Implicit relaxation schemes for compressible fluid models

M. Boileau², D. Coulette², <u>E. Franck¹²</u>, P. Helluy¹²
C. Hillairet ², M. Mehrenberger², L. Mendoza², L. Navoret ² H. Oberlin³, A. Ratnani³, E. Sonnendrücker³

Seminar IRMA, March 2017, Strasbourg

¹Inria Nancy Grand Est, France ²IRMA, university of Strasbourg, France ³NMPP, IPP, Garching bei München, Germany

E. Franck

Outline

Mathematical and physical problems

Classical Relaxation methods

Kinetic Relaxation methods

Numerical results

On going and future works

Conclusion

(nría-

Mathematical and physical problems

Hyperbolic systems and implicit schemes

We consider the general problem

 $\partial_t \boldsymbol{U} + \partial_x (\boldsymbol{F}(\boldsymbol{U})) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U})$

- with $\boldsymbol{U}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ (idem for $\boldsymbol{F}(\boldsymbol{U})$) and D a matrix.
- In the following we consider the limit $\nu << 1$.

Implicit schemes

- **Implicit scheme**: allows to avoid the CFL condition filtering the fast phenomena.
- Problem: Direct solvers are not useful in 3D (too large matrices), we need iterative solvers.
- Conditioning of the implicit matrix: given by the ratio of the maximal and minimal eigenvalues.

Implicit scheme :

$$\boldsymbol{U} + \Delta t \partial_{\boldsymbol{x}}(\boldsymbol{F}(\boldsymbol{U})) - \Delta t \nu \partial_{\boldsymbol{x}}(\boldsymbol{D}(\boldsymbol{U}) \partial_{\boldsymbol{x}} \boldsymbol{U}) = \boldsymbol{U}^{n}$$

At the limit $\nu \ll 1$ and $\Delta t \gg 1$ (large time step) we solve $\partial_x F(U) = 0$.

Issues of implicit schemes

Conclusion: for $\nu \ll 1$ and $\Delta t \gg 1$ the conditioning number of the full system closed to conditioning number of the steady hyperbolic model (the ratio of the speed waves).

Example of ill-conditioned systems

Euler equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \mathbf{l}_d) = \mathbf{0}, \\ \partial_t (\rho e) + \nabla \cdot (\rho \mathbf{u} e + \mathbf{u} p) = \mathbf{0} \end{cases}$$

- Eigenvalues : (*u*, *nn*) ± *c* and (*u*, *nn*) with *c* the sound speed.
- Mach number : $M = \frac{|u|}{c}$
- Nondimensional eigenvalues :

M - 1, M, M + 1

Conclusion: ill-conditioned system for

M << 1 and M = 1

Same type of problem : Shallow - Water with sedimentation transport.

Ideal MHD

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \boldsymbol{0}, \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{J} \times \boldsymbol{B}, \\ \partial_t p + \boldsymbol{u} \cdot \nabla \boldsymbol{p} + \boldsymbol{p} \nabla \cdot \boldsymbol{u} = \boldsymbol{0} \\ \partial_t \boldsymbol{B} = -\nabla \times (-\boldsymbol{u} \times \boldsymbol{B}), \\ \nabla \cdot \boldsymbol{B} = \boldsymbol{0}, \quad \nabla \times \boldsymbol{B} = \boldsymbol{J}. \end{array} \right.$$

- Eigenvalues : (u, nn), $(u, nn) \pm V_a$, $(u, nn) \pm \phi(c, V_a, \theta)$ with *c* the sound speed, V_a the Alfven speed and θ the angle between *nn* and the *B*.
- Mach number : $M = \frac{|u|}{c}$ and β -number : $\beta = \frac{c}{V_a}$
- Approximated Nondimensional eigenvalues for β << 1 (Tokamak)

βM , $\beta M \pm 1$, $M\beta \pm (\beta + 1)$

in the parallel direction of the magnetic field (different in the perpendicular region).

Conclusion: for example we have an ill-conditioned system for

 $M \ll 1$, $\beta \ll 1$

34

Idea

Classical method

- Implicit scheme and nonlinear solver as Newton method
- Full linearized problem solving with preconditioned iterative solver or exact solver.

Limit of the classical method

- High memory consumption to store Jacobian and perhaps preconditioning.
- CPU time does not increase linearly with respect to the problem size (effect of the ill-conditioning linked to the physic).

Future of scientific computing

- Machines able to make lots of parallel computing.
- Small memory by node.

Idea: Divide and Conquer

- Propose algorithm which approximates the full problem by a collection of simpler ones.
- Perform the resolution of the simple problems.
- Limit memory consumption using matrix-free method.

Classical Relaxation methods

General principle

We consider the following nonlinear system

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + \boldsymbol{G}(\boldsymbol{U})$$

- with U a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume community).

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \epsilon \partial_x ((\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \epsilon \partial_x \boldsymbol{G}(\boldsymbol{U}) + \boldsymbol{o}(\epsilon^2)$$

□ with A(U) the Jacobian of F(U).

Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).

Stability: the limit system is dissipative if $(\alpha^2 - |A(U)|^2) > 0$.

General principle II

Generalization

The generalized relaxation is given by

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{R(\boldsymbol{U})}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) + \boldsymbol{H}(\boldsymbol{U}) \end{cases}$$

The limit scheme of the relaxation system is

 $\begin{aligned} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) &= \boldsymbol{G}(\boldsymbol{U}) \\ &+ \varepsilon \partial_x (\boldsymbol{R}(\boldsymbol{U})^{-1} (\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon \partial_x (\boldsymbol{A}(\boldsymbol{U}) \boldsymbol{G}(\boldsymbol{U}) - \boldsymbol{H}(\boldsymbol{U})) + \boldsymbol{o}(\varepsilon^2) \end{aligned}$

Treatment of small diffusion

□ Taking $R(\boldsymbol{U}) = (\alpha^2 - |A(\boldsymbol{U})|^2)D(\boldsymbol{U})^{-1}$, $\varepsilon = \nu$ and $H(\boldsymbol{U}) = A(\boldsymbol{U})\boldsymbol{G}(\boldsymbol{U})$: we obtain the following limit system

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + o(\nu^2)$

• Limitation of the method: the relaxation model cannot approach pde with high diffusion.

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between transport and the relaxation.

First order scheme

We define the three operators for each step :

$$T_{\Delta t} = I_d + \Delta t \begin{pmatrix} \partial_x I_d^{\nu} \\ \alpha^2 \partial_x I_d^{\mu} \end{pmatrix}, \quad S_{\Delta t} = I_d + \Delta t \begin{pmatrix} \mathbf{G}(I_d^{\mu}) \\ \mathbf{0} \end{pmatrix}$$

$$R_{\Delta t} = I_d + \Delta t \left(\begin{array}{c} 0 \\ -\frac{R(I_d^u)}{\varepsilon} (\boldsymbol{F}(I_d^u) - I_d^v) - \boldsymbol{H}(I_d^u) \end{array} \right)$$

The final scheme
$$T_{\Delta t} \circ S_{\Delta t} \circ R_{\Delta t}$$
 is consistent with
 $\partial_t U + \partial_x F(U) = G(U) + \frac{\Delta t}{2} (\partial_t G(U) + \partial_x H(U))$
 $\frac{\Delta t}{2} (\partial_x (\alpha^2 \partial_x U) + \partial_x ((\alpha^2 I_d - A(U)^2) \partial_x U)) + \varepsilon \partial_x (R^{-1} (\alpha^2 I_d - A(U)^2) \partial_x U)$
 $+ O(\varepsilon \Delta t + \Delta t^2 + \varepsilon^2)$

Remark: the viscosity induced by the splitting has the same form as the viscosity induced by the relaxation.

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between transport and the relaxation.

First order scheme

We define the three operators for each step :

$$T_{\Delta t} = I_d + \Delta t \begin{pmatrix} \partial_x I_d^v \\ \alpha^2 \partial_x I_d^u \end{pmatrix}, \quad S_{\Delta t} = I_d + \Delta t \begin{pmatrix} \mathbf{G}(I_d^u) \\ \mathbf{0} \end{pmatrix}$$

$$R_{\Delta t} = I_d + \Delta t \left(\begin{array}{c} 0 \\ -\frac{R(I_d^u)}{\varepsilon} (\boldsymbol{F}(I_d^u) - I_d^v) - \boldsymbol{H}(I_d^u) \end{array} \right)$$

The final scheme $T_{\Delta t} \circ S_{\Delta t} \circ R_{\Delta t}$ is consistent with $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = v \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + \boldsymbol{G}(\boldsymbol{U})$ $+ \frac{\Delta t}{2} (\partial_t \boldsymbol{G}(\boldsymbol{U}) + \partial_x \boldsymbol{H}(\boldsymbol{U})) + \frac{\Delta t}{2} (\partial_x (\alpha^2 \partial_x \boldsymbol{U}) + \partial_x ((\alpha^2 \boldsymbol{I}_d - \boldsymbol{A}(\boldsymbol{U})^2) \partial_x \boldsymbol{U}))$ $+ O(v \Delta t + \Delta t^2 + v^2)$

Remark: the viscosity induced by the splitting has the same form as the viscosity induced by the relaxation.

Discretization of the transport step

Main property

Transport part:

$$\begin{aligned} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} &= 0 \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} &= 0 \end{aligned}$$

Can be rewritten as *N* independent acoustic wave problems.

We propose an efficient way to solve a single wave equation in the FE/IGA context.

$$\begin{pmatrix} I_d & \theta \Delta t \partial_x \\ \alpha^2 \theta \Delta t \partial_x & I_d \end{pmatrix} \begin{pmatrix} u^* \\ v^* \end{pmatrix} = \begin{pmatrix} I_d & -(1-\theta)\Delta t \partial_x \\ -\alpha^2(1-\theta)\Delta t \partial_x & I_d \end{pmatrix} \begin{pmatrix} u^n \\ v^n \end{pmatrix}$$

Now we propose to apply a Schur decomposition of the implicit matrix.

Final algorithm problem

$$\begin{array}{ll} \mbox{Predictor}: & v^* = v^n - (1 - \theta) \Delta t \partial_x u \\ \mbox{Update}: & (I_d - \alpha^2 \theta^2 \Delta t^2 \partial_{xx}) u^{n+1} = -\theta \Delta t \partial_x v^* + (u^n - (1 - \theta) \Delta t \partial_x v^n) \\ \mbox{Corrector}: & v^{n+1} = v^* - \alpha^2 \theta \Delta t \partial_x u^{n+1} \end{array}$$

- Systems to solve: 2 mass matrices and on Laplacian by wave equations.
- Parallelization (simple BC): N independent mass matrices, N independent stiffness matrices, N independent mass matrices.
- Parallelization (complex BC): N independent mass matrices, one linear matrix of the size N (N Laplacian weakly coupled by the boundary), N independent mass matrices.

2D- Extension

Generalization

The generalized relaxation is given by

$$\begin{cases}
\partial_t \boldsymbol{U} + \partial_x \boldsymbol{V}_x + \partial_y \boldsymbol{V}_y = 0 \\
\partial_t \boldsymbol{V}_x + \alpha^2 B_{xx} \partial_x \boldsymbol{U} + \alpha^2 B_{xy} \partial_y \boldsymbol{U} = \frac{\Omega_{xx}}{\varepsilon} (\boldsymbol{F}_x(\boldsymbol{U}) - \boldsymbol{V}_x) + \frac{\Omega_{xy}}{\varepsilon} (\boldsymbol{F}_y(\boldsymbol{U}) - \boldsymbol{V}_y) \\
\partial_t \boldsymbol{V}_y + \alpha^2 B_{yx} \partial_x \boldsymbol{U} + \alpha^2 B_{yy} \partial_y \boldsymbol{U} = \frac{\Omega_{yx}}{\varepsilon} (\boldsymbol{F}_x(\boldsymbol{U}) - \boldsymbol{V}_x) + \frac{\Omega_{yy}}{\varepsilon} (\boldsymbol{F}_y(\boldsymbol{U}) - \boldsymbol{V}_y)
\end{cases}$$

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}_x(\boldsymbol{U}) + \partial_y \boldsymbol{F}_y(\boldsymbol{U}) = \varepsilon \nabla \cdot (\Omega^{-1} (\alpha^2 B - A^q) \nabla \boldsymbol{U}) + \boldsymbol{o}(\varepsilon^2)$$

- **Remark**: classical choice for B is $B_{xx} = B_{yy} = I_d$ and $B_{yx} = B_{xy} = 0$
- B can be a way to reduce the diffusion adding null wave in the linear system.
- **Discretization**: same space, time discretization and algorithm as in 1D.

Parallelization of the models

- **Transport step** (simple BC): *d* * *N* independent mass matrices, *N* independent stiffness matrices, *d* * *N* independent mass matrices.
- Transport step (complex BC): d * N independent mass matrices, one linear matrix of the size N (structure depends of B), d * N independent.
- **Relaxation step**: *d* * *N* independent mass matrices.

/ 34

High-Order time schemes

Second-order scheme

- □ Scheme for transport step $T(\Delta t)$: Cranck Nicholson + FE/IGA
- □ Scheme for relaxation step $R(\Delta t)$: Cranck Nicholson + FE/IGA
- Classical full second order scheme:

$$\Psi(\Delta t) = T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t) \circ T\left(\frac{\Delta t}{2}\right).$$

AP full second order scheme:

$$\Psi_{ap}(\Delta t) = T\left(\frac{\Delta t}{4}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{2}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{4}\right).$$

 $\ \ \square \ \ \Psi \ \text{and} \ \Psi_{ap} \ \text{symmetric in time.} \ \ \Psi_{ap}(0) = \textit{I}_{d}.$

High order scheme

Using composition method

$$M_{\rho}(\Delta t) = \Psi_{a\rho}(\gamma_{1}\Delta t) \circ \Psi_{a\rho}(\gamma_{2}\Delta t) \dots \circ \Psi_{a\rho}(\gamma_{s}\Delta t)$$

- □ with $\gamma_i \in [-1, 1]$, we obtain a *p*-order schemes.
- Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

°/34

Kinetic Relaxation methods

Kinetic relaxation scheme

We consider the classical Xin-Jin relaxation for a scalar system $\partial_t u + \partial_x F(u) = 0$:

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \alpha^2 \partial_x u = \frac{1}{\varepsilon} (F(u) - v) \end{cases}$$

• We diagonalize the hyperbolic matrix $\begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix}$ and note f_+ and f_- the new variables. We obtain

$$\begin{cases} \partial_t f_- - \alpha \partial_x f_- = \frac{1}{\varepsilon} (f_e q^- - f_-) \\ \\ \partial_t f_+ + \alpha \partial_x f_+ = \frac{1}{\varepsilon} (f_e q^+ - f_+) \end{cases}$$

• with $f_{eq}^{\pm} = \frac{u}{2} \pm \frac{F(u)}{2\alpha}$.

First Generalization

Main property: the transport is diagonal.

First Generalization

Vectorial kinetic relaxation: each wave equation is diagonalized. We obtain N diagonal systems of size 2.

/ 34

Generic kinetic relaxation scheme

Kinetic relaxation system

- Lattice: $W = \{\lambda_1 ..., \lambda_{n_v}\}$ a set of velocities.
- **Mapping matrix**: P a matrix $n_c \times n_v$ $(n_c < n_v)$ such that U = Pf, with $U \in \mathbb{R}^{n_c}$.
- Kinetic relaxation system:

$$\partial_t \boldsymbol{f} + \Lambda \partial_x \boldsymbol{f} = \frac{R}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f})$$

Equilibrium vector operator $f^{eq} : \mathbb{R}^{n_c} \to \mathbb{R}^{n_v}$ such that $Pf^{eq}(U) = U$.

Consistance with the initial PDE:

$$\mathcal{C} \left\{ \begin{array}{c} P \boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{U} \\ P \Lambda \boldsymbol{f}^{eq}(\boldsymbol{U}) = F(\boldsymbol{U}) \end{array} \right.$$

- For source terms and small diffusion terms, it is the same that the first relaxation method.
- In 1D : same property of stability that the classical relaxation method.

Multi-D extension

Multi-D extension

Lattice: $W = \{\lambda_1 ..., \lambda_{n_v}\}$ a set of velocities. Kinetic relaxation system:

$$\partial_t \boldsymbol{f} + \Lambda \cdot \nabla \boldsymbol{f} = \frac{R}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f})$$

Equilibrium vector operator $f^{eq}: \mathbb{R}^{n_c} \to \mathbb{R}^{n_v}$ such that $Pf^{eq}(U) = U$.

Stability condition

- Diffusion limit of kinetic model: $\partial_t \boldsymbol{U} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}) = \varepsilon \nabla \cdot (D_f \nabla \boldsymbol{U}).$
- Structure of D_f more complex that the matrix obtained with the classical method.
- **Stability**: first study that the stability condition is more restrictive.

Choice of the Lattice

- **Minimal Lattice**: Dd Q(d+1) with d the dimension, Q the number of velocities.
- Minimal Symmetric Lattice: Dd Q(2q) (q velocities and the opposite).
- Bubble Lattice: Dd Q(d + 2) (additional 0 velocity).
- Bubble Symmetric Lattice: Dd Q(2q + 1) (symmetric + 0 velocity).
- Main question: Stability and properties of these Lattice. Best one ?

/ 34

Space discretization - transport scheme

Whishlist

- Complex geometry, curved meshes
- Flexibility h p refinement
- CFL-free

Candidates for transport discretization

- Finite volumes schemes
- Discontinuous galerkin schemes
- Semi-Lagrangian schemes
- Stochastic schemes (Glimm or particle methods)

- Kirsch code: Curved block mesh. Each block is a Cartesian mesh.
- Kirsch code: Implicit DG schemes:
 - Implicit Cranck-Nicholson scheme
 - Block -Triangular matrix (Upwind scheme) solved avoiding storage of the matrix.

Numerical results

- **Model** : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- Explicit time step : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$

Figure: Left: numerical solution for the first order and the second order schemes for $\Delta t = 0.001$, Right: Zoom

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- **Instability**: oscillations $\rightarrow \alpha$ increase and α increase \rightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- **Explicit time step** : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$ (only for first order and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution for the second order scheme. $\nu=10^{-3}$

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- Explicit time step : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$ (only for first order and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution for the second order scheme. $\nu=10^{-3}$

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\rightarrow \alpha$ increase and α increase \rightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- Explicit time step : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$.

Figure: Left: numerical solution for the first order scheme, Right: numerical solution for the second order scheme. $\nu=10^{-2}$

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\rightarrow \alpha$ increase and α increase \rightarrow oscillations increase.

Model: compressible Navier-Stokes equation

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + p) = \partial_x (\nu(\rho) \partial_x u) - \rho g\\ \partial_t E + \partial_x (Eu + pu) = \partial_x (\nu(\rho) \partial_x \frac{u^2}{2}) + \partial_x (\eta \partial_x T) - \rho \nu g \end{array} \right.$$

- **Test**: Propagation of acoustic wave (no viscosity, no gravity).
- CPU Time for initial Mach = 0:

	C	1 meth	od	Relaxation method			
Δt / cells	5.10 ³	104	2.10 ⁴	5.10 ³	104	2.104	
$\Delta t = 0.005$	160	540	2350	135	430	1920	
$\Delta t = 0.01$	90	315	1550	70	220	1000	
$\Delta t = 0.02$	55	175	765	40	125	530	
$\Delta t = 0.05$	30	100	420	20	65	270	

CPU Time for initial Mach = 0.5:

	CN method			Relaxation method		
Δt / cells	5.10 ³	104	2.10 ⁴	5.10 ³	104	2.10 ⁴
$\Delta t = 0.01$	145	480	2150	100	320	1470
$\Delta t = 0.02$	80	290	1200	60	200	970

Conclusion:

□ In this case the Relaxation method is competitive with the classical scheme without important optimization (no parallelization of the problem, etc).

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green), $M = 0, \Delta t = 0.01$

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green), $M = 0, \Delta t = 0.02$

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0 E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

Conclusion: the relaxation scheme converges with the second order as expected.

Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green), M = 0, $\Delta t = 0.05$

The two methods (CN and relaxation) capture well the fine solution.

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green), M = 0.5, $\Delta t = 0.01$

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0 E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green), M = 0.5, $\Delta t = 0.02$

I The two methods (CN and relaxation) capture well the fine solution.

Results for Kinetic relaxation

Model: isothermal Euler equation

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + c^2 \rho) = 0 \end{cases}$$

- **Lattice**: $(D1 Q2)^n$ Lattice scheme.
- For the transport (and relaxations step) we use 6-order DG scheme in space.
- **Time step**: $\Delta t = \beta \frac{\Delta x}{\lambda}$ with λ the lattice velocity. $\beta = 1$ explicit time step.
- First test: acoustic wave with $\beta = 50$ and $T_f = 0.4$, Second test: smooth contact wave with $\beta = 100$ and $T_f = 20$.

Figure: convergence rates for the first test (left) and for the second test (right).

E. Franck

Results for Kinetic relaxation

Test case: discontinuous initial data (Sod problem). No viscosity, $\beta = 3$. 6 order space-time scheme.

Figure: density (left) and velocity (right).

- With refinement in space we can reduce the oscillations.
- **Test case**: Sod problem. $\nu = 5.10^{-4}$, $\beta = 5$. 6 order space-time scheme.

Model: 2D compressible isothermal Navier-Stokes equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = S_r \rho \\ \partial_t (\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u} + c^2 \rho I_d) = \mu \Delta \boldsymbol{u} + (\mu + \lambda) \nabla (\nabla \cdot \boldsymbol{u}) + S_r \boldsymbol{u} \end{cases}$$

Test I: Steady state between source and spatial part. Order of convergence:

	Error	Order
$\Delta t = 0.025$	$1.6E^{-2}$	-
$\Delta t = 0.0125$	3.8 <i>E</i> ⁻³	2.05
$\Delta t = 0.00625$	$9.3E^{-4}$	2.03
$\Delta t = 0.003125$	$2.3E^{-4}$	2.02

Test II: Propagation of acoustic wave (no viscosity, no gravity). CPU Time:

	CN method			CN Newton			Relaxation method		
Δt / cells	100 ²	200 ²	400 ²	100 ²	200 ²	400 ²	100 ²	200 ²	400 ²
$\Delta t = 0.01$	340	1320	5650	615	2415	9800	330	1260	5040
$\Delta t = 0.02$	170	670	3060	320	1250	6850	165	650	2555
$\Delta t = 0.05$	75	300	1290	140	555	3080	70	275	1115
$\Delta t = 0.1$	45	170	760	100	380	2190	40	155	625

Conclusion:

The Relaxation method is competitive with the classical schemes (linearized of Newton) without parallelization of the sub-models.

1/34

Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the relaxation (bottom) for a time step $\Delta t = 0.01$.

34

Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the relaxation (bottom) for a time step $\Delta t = 0.05$.

Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the relaxation (bottom) for a time step $\Delta t = 0.1$.

Test I: Acoustic wave for isothermal Euler equation.

Figure: 1D cut. Fine solution (black), CN method (red), Newton (green) and relaxation (blue). $\Delta t = 0.05$ (left) and $\Delta t = 0.1$ (right)

34

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Relaxation : Kinetic relaxation using Schnaps.
- **Lattice** : $(D2 Q4)^n$. Symmetric Lattice.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $u_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\bar{i}})$ where $v_{\bar{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

- Model : compressible isothermal Euler.
- Relaxation : Kinetic relaxation using Schnaps.
- Lattice : D2 Q9 lattice (specific lattice for this model).
- No-slip (u = 0) condition on the obstacle imposed using a penalization method in a small volume (red ring)
- □ Relaxation of each f_i towards $0.5(f_i + f_{\overline{i}})$ where $v_{\overline{i}} = -v_i$.
- □ CN scheme and $(\tau = 0) \rightarrow$ "bounce-back" operator : simply swap f_i values between opposite velocities.
- Imposed state at boundaries with a constant low Mach flow.

On going and future works

Inia

MHD and reduced MHD

Aim

- Apply these methods to the MHD in Tokamak.
- MHD Tokamak: low-Beta, low-Mach in the perpendicular direction, anisotropic heat diffusion.
- Hierarchy of geometry: 2D circle, 3D cylinder, 3D Torus, Field Aligned 3D torus.

First model (in 2D circle or 3D cylinder geometries):

$$\begin{cases} \partial_t \mathbf{v}_{\perp} + \mathbf{v}_{\perp} \cdot \nabla \mathbf{v}_{\perp} = \mathbf{B}_{\perp} \cdot \nabla \mathbf{B}_{\perp} + \partial_Z \mathbf{B}_{\perp} + \nu \Delta \mathbf{v}_{\perp} \\ \partial_t \mathbf{B}_{\perp} + \mathbf{v}_{\perp} \cdot \nabla \mathbf{B}_{\perp} = \mathbf{B}_{\perp} \cdot \nabla \mathbf{v}_{\perp} + \partial_Z \mathbf{v}_{\perp} + \eta (\Delta \mathbf{B}_{\perp} - j_c) \\ \nabla_{\perp} \cdot \mathbf{v}_{\perp} = 0 \\ \nabla_{\perp} \cdot \mathbf{B}_{\perp} = 0 \end{cases}$$

• Following models: same reduced models in Torus geometry (cylindrical coordinate) and additional parallel velocity.

Last model: full compressible MHD model.

Numerical issue Divergence free constraint preserving method.

Diffusion

Issue for large diffusion terms

Limit equation of the relaxation scheme:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \nu \partial_x (D(\boldsymbol{U}) \nabla \boldsymbol{U}) + \boldsymbol{o}(\nu^2)$$

If $\nu = O(1)$ we cannot apply the method.

Diffusion

Propose relaxation for a diffusion equation (main point the nonlinearity must be local).

Model:

$$\partial_t \rho - \partial_x (D(\rho) \nabla \rho) = f$$

Baby MHD model

Propose relaxation for a baby model with the additional difficulties linked to the MHD

Model:

$$\begin{cases} \partial_t \boldsymbol{B} + \nabla \times \left(\boldsymbol{u} \times \boldsymbol{B} + \frac{1}{\rho_0} \nabla T \right) = \eta \nabla \times (\nabla \times \boldsymbol{B}) \\ \partial_t T - \nabla \cdot \left((k_{\parallel} - k_{\perp}) (\boldsymbol{b} \otimes \boldsymbol{b}) \nabla T + k_{\perp} \nabla T \right) = \mathbf{0} \end{cases}$$

Difficulties: anisotropic diffusion coupled with divergence free constraint.

Equilibrium and other application

Well - Balanced property

- **Preserve** steady solution which comes from of the balance between physical forces.
- **Tokamak**: essential to conserve the magnetic equilibrium.

Numerical issues and future

- Spatial and time errors generate a drift of the steady state.
- The spatial error is assumed small (fine grids, high order in space).
- The time error is not small (large time step). The problem comes from the decoupling of the equations.
- Post-doc of C. Courtes (October 2017) on the subject.

Other work: Full semi-Lagrangian solver for

$$\partial_t f + v \partial_x f + \partial_v (D(u - v)f) = v \partial_{vv} f$$

$$\begin{aligned} \partial_t \rho + \partial_x \left(\rho u \right) &= 0 \\ \partial_t \left(\rho u \right) + \partial_x \left(\rho u^2 + \frac{p}{\rho_f} \right) &= \frac{m_d}{\rho_f} \int_v D(v - u) f + \eta \partial_{xx} u \end{aligned}$$

2/34

Conclusion

Conclusion

Resume

- **Relaxation**: we linearize and decouple the waves overestimating the transport.
- Model error gives the physical diffusion. Numerical error is controlled by high order schemes.

Advantages

- Additional parallelism between the equations.
- The implicit systems are simple to invert.
- Small storage and no matrix assembly at each time.
- High order schemes for small diffusion.

Defaults

- High diffusion, BC and equilibrium preservation more complex.
- Stability depends on the parameter α . Choice of this parameter is essential.
- Less simple for users to add terms or sources.

