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Hyperbolic systems and implicit schemes

B We consider the general problem
0:U + 04 (F(U)) = vox(D(U)oxU)

B with U:R" — R" (idem for F(U)) and D a matrix.
B |n the following we consider the limit v << 1.

Implicit schemes

B Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.

B Problem: Direct solvers are not useful in 3D (too large matrices), we need iterative
solvers.

B Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

B Implicit scheme :
U+ Atd,(F(U)) — Atva,(D(U)oxU) = U"

B At the limit v << 1 and At >> 1 (large time step) we solve d,F(U) = 0.

B Conclusion: for v << 1 and At >> 1 the conditioning number of the full system
closed to conditioning number of the steady hyperbolic model (the ratio of the speed
waves).
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Example of ill-conditioned systems

B Euler equation

atp +V- (pu) =0,
ot(pu)+V - (pu® u+ply) =0,
9:(pe) + V- (pue +up) =0

B Eigenvalues : (u,nn) =+ c and (u, nn) with
c the sound speed.

® Mach number : M = lul

(o}

B Nondimensional eigenvalues :
M—-1,M M+1
B Conclusion: ill-conditioned system for
M<<land M =1

B Same type of problem : Shallow - Water
with sedimentation transport.

B |deal MHD

90+ V- (pu) =0,
potu+pu-Vu+Vp=JxB,
otp+u-Vp+pV-u=0
0:B=-V x(-uxB),
V-B=0, VxB=J.

Eigenvalues : (u, nn), (u, nn) &+ V.,

(u, nn) £ ¢(c, V,,0) with ¢ the sound
speed, V, the Alfven speed and 6 the angle
between nn and the B.

Mach number : M = @ and B-number :
B=v;

Approximated Nondimensional eigenvalues
for B << 1 (Tokamak)

BM, BM+t1l, MBE(B+1)
in the parallel direction of the magnetic field
(different in the perpendicular region).
Conclusion: for example we have an
ill-conditioned system for

M<<1, B<<l1
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Idea

Classical method

B Implicit scheme and nonlinear solver as Newton method

B Full linearized problem solving with preconditioned iterative solver or exact solver.

Limit of the classical method

B High memory consumption to store Jacobian and perhaps preconditioning.

B CPU time does not increase linearly with respect to the problem size ( effect of the
ill-conditioning linked to the physic).

| A

Future of scientific computing

B Machines able to make lots of parallel computing.

B Small memory by node.

B Propose algorithm which approximates the full problem by a collection of simpler ones.

B Perform the resolution of the simple problems.

B |imit memory consumption using matrix-free method.
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General principle

B We consider the following nonlinear system
0:U 4+ 9xF(U) = vox(D(U)o,U) + G(U)

B with U a vector of N functions.
B Aim: Find a way to approximate this system with a sequence of simple systems.

Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume
community).

:U+3,V=G(U)
9:V +a20,U = %(F(U) -V)

Limit of the hyperbolic relaxation scheme

O The limit scheme of the relaxation system is
9:U+0,F(U) = G(U) + 0, ((a>— | A(U) |?)9xU) + €9, G(U) + o(£?)

O with A(U) the Jacobian of F(U).

B Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ¢).

B Stability: the limit system is dissipative if (a>— | A(U) |?) > 0. /\
8
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General principle Il

Generalization

O The generalized relaxation is given by

R(U)

9:U+0,V =G(U)
9:V + 420, U = —.(F(U)=V)+H(U)

O The limit scheme of the relaxation system is

3:U +a,F(U) = G(U)
+e9x(R(U) " (a® = | A(U) [*)3xU) + €35 (A(U) G (U) — H(U)) + o(€?)

y

Treatment of small diffusion

O Taking R(U) = (&>~ | A(U) |?)D(U)7Y, e=v and H(U) = A(U)G(U): we obtain
the following limit system

3:U + 3 F(U) = G(U) +1dx(D(U)3U) + o(1?)

y

B Limitation of the method: the relaxation model cannot approach pde with high
diffusion. ’9 \
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation.

.

First order scheme

B \We define the three operators for each step :

oy 1Y G(IY
Ta: = /d+At( D‘andl:j ), Spar = /d+At( (Od) )

0
Rar = lg + At R(1Y Y
’ ( — 2 (1) - 1) - HUG) )
B The final scheme Tp; 0 Sp+ © Ra; is consistent with
At

B8 (0020, U) + 0, ((@2ly — A(U)?) 9,U)) + b (R (a2ly — A(U)?) 2U)

+ O(eAt + At + €2)

B Remark: the viscosity induced by the splitting has the same form as the viscosity

induced by the relaxation. (10/ \
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Time discretization

Main property
B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation

First order scheme

B \We define the three operators for each step :

v u
Tar = lg + At gxldu . Spar =g+ At G(ld)
a0yl

| A

0
Rae = |, d

B The final scheme Tp; 0 Sp+ © Ra; is consistent with
0:U + 9xF(U) = vox(D(U)o,U) + G(U)
At At
+5 (0:G(U) +9xH(U)) + S (0x (0?95 U) + 3y ((a21y — A(U)?) 3, U))
+ O(vAt + At? +17)

B Remark: the viscosity induced by the splitting has the same form as the viscosity
induced by the relaxation.

(o
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Discretization of the transport step

Main property

B Transport part:
atU + axv = 0
9:V +a%,U=0

B Can be rewritten as N independent acoustic wave problems.

B We propose an efficient way to solve a single wave equation in the FE/IGA context.

Id BAtBX u* _ Id 7(1 — O)Atax u”
a?0Atd, Iy v )T —a?(1—0)Ata, Iy vn

B Now we propose to apply a Schur decomposition of the implicit matrix.

Final algorithm problem

Predictor : v* = v" — (1 —0)Atoxu
Update :  (lg — a?02At20,, )u"t! = —0Atd,v* + (u" — (1 — 0)Atdxv")
Corrector :  v"! = v* — x20Atd,u"*!

B Systems to solve: 2 mass matrices and on Laplacian by wave equations.

B Parallelization (simple BC): N independent mass matrices, N independent stiffness
matrices, N independent mass matrices.

¥ Parallelization (complex BC): N independent mass matrices, one linear matrix of the
size N (N Laplacian weakly coupled by the boundary), N independent mass matricesf\
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2D- Extension

Generalization

B The generalized relaxation is given by
0tU+0xV,+9,V, =0

Qux Qy
0tV + a?Bdx U + 0? By 9, U = — (F(U) = Vi) + Ty(Fy(U) -V,
Ok QO
9eVy +a2BpdxU +a?Byydy U = =2 (Fx(U) = Vi) + —2(Fy(U) = V)
B The limit scheme of the relaxation system is

3:U + 3Fx(U) +0,F,(U) = eV - (Q 1 (a?B — AT)VU) + o(?)

B Remark: classical choice for B is Byx = By, = I and Byx = By, =0
B B can be a way to reduce the diffusion adding null wave in the linear system.

B Discretization: same space, time discretization and algorithm as in 1D.

Parallelization of the models

B Transport step (simple BC): d x N independent mass matrices, N independent
stiffness matrices, d * N independent mass matrices.

B Transport step (complex BC): d * N independent mass matrices, one linear matrix of
the size N (structure depends of B), d * N independent.

B Relaxation step: d * N independent mass matrices.

E. Franck




High-Order time schemes

Second-order scheme

0 Scheme for transport step T (At): Cranck Nicholson + FE/IGA
0 Scheme for relaxation step R(At): Cranck Nicholson + FE/IGA

U Classical full second order scheme:
At A
(7) R(At)o T ( ;)
O AP full second order scheme
At At At
= (5)n(3)or () o) ()

O Y and ¥, symmetric in time. ¥,,(0)

High order scheme

| A

O Using composition method

Mp(At) = ¥ap(71At) 0 Yap(124t)..... 0 Yap (7sAL)
O with 9; € [—1,1], we obtain a p-order schemes.

U Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p = 6.

1
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Kinetic relaxation scheme
B We consider the classical Xin-Jin relaxation for a scalar system d;u + 0xF(u) =0
dtu+0xv =0
{ Orv + a9 u = %(F(u) —v)
B We diagonalize the hyperbolic matrix ( 0?2 (1) ) and note f; and f_ the new

variables. We obtain
(feq~ —£-)

[

atf_ — l’laxf_ =

atf+ +a8xf+ = (feq+ 7f+)

1
€

First Generalization

' Main property: the transport is diagonal.

First Generalization

0 Vectorial kinetic relaxation: each wave equation is diagonalized. We obtain N

diagonal systems of size 2.
1
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Generic kinetic relaxation scheme

Kinetic relaxation system

B lattice: W = {A1....A,, } a set of velocities.
B Mapping matrix: P a matrix nc X n, (nc < n,) such that U = Pf, with U € R".

B Kinetic relaxation system:

ef + A = g(feq(u) —f)

B Equilibrium vector operator f¢7 : R"e — R™ such that Pf®(U) = U.

B Consistance with the initial PDE:

PFI(U) =U
C{ PAfe‘S(U)):F(U)

B For source terms and small diffusion terms, it is the same that the first relaxation
method.

B |n 1D : same property of stability that the classical relaxation method.
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Multi-D extension

Multi-D extension

B Lattice: W = {A1....A,,, } a set of velocities. Kinetic relaxation system:
R
o:f +A-VFf= z(feq(U) —f)
B Equilibrium vector operator 9 : IR"e — R™ such that Pf(U) = U.

Stability condition

B Diffusion limit of kinetic model: 9,U+ V - F(U) = ¢V - (DfVU).

B Structure of Df more complex that the matrix obtained with the classical method.

B Stability: first study that the stability condition is more restrictive.

Ch0|ce of the Lattice

Minimal Lattice: Dd — Q(d + 1) with d the dimension, Q the number of velocities.
Minimal Symmetric Lattice: Dd — Q(2q) (q velocities and the opposite).

Bubble Lattice: Dd — Q(d + 2) (additional 0 velocity).

Bubble Symmetric Lattice: Dd — Q(2q + 1) (symmetric + 0 velocity).

Main question: Stability and properties of these Lattice. Best one 7

2\
)
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Space discretization - transport scheme

Whishlist

B Complex geometry, curved meshes
B Flexibility h — p refinement
B CFL-free

Candidates for transport discretization

B Finite volumes schemes
[ ]

Discontinuous galerkin schemes

Semi-Lagrangian schemes

Stochastic schemes (Glimm or particle methods)

NA 10 10 10 10
b pa 2
B Kirsch code: Curved block mesh. Each . ., ., Ix
block is a Cartesian mesh. ® 2 2 e 0
2 2 2

B Kirsch code: Implicit DG schemes:
O Implicit Cranck-Nicholson scheme

0 Block -Triangular matrix (Upwind
scheme) solved avoiding storage of

th t . yad pal pal
e matrix. ’1 \
8/34
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Results Burgers |

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable for At < 1.0E~5.

B Implicit time step : At = 1.0E~3

Figure: Left: numerical solution for the first order and the second order schemes for
At = 0.001, Right: Zoom

® Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.

B |nstability: oscillations — « increase and « increase — oscillations increase. r‘\
2
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Results Burgers |
B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

B Explicit time step : stable for At < 1.0E~5.

B Implicit time step : At = 1.0E~3, At = 5.0E73 and At = 1.0E2 (only for first order
and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
for the second order scheme. v = 103

B Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.
B |nstability: oscillations — & increase and & increase — oscillations increase. (2 \
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Results Burgers |

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

B Explicit time step : stable for At < 1.0E~5.

B Implicit time step : At = 1.0E~3, At =5.0E73 and At = 1.0E2 (only for first order
and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
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Results Burgers |

B Model : Viscous - Burgers model.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.
B Explicit time step : stable for At < 1.0E~5.
B |mplicit time step : At = 1.0E~3, At =5.0E~3 and At = 1.0E~2.

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
for the second order scheme. v = 102

B Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.
B |Instability: oscillations — « increase and & increase — oscillations increase. h
2
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Results Navier-Stokes |

B Model: compressible Navier-Stokes equation

dep + dx(pu) =0
{ 9tpu + dx(pu? + p) = 0x(v(p)9xu) — pg

0cE + 0y (Eu+ pu) = 0y (v(0)0x %) + 0 (10 T) — pvg
B Test: Propagation of acoustic wave (no viscosity, no gravity).
B CPU Time for initial Mach = 0:
CN method Relaxation method
At / cells 5.10° | 10* | 2.10* | 5.10° | 10* | 2.10%
At = 0.005 160 540 | 2350 135 430 | 1920
At =0.01 90 315 | 1550 70 220 | 1000
At =0.02 55 175 765 40 125 530
At =0.05 30 100 420 20 65 270
B CPU Time for initial Mach = 0.5:

CN method Relaxation method
At [ cells | 5.10° | 10* | 2.10* | 5.10° | 10* | 2.10%
At =0.01 145 480 | 2150 100 320 | 1470
At =0.02 80 290 | 1200 60 200 970

O In this case the Relaxation method is competitive with the classical scheme without
important optimization (no parallelization of the problem, etc).

721
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=5.0E 3 | At=25E3 | At=125E3
CN scheme 8.8E3 2.25E3 5.7E*% 1.4E74
Relaxation scheme 2.25E3 5.7E*% 1.4E° 36E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M =0, At =0.01

2
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=50E 3 [ At=25E 3 | At =1.25E3
CN scheme 8.8E3 2.25E3 5.7E* 14671
Relaxation scheme 2.25E3 5.7E*% 1.4E° 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M =0, At =0.02
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=5.0E 3 | At=25E3 | At=1.25E3
CN scheme 8.8E3 2.25E3 5.7E*% 14671
Relaxation scheme 2.25E3 5.7E*% 1.4E° 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.
B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green),

M =0, At =0.05
‘2
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B The two methods (CN and relaxation) capture well the fine solution.




Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E? | At=50E 3 | At=25E 3 | At =125E3
CN scheme 8.8E3 2.25E73 5.7E—* 14E—*
Relaxation scheme 2.25E3 57E* 1.4E7% 3.6E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M = 0.5, At =0.01
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Results Navier-Stokes I

B Simple test case: p(t,x) =1+ G(x —ut), u(t,x) =2 and T(t,x) =0.

Scheme At At=10E 2 [ At=5.0E3 | At=25E3 | At=1.25E3
CN scheme 8.8E3 2.25E3 57E~*% 14674
Relaxation scheme 2.25E3 5.7E~*% 1.4E% 36E°

B Conclusion: the relaxation scheme converges with the second order as expected.

B Spatial discretization: N = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green),
M = 0.5, At =0.02

B The two methods (CN and relaxation) capture well the fine solution.
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Results for Kinetic relaxation

Model: isothermal Euler equation

9ep + dx(pu) =0
dtpu + dx(pu? + c?p) =0

Lattice: (D1 — Q2)" Lattice scheme.

For the transport (and relaxations step) we use 6-order DG scheme in space.
Time step: At = ﬁ% with A the lattice velocity. f = 1 explicit time step.

First test: acoustic wave with B =50 and T = 0.4, Second test: smooth contact
wave with = 100 and T¢ = 20.

log10(delta_x)
-26 -24 -22 -2 -18 -16 -22-21 -2 -19-18-17- 16 15
-2 log10(delta_x)

log 1 0(error)

rrrrr slope =4 slope = - slope =4 slope =
order 4 (suzuki_$) order 6 Ckahan 1i_9) order 4 (suzuki_$) order 6 Ckahan 1i_9)

Figure: convergence rates for the first test (left) and for the second test (right). ’23 \
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Results for Kinetic relaxation

space-time scheme.

B Test case: discontinuous initial data (Sod problem). No viscosity, B = 3. 6 order

Figure: density (left) and velocity (right).
B With refinement in space we can reduce the oscillations.

B Test case: Sod problem. v =5.107%, B =5. 6 order space-time scheme

\j“‘\
\
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Results 2D relaxation |

B Model: 2D compressible isothermal Navier-Stokes equation

9p+ V- (pu) = Sp

d(pu) + V- (pu@ u+ Pply) = pAu+ (u+A)V(V - u) + Scu
B Test I: Steady state between source and spatial part. Order of convergence:
Error Order
At =0.025 1.6E-° -
At =0.0125 38E 3 | 2.05
At =0.00625 | 9.3E~% | 2.03
At =0.003125 | 2.3E~% | 2.02

B Test Il: Propagation of acoustic wave (no viscosity, no gravity). CPU Time:

CN method CN Newton Relaxation method

At [ cells | 1002 | 200% | 4002 | 100% | 2007 | 4002 | 1002 | 200% | 4002
At=0.01 | 340 | 1320 | 5650 | 615 | 2415 | 9800 | 330 | 1260 | 5040
At=0.02 | 170 | 670 | 3060 | 320 | 1250 | 6850 | 165 | 650 | 2555
At=0.05 | 75 300 | 1290 | 140 | 555 | 3080 | 70 275 | 1115
At=0.1 45 170 | 760 | 100 | 380 | 2190 | 40 155 | 625

O The Relaxation method is competitive with the classical schemes (linearized of
Newton) without parallelization of the sub-models.

125
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Results 2D relaxation Il

B Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step At = 0.01.

G
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Results 2D relaxation Il

B Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step At = 0.05.
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Results 2D relaxation Il

B Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step At = 0.1.

‘26 / 34‘
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Results 2D relaxation Il

B Test I: Acoustic wave for isothermal Euler equation.

1.030 1.030

1.020
1.020]

1.010

1.010

1.000]

1.000

0.990

0.990
0.980]

0.980 - 0.970

0.960

0.970

0.5
Distance Distance

Figure: 1D cut. Fine solution (black), CN method (red), Newton (green) and relaxation

(blue). At =0.05 (left) and At = 0.1 (right)
‘2

6
E. Franck \ / 34‘




2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity

.

E. Franck




2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity

.

Bt

N
NN

PR\
s

E. Franck \ 4




2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).
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2D MHD drifting vortex

Model : compressible ideal MHD.

Relaxation : Kinetic relaxation using Schnaps.

Lattice : (D2 — Q4)". Symmetric Lattice.

Test case : advection of the vortex (steady state without drift).

Parameters : p = 1.0, po = 1, ugp = by = 0.5, ugyir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex

Model : compressible ideal MHD.

Relaxation : Kinetic relaxation using Schnaps.

Lattice : (D2 — Q4)". Symmetric Lattice.

Test case : advection of the vortex (steady state without drift).

Parameters : p = 1.0, po = 1, ugp = by = 0.5, ugyir = [1,1]%, h(r) = exp[(1 — r?)/2]
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]
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2D MHD drifting vortex

Model : compressible ideal MHD.

Relaxation : Kinetic relaxation using Schnaps.

Lattice : (D2 — Q4)". Symmetric Lattice.

Test case : advection of the vortex (steady state without drift).

Parameters : p = 1.0, po = 1, ugp = by = 0.5, ugyir = [1,1]%, h(r) = exp[(1 — r?)/2]
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex

Magnetic field

Model : compressible ideal MHD.

Relaxation : Kinetic relaxation using Schnaps.

Lattice : (D2 — Q4)". Symmetric Lattice.

Test case : advection of the vortex (steady state without drift).

Parameters : p = 1.0, po = 1, ugp = by = 0.5, ugyir = [1,1]%, h(r) = exp[(1 — r?)/2]

Velocity
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2D MHD drifting vortex

B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).
B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]
Magnetic field Velocity
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex

B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).
B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]
Magnetic field Velocity
Z 4
27
/2 ‘
s 9
9 e

—
\\\2\\%‘\ \\\S
0

X
N\
N

NN
NS

\
NN
\\
N
N N

AU NI RRIOR NN AR
SN N

9
~

E. Franck \ 4



2D MHD drifting vortex

Model : compressible ideal MHD.

Relaxation : Kinetic relaxation using Schnaps.

Lattice : (D2 — Q4)". Symmetric Lattice.

Test case : advection of the vortex (steady state without drift).

Parameters : p = 1.0, po = 1, ugp = by = 0.5, ugyir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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2D MHD drifting vortex
B Model : compressible ideal MHD.
B Relaxation : Kinetic relaxation using Schnaps.
B Lattice : (D2 — Q4)". Symmetric Lattice.
B Test case : advection of the vortex (steady state without drift).

B Parameters : p = 1.0, pg = 1, up = by = 0.5, ugsire = [1,1]%, h(r) = exp[(1 — r?)/2]
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2D flow around a cylinder

B Model : compressible isothermal Euler.

B Relaxation : Kinetic relaxation using Schnaps.

B Lattice : D2 — QO lattice ( specific lattice for this model).

B No-slip (u = 0) condition on the obstacle imposed using a penalization method in a
small volume (red ring)

U Relaxation of each f; towards 0.5(f; 4+ f;) where v; = —v;.

£ CN scheme and (T = 0) — "bounce-back” operator : simply swap f; values between
opposite velocities.

B |mposed state at boundaries with a constant low Mach flow.
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B Model : compressible isothermal Euler.

B Relaxation : Kinetic relaxation using Schnaps.

B |attice : D2 — QO lattice ( specific lattice for this model).

B No-slip (u = 0) condition on the obstacle imposed using a penalization method in a
small volume (red ring)

U Relaxation of each f; towards 0.5(f; + f;) where v; = —v;.

O CN scheme and (T = 0) — "bounce-back” operator : simply swap f; values between
opposite velocities.

B Imposed state at boundaries with a constant low Mach flow.
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On going and future works
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MHD and reduced MHD

B Apply these methods to the MHD in Tokamak.

B MHD Tokamak: low-Beta, low-Mach in the perpendicular direction, anisotropic heat
diffusion.

B Hierarchy of geometry: 2D circle, 3D cylinder, 3D Torus, Field - Aligned 3D torus.

B First model (in 2D circle or 3D cylinder geometries):

atVL-‘er'VVL:BL'VBL-"-azBL-‘rVAVL
atBL+VJ_-vBL:BL-VVL+62VL+17(ABL7].C)
VL'VLZO

V,-B, =0

B Following models: same reduced models in Torus geometry (cylindrical coordinate) and
additional parallel velocity.

B | ast model: full compressible MHD model.

Numerical issue

B Divergence free constraint preserving method.

130
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Diffusion

Issue for large diffusion terms

B |imit equation of the relaxation scheme:
3:U +3xF(U) = vdx(D(U)VU) + o(v?)

B |f y = O(1) we cannot apply the method.

Diffusion

B Propose relaxation for a diffusion equation (main point the nonlinearity must be local).
B Model:

| A

dtp — 9x(D(p)Vp) = f

| A

Baby MHD model

B Propose relaxation for a baby model with the additional difficulties linked to the MHD
B Model:

3:B+V x (ux B+ LVT) =9V x (V x B)

3T —-V- ((kH - kL)(b®b)VT+kLVT) =0

B Difficulties: anisotropic diffusion coupled with divergence free constraint.
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Equilibrium and other application

Well - Balanced property

B Preserve steady solution which comes from of the balance between physical forces.

B Tokamak: essential to conserve the magnetic equilibrium.

Numerical issues and future

B Spatial and time errors generate a drift of the steady state.

B The spatial error is assumed small ( fine grids, high order in space).

B The time error is not small (large time step). The problem comes from the decoupling
of the equations.

B Post-doc of C. Courtes (October 2017) on the subject.

Other work: Full semi-Lagrangian solver for

0¢f + voxf + 0y (D(u—v)f) = vy f

9tp + 0x (pu) =0

d¢(pu) + Ox (pu2 + B) = ﬂ/ D(v — u)f + noxu
pf prJv
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Conclusion

B Relaxation: we linearize and decouple the waves overestimating the transport.

B Model error gives the physical diffusion. Numerical error is controlled by high order
schemes.

B Additional parallelism between the equations.

B The implicit systems are simple to invert.
B Small storage and no matrix assembly at each time.

B High order schemes for small diffusion.

| A

Defaults

B High diffusion, BC and equilibrium preservation more complex.

B Stability depends on the parameter a. Choice of this parameter is essential.

B | ess simple for users to add terms or sources.
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