

� Presentation of splitting method + compatible space to separate the time scale in
the matrices.

� Efficients solver for simple (elliptic) models in the IGA context.
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Relaxation methods
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General principle
� We consider the following nonlinear system

∂tU + ∂xF (U) = ν∂x (D(U)∂xU) +G (U)

� with U a vector of N functions.

� Aim: Find a way to approximate this system with a sequence of simple systems.

� Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume
community). {

∂tU + ∂xV = G (U)

∂tV + α2∂xU =
1

ε
(F (U)−V )

Limit of the hyperbolic relaxation scheme

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = G (U) + ε∂x ((α
2− | A(U) |2)∂xU) + ε∂xG (U) + o(ε2)

� with A(U) the Jacobian of F (U).

� Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ε).

� Stability: the limit system is dissipative if (α2− | A(U) |2) > 0.
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General principle II

Generalization

� The generalized relaxation is given by{
∂tU + ∂xV = G (U)

∂tV + α2∂xU =
R

ε
(F (U)−V ) +H(U)

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = G (U)+ ε∂x (R
−1(α2− | A(U) |2)∂xU) + ε(∂xG (U)− ∂xH(U))+o(ε2)

Treatment of small diffusion

� Taking R = (α2− | A(U) |2)D(U)−1, ε = ν and H(U) = A(U)G (U): we obtain the
following limit system

∂tU + ∂xF (U) = G (U) + ν∂x (D(U)∂xU) + o(ν2)

� Limit of the method: the relaxation model cannot approach pde with high diffusion.
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Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Main idea: splitting scheme between transport and the relaxation.

First order scheme
� We define the three operator for each steps :

T∆t = Id + ∆t

(
0 ∂x

α2∂x 0

)

S∆t = Id + ∆t

(
G (Id ) 0

0 0

)
R∆t = Id + ∆t

(
0 0

− R
ε F (Id )

R
ε Id −H(Id )

)
� The final scheme T∆t ◦ S∆t ◦ R∆t is consistant with

∂tU + ∂xF (U) = G (U) +
∆t

2
∂x (α

2∂xU) +

(
∆t

2
+ ε

)
∂x
(
R−1

(
α2Id −A(U)2

)
∂xU

)
+O(ε∆t + ∆t2 + ε2)

� Remark: the viscosity induced by the splitting have the same form that the viscosity
induced by the relaxation.
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Discretization of the transport step

Main property
� Transport part: {

∂tU + ∂xV = 0
∂tV + α2∂xU = 0

� Can be rewritten as N independent acoustic wave problems.

� We propose a efficient way to solve a single wave equation in the FE/IGA context.(
Id θ∆t∂x
α2θ∆t∂x Id

)(
u∗

v ∗

)
=

(
Id −(1− θ)∆t∂x
−α2(1− θ)∆t∂x Id

)(
un

vn

)
� Now we propose to apply a Schur decomposition to the implicit matrix.

Final algorithm problem
Predictor : v ∗ = vn − (1− θ)∆tu
Update : (Id − α2θ2∆t2∂xx )un+1 = −θ∆t∂xv

∗ + (un − (1− θ)∆tvn)
Corrector : vn+1 = v ∗ − α2θ∆t∂xv

n+1

� Systems to solve: 2 mass matrices and on laplacian by wave equations.
� Parallelization (simple BC): N independent mass matrices, N independent stiffness

matrices, N independent mass matrices.
� Parallelization (complex BC): N independent mass matrices, one linear matrix of the

size N (N laplacian weakly coupled by the boundary), N independent mass matrices.
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2D- Extension

Generalization
� The generalized relaxation is given by

∂tU + ∂xV x + ∂yV y = 0

∂tV x + α2Bxx∂xU + α2Bxy ∂yU =
Ωxx

ε
(F x (U)−V x ) +

Ωxy

ε
(F y (U)−V y )

∂tV y + α2Byx∂xU + α2Byy ∂yU =
Ωyx

ε
(F x (U)−V x ) +

Ωyy

ε
(F y (U)−V y )

� The limit scheme of the relaxation system is

∂tU + ∂xF x (U) + ∂yF y (U) = ε∇ · (Ω−1(α2B −Aq)∇U) + o(ε2)

� Remark: classical choice for B is Bxx = Byy = Id and Byx = Bxy = 0
� B can be a way to reduce the diffusion adding null wave in the linear system.

� Discretization: same space, time discretization and algorithm that in 1D.

Parallelization of the models
� Transport step (simple BC): d ∗N independent mass matrices, N independent

stiffness matrices, N independent mass matrices.

� Transport step (complex BC): d ∗N independent mass matrices, one linear matrix of
the size N (structure depend of B), d ∗N independent.

� Relaxation step: d ∗N independent mass matrices.
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High-Order time schemes

Second-order scheme

� Scheme for transport step T (∆t): Semi Lagrangian for (KRS) or Cranck-Nicholson
(KRS with DG or HRS).

� Scheme for relaxation step R(∆t): Cranck-Nicholson (KRS and HRS).

� Classical full second order scheme:

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t) ◦T

(
∆t

2

)
.

� AP full second order scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R

(
∆t

2

)
◦T

(
∆t

2

)
◦ R

(
∆t

2

)
◦T

(
∆t

4

)
.

� Ψ and Ψap symmetric in time. Ψap(0) = Id .

High order scheme

� Using composition method

Mp(∆t) = Ψap(γ1∆t)Ψap(γ2∆t).....Ψap(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.

� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.
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Results Burgers I
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable for ∆t < 1.0E−5.
� Implicit time step : ∆t = 1.0E−3

Figure: Left: numerical solution for the first order and the second order schemes for
∆t = 0.001, Right: Zoom

� Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.

� Instability: oscillations −→ α increase and α increase −→ oscillations increase.
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Results Navier-Stokes I
� Model: compressible Navier-Stokes equation

∂tρ + ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + p) = ∂x (ν(ρ)∂xu)− ρg

∂tE + ∂x (Eu + pu) = ∂x (ν(ρ)∂x
u2

2 ) + ∂x (η∂xT )− ρvg

� Test: Propagation of acoustic wave (no viscosity, no gravity).

� CPU Time for initial Mach = 0:
CN method Relaxation method

∆t / cells 5.103 104 2.104 5.103 104 2.104

∆t = 0.005 160 540 2350 135 430 1920
∆t = 0.01 90 315 1550 70 220 1000
∆t = 0.02 55 175 765 40 125 530
∆t = 0.05 30 100 420 20 65 270

� CPU Time for initial Mach = 0.5:

CN method Relaxation method
∆t / cells 5.103 104 2.104 5.103 104 2.104

∆t = 0.01 145 480 2150 100 320 1470
∆t = 0.02 80 290 1200 60 200 970

Conclusion:

� In this case the Relaxation method is competitive with the classical scheme without
important optimization (no parallelization of the problem, etc).
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Results Navier-Stokes II
� Simple test case: ρ(t, x) = 1 +G (x − ut), u(t, x) = 2 and T (t, x) = 0.

Scheme ∆t ∆t = 1.0E−2 ∆t = 5.0E−3 ∆t = 2.5E−3 ∆t = 1.25E−3

CN scheme 8.8E−3 2.25E−3 5.7E−3 1.4E−3

Relaxation scheme 2.25E−3 5.7E−4 1.4E−4 3.6E−5

� Conclusion: the relaxation scheme converges with the second order as expected.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M = 0, ∆t = 0.01

E. Franck 16/19

16/19



Results Navier-Stokes II
� Simple test case: ρ(t, x) = 1 +G (x − ut), u(t, x) = 2 and T (t, x) = 0.

Scheme ∆t ∆t = 1.0E−2 ∆t = 5.0E−3 ∆t = 2.5E−3 ∆t = 1.25E−3

CN scheme 8.8E−3 2.25E−3 5.7E−3 1.4E−3

Relaxation scheme 2.25E−3 5.7E−4 1.4E−4 3.6E−5

� Conclusion: the relaxation scheme converges with the second order as expected.
� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M = 0, ∆t = 0.02

E. Franck 16/19

16/19
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� The two methods (CN and relaxation) capture well the fine solution.
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Results 2D I
� Model: 2D compressible isothermal Navier-Stokes equation{

∂tρ +∇ · (ρu) = Sr ρ
∂t (ρu) +∇ ·

(
ρu ⊗ u + c2ρId

)
= µ∆u + (µ + λ)∇(∇ · u) + Sru

� Test I: Steady state between source and spatial part. Order of convergence:

Error Order
∆t = 0.025 1.6E−2 x

∆t = 0.0125 3.8E−3 x
∆t = 0.00625 9.3E−4 x

∆t = 0.003125 2.3E−4 x

� Test II: Propagation of acoustic wave (no viscosity, no gravity).

� CPU Time for initial Mach = 0:

CN method CN Newton Relaxation method
∆t / cells 1002 2002 4002 1002 2002 4002 1002 2002 4002

∆t = 0.01 340 1320 5650 610 2410 9800 330 1260 5040
∆t = 0.02 170 670 3060 310 1250 6850 165 650 2555
∆t = 0.05 75 300 1290 140 555 3080 70 275 1115
∆t = 0.1 45 170 760 100 380 2190 40 155 625

Conclusion:

� The Relaxation method is competitive with the classical schemes (linearized of
Newton) without important optimization (no parallelization of the problem, etc).
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Results 2D II
� Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step ∆t = 0.01.
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Figure: Comparison between the CN coupled with Newton method (top) and the
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Results 2D II

� Test I: Acoustic wave for isothermal Euler equation.

Figure: 1D cut. Fine solution (black), CN method (red), Newton (green) and relaxation
(blue). ∆t = 0.05 (left) and ∆t = 0.1 (right)
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Future works on relaxation methods

Diffusion
� Propose relaxation for diffusion equation (main point the nonlinearitly must be local).

� Model:
∂tρ− ∂x (D(ρ)∇ρ) = f

Baby MHD model
� Propose relaxation for a baby model with the additional difficulties linked to the MHD

� Model:  ∂tB +∇×
(
u ×B + 1

ρ0
∇T

)
= η∇× (∇×B)

∂tT −∇ ·
(
(k‖ − k⊥)(b⊗ b)∇T + k⊥∇T

)
= 0

� Difficulties: anisotropic diffusion and divergence free constrains

� Div free constrains: Powell method + classical relaxation or specific relaxation for curl
and compatible FE space.

Equilibrium
� Since we over transport all the quantities decoupling the variables we create additional

numerical diffusion in time not compatible with equilibrium conservation.

� Aim : find method to preserve with a better accuracy the equilibrium.
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