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Fusion and Tokamak Instabilities

� Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. Free energy is released. At
those energies, the atoms are ionized
forming a plasma (which can be
controlled by magnetic fields).

� Tokamak: toröıdal chamber where the
plasma is confined using powerful
magnetic fields.

� The simulation of these instabilities is
an important topic for ITER.

� Difficulty: plasma instabilities.

� Disruptions: Violent instabilities
which can critically damage the
Tokamak.

� Edge Localized Modes (ELM):
Periodic edge instabilities which can
damage the Tokamak.
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� Tokamak: toröıdal chamber where the
plasma is confined using powerful
magnetic fields.

� The simulation of these instabilities is
an important topic for ITER.

� Difficulty: plasma instabilities.

� Disruptions: Violent instabilities
which can critically damage the
Tokamak.

� Edge Localized Modes (ELM):
Periodic edge instabilities which can
damage the Tokamak.

E.Franck 4/31

4/31



Model
� Resistive MHD model for Tokamak:

∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇×B)×B + ν∇ ·Π
∂tp +∇ · (pu) + (γ− 1)p∇ · u = ∇ · ((k‖(B ⊗B) + k⊥Id )∇T ) + η | ∇ ×B |2 +νΠ : ∇u
∂tB −∇× (u ×B) = η∇× (∇×B)
∇ ·B = 0

� with ρ the density, u the velocity , p and T the pressure and temperature, B the
magnetic field, Π = Π(∇u,B) the stress tensor.

� with ν the viscosity, k‖, k⊥ the thermal conductivities and η the resistivity.

Important Properties

� Conservation in time: ∇ ·B = 0 and

d

dt

∫ (
ρ
| u |2

2
+
| B |2

2
+

p

γ− 1

)
= 0

Possible simplification

� ∇ ·Π ≈ ∆u.

� Ohmic (η | ∇ ×B |2) and viscous heating νΠ : ∇u neglected.
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Three stage Energy conserving Splitting
� MHD for tokamak: strongly anisotropic, quasi stationary flows (during linear phase).

� Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.

� Choice: Implicit CN scheme + Splitting.

� Convection step:
∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u = ν∆u
∂tp = ∇ · ((k‖(B ⊗B + k⊥Id )∇T ) + η | ∇ ×B |2 +νΠ : ∇u
∂tB = η∇× (∇×B)

� Acoustic step: 
∂tρ = 0,
ρ∂tu +∇p = 0
∂tp +∇ · (pu) + (γ− 1)p∇ · u = 0
∂tB = 0

� Magnetic step: 
∂tρ = 0,
ρ∂tu = (∇×B)×B
∂tp = 0
∂tB −∇× (u ×B) = 0

� Each step preserves the total energy.
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Two stage Energy conserving Splitting

� Convection step:
∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u = ν∆u
∂tp = ∇ · ((k‖(B ⊗B) + k⊥Id )∇T ) + η | ∇ ×B |2 +νΠ : ∇u
∂tB = η∇× (∇×B)

� Magneto-Acoustic step:
∂tρ = 0,
ρ∂tu +∇p = (∇×B)×B
∂tp +∇ · (pu) + (γ− 1)p∇ · u = 0
∂tB −∇× (u ×B) = 0
∇ ·B = 0

� Each step preserves the total energy.

� The equilibrium relation ∇p = (∇×B)×B is not split. More adapted to equilibrium
preservation.

� Future work: test of these splitting schemes for different regimes.
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Dimensionless linearized model
� We define: the Mach Number M = u0

c (with c sound speed), the Reynolds number

Re = Lρ0u0
ν , the magnetic Reynolds number Rm = LV µ0

η , the Prandlt number

Pr =
νcp
η , the β-number β = c2

V 2
A

with VA the Alfven velocity defined by V 2
A =

B2
0

ρ0µ0
.

� We linearize the previous model with
� u = a + δu with | a |= 1 constant
� ρ = ρ0 + δρ with ρ0 = 1
� T = T0 + δT with T0 = 1
� B = B0 + δB with B0 = b a non constant magnetic field.

� We choose the characteristic velocity V = u0
Mpβq . If p = q = 0 we have V = u0. If

p = 1 and q = 0 we have V = c. If p = 1 and q = 0.5 we have V = VA.

� We obtain

∂tp +Mpβqa · ∇p + γMpβq∇ · u =
(γ− 1)Mpβq

RePr
∇ · ((k‖(b× b) + k⊥Id )∇T )

∂tu +Mpβqa · ∇u +
βq

γM2−p∇p =
1

M2−pβ1−q ((∇×B)× b0 + j 0 ×B) +
Mpβq

Re
∆u

∂tB +Mpβqa · ∇B −Mpβq∇× (u × b0) = −
1

Rm
∇×∇×B

∇ ·B = 0
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Three stage Energy conserving Splitting
� Convection step:
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� Acoustic step: 
∂tu +

βq

γM2−p∇p = 0
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Two stage Energy conserving Splitting

� Convection step:

∂tp +Mpβqa · ∇p =
(γ− 1)Mpβq

RePr
∇ · ((k‖(b× b) + k⊥Id )∇T ),

∂tu +Mpβqa · ∇u =
Mpβq

Re
∆u

∂tB +Mpβqa · ∇B = − 1

Rm
∇×∇×B

∇ ·B = 0

� Magneto-acoustic step:


∂tu +

βq

γM2−p∇p =
1

M2−pβ1−q ((∇×B)× b+ j ×B)

∂tp + γMpβq∇ · u = 0
∂tB −Mpβq∇× (u × b) = 0
∇ ·B = 0

� Each step preserves the total energy.

� The equilibrium relation
βq

γM2−p∇p = 1
M2−pβ1−q ((∇×B)× b+ j ×B) is not split.

Better to preserve equilibrium.

� Future work: test of these splitting schemes for different regimes.
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Compatible isogeometric analysis
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Compatible space I

� Isogeometric analysis: use the same basis functions to represent the geometry and
physical unknowns.

� B-Splines: functions of arbitrary degree p and regularity between C0 and Cp−1.

� B-Splines: by 1D tensor product. Complex geometries obtained by global mapping.

� Compatible space: DeRham sequence

grad curl div
H1(Ω) −→ H(curl, Ω) −→ H(div , Ω) −→ L2(Ω)

g̃rad ∗ c̃url ∗ d̃iv ∗

H1(P) ←− H(curl,P) ←− H(div ,P) ←− L2(P)

3D Vector fields
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� Compatible space: DeRham sequence

grad curl div
H1(P) −→ H(curl,P) −→ H(div ,P) −→ L2(P)

Π̃h
h1↓ Π̃h

curl ↓ Π̃h
div ↓ Π̃L2 ↓

gradh curlh divh

V h −→ V h
curl −→ V h

div −→ X h

Sp,p,p

Sp−1,p,p

Sp,p−1,p

Sp,p,p−1

 Sp,p−1,p−1

Sp−1,p,p−1

Sp−1,p−1,p

 Sp−1,p−1,p−1

3D Vector fields approximations
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Compatible space I
� Isogeometric analysis: use the same basis functions to represent the geometry and

physical unknowns.

� B-Splines: functions of arbitrary degree p and regularity between C0 and Cp−1.

� B-Splines: by 1D tensor product. Complex geometries obtained by global mapping.

� Compatible space: DeRham sequence

grad rot

H1(Ω) −→ H(curl, Ω) −→ L2(Ω)

g̃rad ∗ r̃ot∗

H1(P) ←− H(curl,P) ←− L2(P)

2D Vector fields 1

curl div
H1(Ω) −→ H(div , Ω) −→ L2(Ω)

c̃url ∗ d̃iv∗

H1(P) ←− H(div ,P) ←− L2(P)

2D Vector fields 2

� We can, as in 3D, construct a Discrete DeRham sequence.
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Compatible space II

� Advantage of Compatible B-Splines space:

� High degree, high regularity.
� Preservation of the properties (3D case here)

divh(Curl h) = 0, Curlh(grad h) = 0

and
Curl ∗h = Curl h, grad ∗h = divh

� Dual properties useful for energy conservation, kernel properties for constraints and
avoid spurious modes.

� Other point: strong form (equation verified at the coefficient level). Example: Explicit
Maxwell. 

En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� We take the B equation, choose E ∈ H(curl) and consequently B ∈ H(div ), multiply
by test function and integrate to obtain

MBn+1
h = MBn

h + ∆tCEn
h

� with M the mass matrix and C the weak curl matrix.
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En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� Property of the space: C = MCurl h therefore we have the following strong form

Bn+1
h = Bn

h + ∆tCurl hE
n
h

� Applying divh we obtain divhB
n+1
h = 0.
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� Advantage of Compatible B-Splines space:
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Maxwell. 

En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� Taking B ∈ H(div ) we don’t have compatibility with the first equation since we have
∇×B. Idea: integrate by part the first equation (weak form)∫

(En+1,C ) =
∫
(En,C ) + ∆t

∫
(Bn,∇×C )

� Taking C ∈ H(curl) we obtain a consistent equation.
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Maxwell. 

En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� At the matrix level, we obtain

McurlE
n+1 = McurlE

n + ∆tCurlTh MdivB
n

� Taking C ∈ H(curl) we obtain a consistent equation.
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Compatible space III
� Additionally we need the commutative projection.
� The 3D projectors are defined by:

Π̃h
h1 :=

{
Π̃h

h1f = f 0
p ∈ V h

f 0
p (xk ) = xk , ∀xk ∈ Nh

Π̃h
L2 :=

 Π̃h
L2f = f3

p ∈ X h∫
vk

f3
p =

∫
sk

f, ∀vk ∈ Ωh

� with Nh the nodes of the mesh. Ωh the cells of the mesh.

Π̃h
curl :=

 Π̃h
curl f = f1

p ∈ V h
curl∫

ek

f1
p · t =

∫
ek

f · t, ∀ek ∈ Eh
Π̃h

div :=

 Π̃h
div f = f2

p ∈ V h
div∫

fk

f2
p · n =

∫
fk

f · n, ∀fk ∈ Fh

� with Eh the edges of the mesh. Ωh the faces of the mesh.

� Exemple: ρ2 = ∇× (2x(1− x)y (1− y )). Comparison between L2 and commutative
projection in H(div ):
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Discretization of sub-models
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Advection diffusion model

� Model: 

∂tp +Mpβqa · ∇p =
(γ− 1)Mpβq

RePr
∇ · ((k‖(b× b) + k⊥Id )∇T ),

∂tu +Mpβqa · ∇u =
Mpβq

Re
∆u

∂tB +Mpβqa · ∇B = − 1

Rm
∇×∇×B

∇ ·B = 0

� Classical problem: classical FE space.

� Low Mach case (and β < 1):

� Dominant term: anisotropic diffusion (η << k‖, ν << k‖)
� Equation on p: Need robust solver for anisotropic diffusion (not so violent case).
� Equation on u and B: Need robust solver for the mass matrix (like GLT PC or C.

Manni PC based on M2D ≈ M1D ⊗M1D sufficient).

� Sonic case (and β < 1):

� Equation on u and B: robust solver for large Pecklet number and stabilization (M.
Campos-Pinto and E. Sonnendrücker work’s).

� Way to assure ∇ ·B = 0.
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2D Acoustic model
� Model: 

∂tu +
βq

γM2−p∇p = 0

∂tp + γMpβq∇ · u = 0

with the energy balance

dt
∫ (

M2 | u |2
2

+
p

2γ

)
= 0

and the new equation on the vorticity

∂tw = ∂t (rotu) = 0

� Time scheme : Theta-scheme ( θ = 0.5 for Crank-Nicolson scheme). We obtain
un+1 +

βqθ∆t

γM2−p∇p
n+1 = un − βq(1− θ)∆t

γM2−p ∇pn

pn+1 + θ∆tγMpβq∇ · un+1 = pn − (1− θ)∆tγMpβq∇ · un = 0

� For θ = 0.5 the scheme is a second order scheme symmetric in time and preserve
energy.
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Acoustic model: different formulations
� Different space-time discretizations:

� Full Weak H1 Formulation: full system in the weak form (non compatible case).
� Full Weak H1-H(Curl): full system in the weak form, p ∈ H1 and u ∈ H(curl).
� Full Weak L2-H(div ): full system in the weak form, p ∈ L2 and u ∈ H(div ).

� Strong-weak H1-H(Curl):
We consider p ∈ H1 and u ∈ H(curl). The second equation is solved strongly

un+1 + θ∆t

[
1

γM2−p∇
]
pn+1 = un − (1− θ)∆t

[
1

γM2−p∇
]
pn

The first equation weakly. We introduce a test function q ∈ H1, multiply the first
equation by q and integrate by parts to obtain:∫

pn+1q − θ∆tMpγ
∫
(un+1,∇q) =

∫
pnq + (1− θ)∆tMp

∫
(un,∇q)

Since the equation on u is strong we can plug it in the last equation and we obtain

A1(p, q) =
∫

pn+1q + θ2∆t2 1

M2(1−p)

∫
(∇pn+1,∇q) = b

with

b1(q) =
∫

pnq + ∆tMpγ
∫
(un,∇q)− θ(1− θ)∆t

1

M2(1−p)

∫
(∇pn,∇q)
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Acoustic model: different formulations

� Different space-time discretizations:

� Full Weak H1 Formulation: full system in the weak form (non compatible case).
� Full Weak H1-H(Curl): full system in the weak form, p ∈ H1 and u ∈ H(curl).
� Full Weak L2-H(div ): full system in the weak form, p ∈ L2 and u ∈ H(div ).

� Strong-weak H1-H(Curl):

Final Algorithm

� We solve
A1(p

n+1, q) = b1(q)

with A1 the weak form of a scalar elliptic problem.

� We compute strongly

u
n+1 = −θ∆t

[
βq

γM2−p∇
]
pn+1 + u

n − (1− θ)∆t2

[
βq

γM2−p∇
]
pn
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Acoustic model: different formulations
� Different space-time discretizations:

� Full Weak H1 Formulation: full system in the weak form (non compatible case).
� Full Weak H1-H(Curl): full system in the weak form, p ∈ H1 and u ∈ H(curl).
� Full Weak L2-H(div ): full system in the weak form, p ∈ L2 and u ∈ H(div ).

� Strong-weak L2-H(div ):
We consider p ∈ L2 and u ∈ H(Div ).The second equation is solved strongly

pn+1 + θ∆t [Mpγ∇·] un+1 = pn − (1− θ)∆t [Mpγ∇·] un

The first is take weakly. We take a test function v ∈ H(div ), multiply the first
equation by v and integrate by parts we obtain∫
(un+1, v )− θ∆t

1

γM2−p

∫ (
pn+1∇ · v

)
=
∫

(un, v )+ (1− θ)∆t
1

γM2−p

∫
(pn,∇ · v )

Since the equation on u is strong we can plug it in the last equation and we obtain

A2(u, v ) =
∫
(un+1, v ) + θ2∆t2 1

M2(1−p)

∫
(∇ · un+1,∇ · v ) = b(v )

with

b(v ) =
∫

(un, v ) + ∆t
1

γM2−p

∫
(pn,∇ · v )− θ(1− θ)∆t2 1

M2(1−p)

∫
(∇ · un,∇ · v )
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Acoustic model: different formulations

� Different space-time discretizations:

� Full Weak H1 Formulation: full system in the weak form (non compatible case).
� Full Weak H1-H(Curl): full system in the weak form, p ∈ H1 and u ∈ H(curl).
� Full Weak L2-H(div ): full system in the weak form, p ∈ L2 and u ∈ H(div ).

� Strong-weak L2-H(div ):

Final Algorithm

� We solve
A2(u

n+1, v ) = b2(v )

with A2 the weak form of a vectorial elliptic problem.

� We compute strongly

pn+1 = −θ∆t [Mpγ∇·] un+1 + pn − (1− θ)∆t [Mpγ∇·] un
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Acoustic model: properties, solver and PC
� Full weak formulation: preserve total energy.
� Strong-weak formulation: preserve total energy ?

Strong-weak H1 − H(curl)

� Preserve vorticity equation since u given by ∇hp and roth(∇h) = 0.

� Elliptic equation to invert
w2p − ∆p = f

� Efficient solver: CG + MG-GLT preconditioning. MG for low frequencies. GLT for
high frequencies.

Strong-weak L2 − H(div)

� Probable equilibrium conservation if source term.

� Elliptic equation to invert
w2u −∇(∇ · u) = f

� More complex elliptic problem when w2 (≈ ∆t−2) tends to zero.

� Possible Efficient solver: CG + Auxiliary-space Hiptmair preconditioning coupled with
GLT.
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Convergence Results and CPU Time in 2D, dt = 0.1s

Full Model Conv.: Formulation Conv.: CPU Time:
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Energy and Vorticity: 16× 16, p = 3
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3D Maxwell-like model
� Model:  ∂tu −∇×B = 0

∂tB +∇× u = 0
∇ ·B = 0

� Time scheme: second order Crank-Nicolson time scheme.
� Compatible space. We choose u ∈ H(curl) and B ∈ H(div ).
� Two possibilities: full weak formulation or strong-weak H(div )−H(curl).

Strong weak form algorithm

� We put the strong equation on B in the weak equation on u and integrate by part.

� We solve
A(un+1

h , v ) = b(v )

with

A(un+1
h , v ) =

∫
(un+1

h , v ) + θ2∆t2
∫
(∇× (un+1

h ),∇× v ) = b(v )

� We compute strongly

Bn+1
h = ∆tCurl h(u

n+1
h ) +Bn

h + (1− θ)∆tCurl h(u
n
h)

� ∇ ·h Bh = 0 is preserved in time.
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Convergence Maxwell: Formulation, HdivHcurl
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Energy and Divergence

� For 16 elements, degree 3, 40 steps and dt= 0.0025, the model with formulation was
4 times faster than the full model.
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Magnetic step
� Magnetic step model:

∂tu =
1

M2−pβ1−q ((∇×B)× b+ j ×B)

∂tB −Mpβq∇× (u × b) = 0
∇ ·B = 0

� Time scheme: second order Crank-Nicolson time scheme.
� Compatible space. We choose u ∈ H(div ) and B ∈ H(div ).
� Two possibilities: full weak formulation or strong-weak H(div )-H(div ).

Strong weak form algorithm

� We put the strong equation on B in the weak equation on u and integrate by part.

� We solve
A(un+1

h , v ) = b(v )

A(un+1
h , v ) =

∫
(un+1

h , v ) + θ2∆t2
∫
(∇× (un+1

h × b),∇× (v × b)) = b(v )

� We compute the projection step

(un
h × b)h(curl) = Π(un × b), (un+1

h × b)h(curl) = Π(un+1 × b)

� We compute strongly

Bn+1 = Mpβqθ∆t∇× (un+1 × b)h(curl) +Bn + (1− θ)∆tMpβq∇× (un × b)h(curl)

� ∇ ·h Bh = 0 is preserved in time.

E.Franck 25/31

25/31



Magnetic step: remark and solver
� The elliptic operator invert in the previous algorithm is

ω2u +
1

M2−pβ1−q (∇× (∇× (u × b)))× b = f

� This operator can be decomposed like

ω2u − 1

M2−2pβ1−2q
(∇(∇ · u) + b · ∇(b · ∇u)−∇(b,b · ∇u)− b · ∇(b∇ · u)) = f

� Fast wave: first term, Alfven wave: second term.
� First idea of physic PC: Previous operator equivalent to{

u + 1
ω∇(b,C )− 1

ω b · ∇C = f

C + 1
ω b∇ · u − 1

ω b · ∇u = 0

� The model can be written as Id + 1
ω F + 1

ω A =
(
Id + 1

ω F
) (

Id + 1
ω A
)
+O( 1

ω2 ). If ω is

large (small ∆t) we solve the two models one after one.
� Solver for each model: Schur decomposition.

Algorithm

� Solve ω2u∗ −∇(∇ · u∗) = f

� Compute C ∗ = − 1
ω b∇ · u∗

� Solve ω2C − b · ∇(b · ∇C ) = C ∗ + b · ∇u∗

� Compute u = − 1
ω b · ∇C
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Equilibrium and init

Initialization
� Equilibrium magnetic field:

b =
F (ψ)

R
+

1

R
∇ψ× eφ

� Poloidal flux solution of ψ:

∆∗ψ = −R2 dp(ψ)

dψ
− dF (ψ)

dψ
F (ψ)

� We choose ψ ∈ H1 and solve the previous
equation.

� We define A ∈ H(Curl) with

A = Πcurl

(
1

R
ψeφ + ...

)
� We define b = CurlhA to assure initially

Divhb = 0.

Figure: 3D equilibrium

Figure: poloidal cut of equilibrium
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Numerical issues

� High-order discretization: between third and fifth polynomial degree in space, second
order in time.

� Important drawback: numerical dispersion ==> less accurate simulation, loss of
positivity, worse conditioning.

Numerical dispersion in time
� Solution: stabilization like TG-stabilization. Add a dissipative process on the target

wave.

� Drawback: loose of energy conservation. Other solutions ? stabilization ?

Numerical dispersion in time
� Stabilization: same remark as for time dispersion.

� B-Splines property: more regularity.

� Results of the iso-geometric analysis community: less numerical dispersion increasing
the regularity.

� High regular B-Splines admit probably less numerical dispersion than classical FE or
Bezier Elements.
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Current work for JOREK

Splitting in JOREK
� Splitting similar to the previous one, tested in JOREK.
� Splitting: two steps for advection diffusion, one for magneto-acoustic.
� Non optimized version tested current in JOREK for the model 199 (later 303)
� Coupling with Petsc for the sub-steps.

Program
� Benchmarking to improve the splitting (current work).
� Implementation: Optimized version.
� Coupling with Jacobian free Matrix and Parallelization.
� Extension to the diamagnetic and neoclassical terms.

Other possible works in JOREK
� Other idea: Second order Xin-Jin/kinetic Relaxation scheme.

� Advantages:

� Implicit step: invert only simple diffusion equations and mass matrices.
� Perhaps unify all the reduced and full MHD model (+ basic stabilization).

� Defaults:

� Full MHD formalism: complex BC
� Slightly more dispersive method.
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Other application

Galbrun equation

� Equation describing the Lagrangian motion ζ given by

ρ0Dttζ = F(ζ)

� with

F(ζ) = ∇ (p0∇ · ζ) +∇(ζ · ∇p0)−B0 × (∇× (∇× (ζ ×B0))) + J0 ×∇× (ζ ×B0)

� and Dt = ∂t + u0 · ∇ the material derivative.

Heliosismology

� Data: ”Lagrangian motion” at the surface of the sun in the telescope direction.

� Inverse problem to recover the background p0, u0 etc

� Solve harmonic problem:
(−ωi + u0 · ∇)2ζ = F(ζ).

� Some numerical issues are similar to ours.
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Conclusion

Conclusion

� B-Splines Compatible space: allows to preserve some properties (divergence free,
energy)) with high-order on complex geometries.

� B-Splines: High-regularity more adapted to wave problems since less numerical
dispersion ( need to be verified).

� Splitting: Allows to separate the convection-diffusion from the waves and use the
Strong-weak algorithm for the wave part.

Perspectives

� Characteristic velocity: sound speed/ Alfven speed ? Improve splitting for this limit
with large Reynolds and low Prandt number.

� Improve properties preserving for the magneto-acoustic in Tokamak geometry.

� Couple with an equilibrium code, use for b the equilibrium magnetic field, improve the
equilibrium conservation.

� Stabilization and ∇ ·B = 0 for all steps.

� GLT or Hiptmair PC for acoustic. PC for the magnetic step.

� Extention in the nonlinear case (commutation between linearization and splitting ??).
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