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Hyperbolic systems and implicit schemes
� We consider the general problem

∂tU + ∂x (F (U)) = ν∂x (D(U)∂xU)

� with U : Rn −→ Rn (idem for F (U)) and D a matrix.
� In the following we consider the limit ν << 1.

Implicit schemes
� Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.

� Problem: Direct solvers are not useful in 3D (too large matrices), we need iterative
solvers.

� Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

� Implicit scheme :
U + ∆t∂x (F (U))− ∆tν∂x (D(U)∂xU) = Un

� At the limit ν << 1 and ∆t >> 1 (large time step) we solve ∂xF (U) = 0.

Issues of implicit schemes
� Conclusion: for ν << 1 and ∆t >> 1 the conditioning number of the full system

closed to conditioning number of the steady hyperbolic model (the ratio of the speed
waves).
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Example of ill-conditioned systems

� Euler equation ∂tρ +∇ · (ρu) = 0,
∂t (ρu) +∇ · (ρu ⊗ u + pId ) = 0,
∂t (ρe) +∇ · (ρue + up) = 0

� Eigenvalues : (u, nn)± c and (u, nn) with
c the sound speed.

� Mach number : M = |u|
c

� Nondimensional eigenvalues :

M − 1,M,M + 1

� Conclusion: ill-conditioned system for

M << 1 and M = 1

� Same type of problem : Shallow - Water
with sedimentation transport.

� Ideal MHD
∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = J ×B,
∂tp + u · ∇p + p∇ · u = 0
∂tB = −∇× (−u ×B) ,
∇ ·B = 0, ∇×B = J.

� Eigenvalues : (u, nn), (u, nn)±Va,
(u, nn)± φ(c,Va, θ) with c the sound
speed, Va the Alfven speed and θ the angle
between nn and the B.

� Mach number : M = |u|
c and β-number :

β = c
Va

� Approximated Nondimensional eigenvalues
for β << 1 (Tokamak)

βM, βM ± 1, Mβ± (β + 1)

in the parallel direction of the magnetic field
(different in the perpendicular region).

� Conclusion: for example we have an
ill-conditioned system for

M << 1, β << 1
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Idea

Classical method
� Implicit scheme and nonlinear solver as Newton method

� Full linearized problem solving with preconditioned iterative solver or exact solver.

Limit of the classical method
� High memory consumption to store Jacobian and perhaps preconditioning.

� CPU time does not increase linearly with respect to the problem size ( effect of the
ill-conditioning linked to the physic).

Future of scientific computing
� Machines able to make lots of parallel computing.

� Small memory by node.

Idea: Divide and Conquer
� Propose algorithm which approximates the full problem by a collection of simpler ones.

� Perform the resolution of the simple problems.

� Limit memory consumption using matrix-free method.
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Classical Relaxation methods
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General principle
� We consider the following nonlinear system

∂tU + ∂xF (U) = ν∂x (D(U)∂xU) +G (U)

� with U a vector of N functions.

� Aim: Find a way to approximate this system with a sequence of simple systems.

� Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume
community). {

∂tU + ∂xV = G (U)

∂tV + α2∂xU =
1

ε
(F (U)−V )

Limit of the hyperbolic relaxation scheme

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = G (U) + ε∂x ((α
2− | A(U) |2)∂xU) + ε∂xG (U) + o(ε2)

� with A(U) the Jacobian of F (U).

� Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ε).

� Stability: the limit system is dissipative if (α2− | A(U) |2) > 0.
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General principle II

Generalization

� The generalized relaxation is given by ∂tU + ∂xV = G (U)

∂tV + α2∂xU =
R(U)

ε
(F (U)−V ) +H(U)

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = G (U)

+ ε∂x (R(U)−1(α2− | A(U) |2)∂xU) + ε∂x (A(U)G (U)−H(U)) + o(ε2)

Treatment of small diffusion

� Taking R(U) = (α2− | A(U) |2)D(U)−1, ε = ν and H(U) = A(U)G (U): we obtain
the following limit system

∂tU + ∂xF (U) = G (U) + ν∂x (D(U)∂xU) + o(ν2)

� Limitation of the method: the relaxation model cannot approach pde with high
diffusion.
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Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Main idea: splitting scheme between transport and the relaxation.

First order scheme
� We define the three operators for each step :

T∆t = Id + ∆t

(
∂x I

v
d

α2∂x I
u
d

)
, S∆t = Id + ∆t

(
G (I ud )

0

)

R∆t = Id + ∆t

(
0

− R(Iud )
ε (F (I ud )− I vd )−H(I ud )

)
� The final scheme T∆t ◦ S∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) = G (U) +
∆t

2
(∂tG (U) + ∂xH(U))

∆t

2

(
∂x (α

2∂xU) + ∂x
((

α2Id −A(U)2
)

∂xU
))

+ ε∂x
(
R−1

(
α2Id −A(U)2

)
∂xU

)
+O(ε∆t + ∆t2 + ε2)

� Remark: the viscosity induced by the splitting has the same form as the viscosity
induced by the relaxation.
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Discretization of the transport step

Main property
� Transport part: {

∂tU + ∂xV = 0
∂tV + α2∂xU = 0

� Can be rewritten as N independent acoustic wave problems.

� We propose an efficient way to solve a single wave equation in the FE/IGA context.(
Id θ∆t∂x
α2θ∆t∂x Id

)(
u∗

v ∗

)
=

(
Id −(1− θ)∆t∂x
−α2(1− θ)∆t∂x Id

)(
un

vn

)
� Now we propose to apply a Schur decomposition of the implicit matrix.

Final algorithm problem
Predictor : v ∗ = vn − (1− θ)∆t∂xu
Update : (Id − α2θ2∆t2∂xx )un+1 = −θ∆t∂xv

∗ + (un − (1− θ)∆t∂xv
n)

Corrector : vn+1 = v ∗ − α2θ∆t∂xu
n+1

� Systems to solve: 2 mass matrices and on Laplacian by wave equations.
� Parallelization (simple BC): N independent mass matrices, N independent stiffness

matrices, N independent mass matrices.
� Parallelization (complex BC): N independent mass matrices, one linear matrix of the

size N (N Laplacian weakly coupled by the boundary), N independent mass matrices.
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2D- Extension

Generalization
� The generalized relaxation is given by

∂tU + ∂xV x + ∂yV y = 0

∂tV x + α2Bxx∂xU + α2Bxy ∂yU =
Ωxx

ε
(F x (U)−V x ) +

Ωxy

ε
(F y (U)−V y )

∂tV y + α2Byx∂xU + α2Byy ∂yU =
Ωyx

ε
(F x (U)−V x ) +

Ωyy

ε
(F y (U)−V y )

� The limit scheme of the relaxation system is

∂tU + ∂xF x (U) + ∂yF y (U) = ε∇ · (Ω−1(α2B −Aq)∇U) + o(ε2)

� Remark: classical choice for B is Bxx = Byy = Id and Byx = Bxy = 0
� B can be a way to reduce the diffusion adding null wave in the linear system.

� Discretization: same space, time discretization and algorithm as in 1D.

Parallelization of the models
� Transport step (simple BC): d ∗N independent mass matrices, N independent

stiffness matrices, d ∗N independent mass matrices.

� Transport step (complex BC): d ∗N independent mass matrices, one linear matrix of
the size N (structure depends of B), d ∗N independent.

� Relaxation step: d ∗N independent mass matrices.
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High-Order time schemes

Second-order scheme

� Scheme for transport step T (∆t): Cranck Nicholson + FE/IGA

� Scheme for relaxation step R(∆t): Cranck Nicholson + FE/IGA

� Classical full second order scheme:

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t) ◦T

(
∆t

2

)
.

� AP full second order scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R

(
∆t

2

)
◦T

(
∆t

2

)
◦ R

(
∆t

2

)
◦T

(
∆t

4

)
.

� Ψ and Ψap symmetric in time. Ψap(0) = Id .

High order scheme

� Using composition method

Mp(∆t) = Ψap(γ1∆t) ◦Ψap(γ2∆t)..... ◦Ψap(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.

� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.
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Kinetic Relaxation methods
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Kinetic relaxation scheme
� We consider the classical Xin-Jin relaxation for a scalar system ∂tu + ∂xF (u) = 0:{

∂tu + ∂xv = 0

∂tv + α2∂xu =
1

ε
(F (u)− v )

� We diagonalize the hyperbolic matrix

(
0 1
α2 0

)
and note f+ and f− the new

variables. We obtain 
∂t f− − α∂x f− =

1

ε
(feq

− − f−)

∂t f+ + α∂x f+ =
1

ε
(feq

+ − f+)

� with f ±eq = u
2 ±

F (u)
2α .

First Generalization

� Main property: the transport is diagonal.

First Generalization

� Vectorial kinetic relaxation: each wave equation is diagonalized. We obtain N
diagonal systems of size 2.
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Generic kinetic relaxation scheme

Kinetic relaxation system
� Lattice: W = {λ1....λnv } a set of velocities.

� Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .

� Kinetic relaxation system:

∂t f + Λ∂x f =
R

ε
(f eq(U)− f )

� Equilibrium vector operator f eq : Rnc → Rnv such that Pf eq(U) = U.

� Consistance with the initial PDE:

C
{

Pf eq(U) =U
PΛf eq(U)=F (U)

� For source terms and small diffusion terms, it is the same that the first relaxation
method.

� In 1D : same property of stability that the classical relaxation method.
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Multi-D extension

Multi-D extension
� Lattice: W = {λ1....λnv } a set of velocities. Kinetic relaxation system:

∂t f + Λ · ∇f =
R

ε
(f eq(U)− f )

� Equilibrium vector operator f eq : Rnc → Rnv such that Pf eq(U) = U.

Stability condition
� Diffusion limit of kinetic model: ∂tU +∇ · F (U) = ε∇ · (Df∇U).

� Structure of Df more complex that the matrix obtained with the classical method.

� Stability: first study that the stability condition is more restrictive.

Choice of the Lattice
� Minimal Lattice: Dd −Q(d + 1) with d the dimension, Q the number of velocities.

� Minimal Symmetric Lattice: Dd −Q(2q) (q velocities and the opposite).

� Bubble Lattice: Dd −Q(d + 2) (additional 0 velocity).

� Bubble Symmetric Lattice: Dd −Q(2q + 1) (symmetric + 0 velocity).

� Main question: Stability and properties of these Lattice. Best one ?
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Space discretization - transport scheme

Whishlist
� Complex geometry, curved meshes

� Flexibility h− p refinement

� CFL-free

Candidates for transport discretization
� Finite volumes schemes

� Discontinuous galerkin schemes

� Semi-Lagrangian schemes

� Stochastic schemes (Glimm or particle methods)

� Kirsch code: Curved block mesh. Each
block is a Cartesian mesh.

� Kirsch code: Implicit DG schemes:

� Implicit Cranck-Nicholson scheme

� Block -Triangular matrix (Upwind
scheme) solved avoiding storage of
the matrix.

NA 10 10 10 10

9 2 5 8 10

9 1 4 7 10

9 0 3 6 10

9 9 9 9 NAE. Franck 18/34
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Numerical results
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Results Burgers I
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable for ∆t < 1.0E−5.
� Implicit time step : ∆t = 1.0E−3

Figure: Left: numerical solution for the first order and the second order schemes for
∆t = 0.001, Right: Zoom

� Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.

� Instability: oscillations −→ α increase and α increase −→ oscillations increase.

E. Franck 20/34

20/34



Results Burgers I
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable for ∆t < 1.0E−5.
� Implicit time step : ∆t = 1.0E−3, ∆t = 5.0E−3 and ∆t = 1.0E−2 (only for first order

and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
for the second order scheme. ν = 10−3

� Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.

� Instability: oscillations −→ α increase and α increase −→ oscillations increase.

E. Franck 20/34

20/34



Results Burgers I
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable for ∆t < 1.0E−5.
� Implicit time step : ∆t = 1.0E−3, ∆t = 5.0E−3 and ∆t = 1.0E−2 (only for first order

and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution
for the second order scheme. ν = 10−3

� Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
high numerical dispersion and instabilities.

� Instability: oscillations −→ α increase and α increase −→ oscillations increase.

E. Franck 20/34

20/34



Results Burgers I
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable for ∆t < 1.0E−5.
� Implicit time step : ∆t = 1.0E−3, ∆t = 5.0E−3 and ∆t = 1.0E−2.
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� Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits
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Results Navier-Stokes I
� Model: compressible Navier-Stokes equation

∂tρ + ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + p) = ∂x (ν(ρ)∂xu)− ρg

∂tE + ∂x (Eu + pu) = ∂x (ν(ρ)∂x
u2

2 ) + ∂x (η∂xT )− ρvg

� Test: Propagation of acoustic wave (no viscosity, no gravity).

� CPU Time for initial Mach = 0:
CN method Relaxation method

∆t / cells 5.103 104 2.104 5.103 104 2.104

∆t = 0.005 160 540 2350 135 430 1920
∆t = 0.01 90 315 1550 70 220 1000
∆t = 0.02 55 175 765 40 125 530
∆t = 0.05 30 100 420 20 65 270

� CPU Time for initial Mach = 0.5:

CN method Relaxation method
∆t / cells 5.103 104 2.104 5.103 104 2.104

∆t = 0.01 145 480 2150 100 320 1470
∆t = 0.02 80 290 1200 60 200 970

Conclusion:

� In this case the Relaxation method is competitive with the classical scheme without
important optimization (no parallelization of the problem, etc).
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Results Navier-Stokes II
� Simple test case: ρ(t, x) = 1 +G (x − ut), u(t, x) = 2 and T (t, x) = 0.

Scheme ∆t ∆t = 1.0E−2 ∆t = 5.0E−3 ∆t = 2.5E−3 ∆t = 1.25E−3

CN scheme 8.8E−3 2.25E−3 5.7E−4 1.4E−4

Relaxation scheme 2.25E−3 5.7E−4 1.4E−4 3.6E−5

� Conclusion: the relaxation scheme converges with the second order as expected.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green),
M = 0, ∆t = 0.01
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� The two methods (CN and relaxation) capture well the fine solution.
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Results for Kinetic relaxation
� Model: isothermal Euler equation{

∂tρ + ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = 0

� Lattice: (D1−Q2)n Lattice scheme.
� For the transport (and relaxations step) we use 6-order DG scheme in space.
� Time step: ∆t = β ∆x

λ with λ the lattice velocity. β = 1 explicit time step.

� First test: acoustic wave with β = 50 and Tf = 0.4, Second test: smooth contact
wave with β = 100 and Tf = 20.

Figure: convergence rates for the first test (left) and for the second test (right).
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Results for Kinetic relaxation
� Test case: discontinuous initial data (Sod problem). No viscosity, β = 3. 6 order

space-time scheme.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-1 -0.5  0  0.5  1

'fe.dat' using 1:10
'rho_u.dat' using 1:2
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 0.2

 0.25

-1 -0.5  0  0.5  1

'fe.dat' using 1:11
'rho_u.dat' using 1:3

Figure: density (left) and velocity (right).
� With refinement in space we can reduce the oscillations.
� Test case: Sod problem. ν = 5.10−4, β = 5. 6 order space-time scheme.

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

'fe_sav.dat' using 1:2
'rhoex'

'fe.dat' using 1:2

Figure: density for no viscous case (green), density with Nx = 100 (blue) and density
with Nx = 1000 (purple)

� The two curves indistinguishable. The full scheme very accurate for smooth case.
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Results 2D relaxation I
� Model: 2D compressible isothermal Navier-Stokes equation{

∂tρ +∇ · (ρu) = Sr ρ
∂t (ρu) +∇ ·

(
ρu ⊗ u + c2ρId

)
= µ∆u + (µ + λ)∇(∇ · u) + Sru

� Test I: Steady state between source and spatial part. Order of convergence:

Error Order
∆t = 0.025 1.6E−2 -

∆t = 0.0125 3.8E−3 2.05
∆t = 0.00625 9.3E−4 2.03

∆t = 0.003125 2.3E−4 2.02

� Test II: Propagation of acoustic wave (no viscosity, no gravity). CPU Time:

CN method CN Newton Relaxation method
∆t / cells 1002 2002 4002 1002 2002 4002 1002 2002 4002

∆t = 0.01 340 1320 5650 615 2415 9800 330 1260 5040
∆t = 0.02 170 670 3060 320 1250 6850 165 650 2555
∆t = 0.05 75 300 1290 140 555 3080 70 275 1115
∆t = 0.1 45 170 760 100 380 2190 40 155 625

Conclusion:

� The Relaxation method is competitive with the classical schemes (linearized of
Newton) without parallelization of the sub-models.
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Results 2D relaxation II
� Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the
relaxation (bottom) for a time step ∆t = 0.01.
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Results 2D relaxation II

� Test I: Acoustic wave for isothermal Euler equation.

Figure: 1D cut. Fine solution (black), CN method (red), Newton (green) and relaxation
(blue). ∆t = 0.05 (left) and ∆t = 0.1 (right)
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2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field
Velocity

� Order in time. One, two and fourth order checked.E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D MHD drifting vortex
� Model : compressible ideal MHD.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : (D2−Q4)n. Symmetric Lattice.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r ) = exp[(1− r2)/2]

Magnetic field Velocity

� Order in time. One, two and fourth order checked.
E. Franck 27/34

27/34



2D flow around a cylinder
� Model : compressible isothermal Euler.

� Relaxation : Kinetic relaxation using Schnaps.

� Lattice : D2−Q9 lattice ( specific lattice for this model).

� No-slip (u = 0) condition on the obstacle imposed using a penalization method in a

small volume (red ring)

� Relaxation of each fi towards 0.5(fi + fi ) where vi = −vi .

� CN scheme and (τ = 0) → ”bounce-back” operator : simply swap fi values between
opposite velocities.

� Imposed state at boundaries with a constant low Mach flow.
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On going and future works
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MHD and reduced MHD

Aim
� Apply these methods to the MHD in Tokamak.

� MHD Tokamak: low-Beta, low-Mach in the perpendicular direction, anisotropic heat
diffusion.

� Hierarchy of geometry: 2D circle, 3D cylinder, 3D Torus, Field - Aligned 3D torus.

� First model (in 2D circle or 3D cylinder geometries):
∂tv⊥ + v⊥ · ∇v⊥ = B⊥ · ∇B⊥ + ∂ZB⊥ + ν∆v⊥
∂tB⊥ + v⊥ · ∇B⊥ = B⊥ · ∇v⊥ + ∂Zv⊥ + η(∆B⊥ − jc )
∇⊥ · v⊥ = 0
∇⊥ ·B⊥ = 0

� Following models: same reduced models in Torus geometry (cylindrical coordinate) and
additional parallel velocity.

� Last model: full compressible MHD model.

Numerical issue
� Divergence free constraint preserving method.
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Diffusion

Issue for large diffusion terms
� Limit equation of the relaxation scheme:

∂tU + ∂xF (U) = ν∂x (D(U)∇U) + o(ν2)

� If ν = O(1) we cannot apply the method.

Diffusion
� Propose relaxation for a diffusion equation (main point the nonlinearity must be local).

� Model:
∂tρ− ∂x (D(ρ)∇ρ) = f

Baby MHD model
� Propose relaxation for a baby model with the additional difficulties linked to the MHD

� Model:  ∂tB +∇×
(
u ×B + 1

ρ0
∇T

)
= η∇× (∇×B)

∂tT −∇ ·
(
(k‖ − k⊥)(b⊗ b)∇T + k⊥∇T

)
= 0

� Difficulties: anisotropic diffusion coupled with divergence free constraint.
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Equilibrium and other application

Well - Balanced property
� Preserve steady solution which comes from of the balance between physical forces.

� Tokamak: essential to conserve the magnetic equilibrium.

Numerical issues and future
� Spatial and time errors generate a drift of the steady state.

� The spatial error is assumed small ( fine grids, high order in space).

� The time error is not small (large time step). The problem comes from the decoupling
of the equations.

� Post-doc of C. Courtes (October 2017) on the subject.

Other work: Full semi-Lagrangian solver for
∂t f + v∂x f + ∂v (D(u − v )f ) = ν∂vv f

∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x

(
ρu2 +

p

ρf

)
=

md

ρf

∫
v
D(v − u)f + η∂xxu
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Conclusion
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Conclusion

Resume
� Relaxation: we linearize and decouple the waves overestimating the transport.

� Model error gives the physical diffusion. Numerical error is controlled by high order
schemes.

Advantages
� Additional parallelism between the equations.

� The implicit systems are simple to invert.

� Small storage and no matrix assembly at each time.

� High order schemes for small diffusion.

Defaults
� High diffusion, BC and equilibrium preservation more complex.

� Stability depends on the parameter α. Choice of this parameter is essential.

� Less simple for users to add terms or sources.
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