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Asymptotic Preserving scheme

� We consider PDE depending of a small parameter with an asymptotic limit.

� Exemple: hyperbolic heat equation
∂tp +

1

ε
∂xu = 0,

∂tu +
1

ε
∂xp = −

1

ε
g −

σ

ε2
u,

−→ ∂tp − ∂x
(

1

σ
(∂xp + g)

)
= 0.

Asymptotic preserving scheme
� AP scheme: a consistent scheme for the

initial PDE which gives at the limit a
consistent scheme of the limit PDE.

� Uniform AP scheme: convergence and
stability independent of ε.

� Application: simulate problem with varying physical parameter and regime. Example:
radiative transfer (strong varying σ).

� Other application: use AP scheme to create a new scheme for the limit model.
Example: relaxation scheme for Euler equation.
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Applications

Applications considered
� Steady or quasi-steady flows (long time limit).
� Multi-scale model: capture the slow scale and filter the fast one (low mach limit).

� Fusion DT: At sufficiently high energies,
deuterium and tritium (plasma) can
fuse to Helium. Free energy is released.

� Tokamak: toröıdal chamber where the
plasma is confined using magnetic
fields.

� Difficulty: plasma instabilities.
Important topic for ITER.

Simulation of MHD instabilities
� Simulation: slow flow around plasma equilibrium (in green):

∂tρ+∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇× B)× B + ν∇ ·Π
∂tp +∇ · (pu) + (γ − 1)p∇ · u = ∇ · q + η | ∇ × B |2 +νΠ : ∇u
∂tB −∇× (u × B) = η∇× (∇× B)
∇ · B = 0
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Implicit method

Classical solution
� Explicit scheme: CFL given by the highest frequency discretized of the waves.
� Solution: implicit scheme to filter the frequencies not considered.

� Solution for implicit schemes:
� Direct solver. CPU cost and consumption memory too large in 3D.
� Iterative solver. Problem of conditioning.

Problem of conditioning
� Multi-scale PDE (low Mach regime) ==> huge ratio between discrete eigenvalues.
� High order scheme for transport: small/high discrete frequencies and anisotropy ==>

huge ratio between discrete eigenvalues.

� Possible solution: preconditioning (often based on splitting and reformulation).
� Storage the matrix and perhaps the preconditioning: large memory consumption.

Main idea
� Step 1: Write a larger and simple system, depending of a small parameter with the

initial system as a limit.
� Step 2: Design an implicit AP scheme for the new larger system and use it.

� Aim: Avoid conditioning and storage problem.
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Implicit Relaxation method and results
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Relaxation scheme
� We consider the classical Xin-Jin relaxation for a scalar system ∂tu + ∂xF (u) = 0:{

∂tu + ∂xv = 0

∂tv + α2∂xu =
1

ε
(F (u)− v)

Limit

� The limit scheme of the relaxation system is

∂tu + ∂xF (u) = ε∂x ((λ2− | ∂F (u) |2)∂xu) + O(ε2)

� Stability: the limit system is dissipative if (λ2− | ∂F (u) |2) > 0.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain

∂t f− − λ∂x f− =
1

ε
(f −eq − f−)

∂t f+ + λ∂x f+ =
1

ε
(f +
eq − f+)

� with u = f− + f+ and f ±eq = u
2
± F (u)

2λ
.

First Generalization
� Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

� Generalization: one Xin-Jin or D1Q2 model by macroscopic variable.
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Generic kinetic relaxation scheme

Kinetic relaxation system
� Considered model:

∂tU + ∂xF (U) = 0
� Lattice: W = {λ1, ....,λnv } a set of velocities.

� Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .

� Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

� We define the macroscopic variable by Pf = U.

� Consistence conditon (R. Natalini, D. Aregba-Driollet, F. Bouchut) :

C
{

Pf eq(U) =U
PΛf eq(U)=F (U)

� In 1D : same property of stability that the classical relaxation method.

� Limit of the system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂f eq− | ∂F (U) |2

)
∂xU

)
+ O(ε2)
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Space discretization - transport scheme

Whishlist
� Complex geometry, curved meshes or unstructured meshes,

� CFL-free,

� Matrix-free.

� High-Order in space

Candidates for transport discretization
� LBM-like: exact transport solver,

� Implicit FV-DG schemes,

� Semi-Lagrangian schemes,

LBM-like method: exact transport
� Advantages:

� Exact transport at the velocity λ = v∆t
∆x

. Very very cheap cost.

� Drawbacks:

� Link time step and mesh: complex to manage large time step, unstructured grids
and multiply kinetic velocities.
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Space discretization

Semi Lagrangian methods
� Forward or Backward methods. Mass or nodes interpolation/projection.
� Advantages:

� Possible on unstructured meshes. High order in space.
� Exact in time and Matrix-free.

� Drawbacks:
� No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods
� Implicit Crank Nicolson scheme + FV DG scheme
� Advantages:

� Very general meshes. High order in space. Dissipation to stabilize.
� Upwind fluxes ==> triangular block matrices.

� Drawbacks:
� Second order in time: numerical time dispersion.

� Current choice 1D: SL-scheme.
� Current choice in 2D-3D: DG schemes.

� Block - triangular matrix solved
avoiding storage.

� Solve the problem in the topological
order given by connectivity graph.
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Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).

� Key point: the macroscopic variables are conserved during the relaxation step.
Therefore f eq(U) explicit.

First order scheme (first order transport )
� We define the two operators for each step :

T∆t : (Id + ∆tΛ∂x Id )f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =
∆t

2
∂x (PΛ2∂x f ) +

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq− | ∂F (U) |2

)
.

E. Franck 12/37

12/37



Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).

� Key point: the macroscopic variables are conserved during the relaxation step.
Therefore f eq(U) explicit.

First order scheme (exact transport )
� We define the two operators for each step :

T∆t : e∆tΛ∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq − ∂F (U)2

)
.

Drawback
� For [D1Q2]2 scheme we have a large error: D(U) =

(
λ2Id − ∂F (U)2

)
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High-Order time schemes

Second-order scheme
� Order of convergence: one excepted for ω = 2 and exact transport. In this case:

second order.
� Remark: same results for Strang splitting. Probably true only for macro variables.

� Classical full second order scheme:

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
.

� with T exact or second order time scheme (Crank-Nicolson).

� Since R(∆t = 0) 6= Id We cannot prove convergence for all variables. Second order
scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R

(
∆t

2

)
◦ T

(
∆t

2

)
◦ R

(
∆t

2

)
◦ T

(
∆t

4

)
.

High order scheme

� Using composition method

Mp(∆t) = Ψap(γ1∆t) ◦Ψap(γ2∆t)..... ◦Ψap(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.

� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.
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Burgers: convergence results
� Model: Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Spatial discretization: SL-scheme, 2000 cells, degree 11.

� Test: ρ(t = 0, x) = sin(2πx). Tf = 0.14 (before the shock) and no viscosity.
� Scheme: splitting schemes and Suzuki composition + splitting.

SPL 1, θ = 1 SPL 1, θ = 0.5 SPL 2, θ = 0.5 Suzuki
∆t Error order Error order Error order Error order
0.005 2.6E − 2 - 1.3E − 3 - 7.6E − 4 - 4.0E − 4 -
0.0025 1.4E − 2 0.91 3.4E − 4 1.90 1.9E − 4 2.0 3.3E − 5 3.61
0.00125 7.1E − 3 0.93 8.7E − 5 1.96 4.7E − 5 2.0 2.4E − 6 3.77
0.000625 3.7E − 3 0.95 2.2E − 5 1.99 1.2E − 5 2.0 1.6E − 7 3.89

� Scheme: second order
splitting scheme.

� Same test after the shock:

� Comparison for different time step. Violet:
∆t = 0.001 (CFL 5-30), Green: ∆t = 0.005 (CFL
20-120), Blue ∆t = 0.01 (CFL 50-300), Black :
reference.
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1D isothermal Euler : Convergence
� Model: isothermal Euler equation{

∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = 0

� Lattice: (D1− Q2)n Lattice scheme.
� For the transport (and relaxations step) we use 6-order DG scheme in space.
� Time step: ∆t = β ∆x

λ
with λ the lattice velocity. β = 1 explicit time step.

� First test: acoustic wave with β = 50 and Tf = 0.4, Second test: smooth contact
wave with β = 100 and Tf = 20.

Figure: convergence rates for the first test (left) and for the second test (right).
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Numerical results: 2D MHD drifting vortex
� Model : compressible ideal MHD.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around
20.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r) = exp[(1− r2)/2]

Magnetic field Velocity
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20.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r) = exp[(1− r2)/2]

Magnetic field Velocity
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� Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around
20.

� Test case : advection of the vortex (steady state without drift).
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

3D case in cylinder

Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

2D cut of the 3D case

Figure: Plot of the mass fraction of gas
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: Sod problem.

� Second order time scheme + SL scheme:

� Left: density ∆t = 1.0−4. Right: density ∆t = 4.0−4

� Conclusion: shock and high order time scheme needs limiting methods.
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: First order method too much dissipative for low Mach flow (dissipation

with acoustic coefficient).
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with acoustic coefficient).
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Kinetic representation for multi-scale problems
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Classical kinetic representation

”Physic” kinetic representations
� Kinetic model mimics the moment model of Boltzmann equation. Euler isothermal{

∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = 0

� D1Q3 model: three velocities {−λ, 0,λ}. Equilibrium: quadrature of Maxwellian.

ρ = f−+ f0 + f+, q = ρu = −λ∗ f−+0∗ f0 +λ∗ f+, f eq =

 1
2

(ρu(u − λ) + c2ρ)
ρ(λ2 − u2 − c2)
1
2

(ρu(u + λ) + c2ρ)


� Limit model :

{
∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = ε

(
∂xxu + u3∂xxρ

)
� Good point: no diffusion on ρ equation. Bad point: stable only for low mach. No

natural extension for more complex pde.

Vectorial kinetic representations
� Vectorial kinetic model (B. Graille 14): [D1Q2]2 one relaxation model {−λ,λ}.
� Good point: stable on sub-characteristic condition λ > λmax .

� Bad point: Wave structure approximated by transport at maximal velocity. The idea
of D1Q2 equivalent to Rusanov scheme idea. Very bad accuracy for equilibrium or
multi-scale problems (low mach).
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Generic vectorial D1Q3

Idea
� Keep the vectorial structure: more stable since we can diffuse on all the variables.

� Add a central velocity (equal or close to zero) to capture the slow dynamics.

� Consistency condition:{
f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
λ−f k− + λ0f k0 + λ+f k+ =F k (U), ∀k ∈ {1..Nc}{

f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
(λ− − λ0)f k− + (λ+ − λ0)f k+ =F k (U)− λ0f k0 , ∀k ∈ {1..Nc}

� We assume a decomposition of the flux (Bouchut 03)

F k (U) = F k,−
0 (U) + F k,+

0 (U) + λ0Id

� We obtain the following equation for the equilibrium{
f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
(λ− − λ0)f k− + (λ+ − λ0)f k+ =F k,−

0 (U) + F k,+
0 (U), ∀k ∈ {1..Nc}

� By analogy of the kinetic theory and kinetic flux splitting scheme we propose the
following decomposition

∑
v>0 vf

k = F k,+
0 (U) and

∑
v<0 vf

k = F k,−
0 (U) .
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Generic vectorial D1Q3

Idea
� Keep the vectorial structure: more stable since we can diffuse on all the variables.

� Add a central velocity (equal or close to zero) to capture the slow dynamics.

� The lattice [D1Q3]N is defined by the velocity set V = [λ−,λ0,λ+] and



f eq
− (U) = −

1

(λ0 − λ−)
F−0 (U)

f eq
0 (U) =

(
U −

(
F+

0 (U)

(λ+ − λ0)
−

F−0 (U)

(λ0 − λ−)

))
f eq

+ (U) =
1

(λ+ − λ0)
F+

0 (U)

Stability

� Sufficient condition for L2 stability: ∂F+
0 , −∂F−0 and 1− ∂F+

0 −∂F−
0

λ
are positive.

� Condition too restrictive (Gerschgorin disc).

� Condition for entropy stability: F+
0 and F−0 is an entropy decomposition of the flux +

same condition that for L2.
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D1Q3 for scalar case
� First choice: D1Q3 Rusanov (λ0 = 0)

F−0 (ρ) = −λ−
(F (ρ)− λ+ρ)

λ+ − λ−
, F+

0 (ρ) = λ+
(F (ρ)− λ−ρ)

λ+ − λ−

� Consistency (for λ− = −λ+): ∂tρ+∂xF (ρ) = σ∆t∂x
(
λ2− | ∂F (ρ) |2

)
∂xρ+ O(∆t2)

� Second choice: D1Q3 Upwind

F−0 (ρ) = χ{∂F (ρ)<λ0} (F (ρ)− λ0ρ) F+
0 (ρ) = χ{∂F (ρ)>λ0} (F (ρ)− λ0ρ)

� with χ the indicatrice function.
� Consistency: ∂tρ+ ∂xF (ρ) = σ∆t∂x

(
λ | ∂F (ρ) | − | ∂F (ρ) |2

)
∂xρ+ O(∆t2)

� Third choice: D1Q3 Lax-Wendroff (λ0 = 0)

F−0 (ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
F+

0 (ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
� with λ0 = 0 and λ− = −λ+ and α ≥ 1.
� Consistency: ∂tρ+ ∂xF (ρ) = σ∆t∂x

(
(α− 1) | ∂F (ρ) |2

)
∂xρ+ O(∆t2).

� The last one is not entropy stable and does not satisfy the sufficient L2 stability
condition.
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D1Q3 for Euler equation I
� Euler equation. Two regimes where the classical method is not optimal.

� High-Mach regime: we use a negative and positive transport for purely positive or
negative flows.

� Low-Mach regime: λ is closed to the sound speed so we have viscosity too large
for density equation for example.

� First possibility: use classical flux vector splitting for Euler equation.
� Stegel-Warming: F± = A±(U)U with A± positive/negative part of the Jacobian.
� Van-Leer:

F±(U) = ±
1

4
ρc(M ± 1)2

 1
(γ−1)u±2c

γ
((γ−1)u±2c)2

2(γ+1)(γ−1)


� AUSM method: convection of ρ, q and H as Van-Leer and separated

reconstruction of the pressure.
� Approximate Osher-Solomon: F±(U) = F (U)± | F (U) |

| F (U) |≈
∫ U

U0

| A(U) |=
∫ 1

0
| A(U0 + t(U −U0)) | (U −U0)dt

� Integral is approximated by a quadrature formula along the path (E. Toro , M
Dumbser)

� Approximate of | A | using Halley approximation (M. J . Castro) and U0 is the
average flow.
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D1Q3 for Euler equation II
� Low Mach case: 

∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x
(
ρu2 +

p

M

)
= 0

∂tE + ∂x (Eu + pu) = 0

� We want to preserve as possible the limit:

p = cts, u = cts, ∂tρ+ u∂xρ = 0

� Idea: Splitting of the flux (E. Toro):

F (U) =

 (ρ)u
(ρu)u + p
( 1

2
ρu2)u + γ

γ−1
pu


� Idea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.
� Use only u, p and λ (≈ c) to reconstruct pressure. Important to preserve the low

mach limit.
� We obtain

F±(U) =
1

2


(ρu ± u2

λ
ρ) + p

(ρu2 ± u2

λ
q) + p(1± γ u

λ
)

( 1
2
ρu2 ± u2

λ
1
2
ρu2) + γ

γ−1
1

2λ
(pλ2 ± 2λpu + λ2u2)


� Preserve contact. Diffusion error for ρ in O(u2).
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Multi-D extension and relative velocity

� Extension of the vectorial scheme in 2D and 3D

� 2D extension: D2q(4 ∗ k) or D2Qq(4 ∗ k + 1) with k = 1 or k = 2.

� 3D extension: D3q(6 ∗ k), D2Qq(6 ∗ k + 1) with k = 1, k = 2 ore more.

� Increase k ==> increase the isotropic property of the kinetic model.

� The vectorial models with 0 velocity are not currently extended to 2D.
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Advection equation
� Equation

∂tρ+ ∂x (a(x)ρ) = 0

� with a(x) > 0 and ∂xa(x) > 0. Dissipative equation.

� Test case 1: a(x) = x . 10000 cells. Order 17. θ = 1 (first order).

Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order

∆t = 0.05 6.4E−2 - 2.7E−2 - 2.7E−2 -
∆t = 0.025 3.8E−2 0.75 1.2E−2 1.17 5.7E−3 2.24
∆t = 0.0125 1.9E−2 1.0 4.2E−3 1.5 5.5E−4 3.37
∆t = 0.00625 7.9E−3 1.25 1.3E−3 1.7 5.3E−5 3.38

� Test case 2: a(x) = 1 + 0.01(x − x0)2. 10000 cells. Order 17. Second order time
scheme.

� Left ∆t = 0.01. Right ∆t = 0.1. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 1 (blue), Lax-Wendroff α = 2 (Yellow).
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Advection equation
� Equation

∂tρ+ ∂x (a(x)ρ) = 0

� with a(x) > 0 and ∂xa(x) > 0. Dissipative equation.

� Test case 1: a(x) = x . 10000 cells. Order 17. θ = 0.5 (second order).

Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order

∆t = 0.05 3.8E−2 - 1.2E−4 - 1.2E−0 -
∆t = 0.025 5.3E−3 2.84 8.1E−6 3.8 4.1E−1 1.55
∆t = 0.0125 3.7E−4 3.84 5.3E−7 3.84 1.1E−4 11.5
∆t = 0.00625 2.3E−5 3.88 3.3E−8 4 6.2E−6 4.15

� Test case 2: a(x) = 1 + 0.01(x − x0)2. 10000 cells. Order 17. Second order time
scheme.

� Left ∆t = 0.01. Right ∆t = 0.1. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 2 (Yellow) = 1 unstable.

E. Franck 26/37

26/37



Burgers
� Model: Viscous Burgers equations

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Test case 1: ρ(t = 0, x) = sin(2πx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff α = 1
Error Order Error Order Error Order

∆t = 0.01 3.9E−2 - 1.1E−2 - 2.3E−3 -
∆t = 0.005 2.1E−2 0.89 6.4E−3 0.78 6.0E−4 1.94

∆t = 0.0025 1.1E−2 0.93 3.5E−3 0.87 1.5E−4 2.00
∆t = 0.00125 5.4E−3 1.03 1.8E−3 0.96 3.9E−5 1.95

� Shock wave. First order scheme in time.

� Left ∆t = 0.002. Right ∆t = 0.01. Reference (black), Rusanov (yellow), Upwind
(violet), Lax-Wendroff (green), Lax-Wendroff α = 1.5 (blue).
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Burgers
� Model: Viscous Burgers equations

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Test case 1: ρ(t = 0, x) = sin(2πx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff α = 1
Error Order Error Order Error Order

∆t = 0.01 3.9E−2 - 1.1E−2 - 2.3E−3 -
∆t = 0.005 2.1E−2 0.89 6.4E−3 0.78 6.0E−4 1.94

∆t = 0.0025 1.1E−2 0.93 3.5E−3 0.87 1.5E−4 2.00
∆t = 0.00125 5.4E−3 1.03 1.8E−3 0.96 3.9E−5 1.95

� Rarefaction wave. First order scheme in time.

� Left ∆t = 0.002. Right ∆t = 0.01. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 1 (blue), Lax-Wendroff α = 2 (Yellow).
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1D Euler equations
� Model: Euler equation  ∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) = 0

� Test case: acoustic wave. ρ = 1 + 0.1e−
x2

σ , u = 0 and p = ρ .
� The domain is Ω = [−2, 2]. 4000 cells and 11-order SL. θ = 1 (relaxation).

� Left ∆t = 0.002. Right ∆t = 0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), Low-Mach (red).

� Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other but very accurate on the material wave.
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1D Euler equations
� Model: Euler equation  ∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) = 0

� Test case: acoustic wave. ρ = 1 + 0.1e−
x2

σ , u = 0 and p = ρ .
� The domain is Ω = [−2, 2]. 4000 cells and 11-order SL. θ = 0.666 (relaxation).

� Left ∆t = 0.002. Right ∆t = 0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), Low-Mach (red).

� Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other but very accurate on the material wave.
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1D Euler equations II
� Test case: Smooth contact. We take p = 1 and u is also constant.

� Final aim: take ∆t = O( 1
u

) when u decrease to have the same error.

� We choose ∆t = 0.02 and Tf = 2. 4000 cells. We choose ω = 1:

Schemes Rusanov VL Osher LM

u = 10−2 ρ(t, x) 0.35 1.2E−1 9.9E−2 1.5E−3

u(t, x) 0 5.3E−3 1.1E−6 0
p(t, x) 0 3.6E−3 6.1E−7 0

u = 10−4 ρ(t, x) 0.35 1.2E−1 9.9E−2 1.5E−5

u(t, x) 0 5.3E−3 1.1E−6 0
p(t, x) 0 3.6E−3 6.1E−7 0

u = 0
ρ(t, x) 0.35 1.2E−1 9.9E−2 0.0
u(t, x) 0 5.3E−3 1.1E−6 0
p(t, x) 0 3.6E−3 6.1E−7 0

� Drawback: When the time step is too large we have dispersive effect.

� Possible explanation: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O(∆tu2) + O(∆t2uλq)

]
.

� with λ closed to the sound speed.

� Problem: At the second order we recover partially the problem since λ is closed to the
sound speed.
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1D Euler equations III
� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
slow scale

� The convective part at the slow scale. The acoustic part at the fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u

:

Error | λs | | λf |
u = 10−1 2.5E−3 2 2
u = 10−2 2.5E−3 0.2 9
u = 10−3 2.5E−3 0.02 90

Conclusion
� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O(∆tu2) + O(∆t2uλqs )

]
.

� with λs which can be take small.

� Drawback: For the stability it seems necessary to have

λsλf ≥ C max
x

(u + c)
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1D Euler equations III
� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
fast scale

� The convective part at the slow scale. The acoustic part at the fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u

:

Error | λs | | λf |
u = 10−1 2.5E−3 2 2
u = 10−2 2.5E−3 0.2 9
u = 10−3 2.5E−3 0.02 90

Conclusion
� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O(∆tu2) + O(∆t2uλqs )

]
.

� with λs which can be take small.

� Drawback: For the stability it seems necessary to have

λsλf ≥ C max
x

(u + c)
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1D Euler equations III
� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
coupling

� The convective part at the slow scale. The acoustic part at the fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u

:

Error | λs | | λf |
u = 10−1 2.5E−3 2 2
u = 10−2 2.5E−3 0.2 9
u = 10−3 2.5E−3 0.02 90

Conclusion
� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O(∆tu2) + O(∆t2uλqs )

]
.

� with λs which can be take small.

� Drawback: For the stability it seems necessary to have

λsλf ≥ C max
x

(u + c)
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Kinetic relaxation method for Diffusion problem
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Applications

Main parabolic problem
� Coupling anisotropic diffusion + resistivity.

∂tT −∇ · ((B ⊗ B)∇T + ε∇T ) = 0

∂tB − η∇× (T−
5
2∇× B) = 0

∇ · B = 0

� The temperature T for the case η = 0 and B given by magnetic equilibrium.
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Kinetic model and scheme for diffusion I
� We want solve the equation: ∂tρ+ ∂x (uρ) = D∂xxρ
� D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):

∂t f− −
λ

ε
∂x f− =

1

ε2
(f −eq − f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq − f+)

� with f ±eq = ρ
2
± ε(uρ)

2λ
. The limit is given by:

∂tρ+ ∂x (uρ) = ∂x ((λ2 − ε2 | u |2)∂xρ) + λ2ε2∂x (∂xx (uρ) + u∂xxρ)− λ2ε2∂xxxxρ

� We introduce α >| u |. Choosing D = λ2 − ε2α2 we obtain

∂tρ+ ∂x (uρ) = ∂x (D∂xρ) + O(ε2)

� Results (∆t >> ∆exp) (Order 1. Left: ∆t
ε

= 0.1, Middle: ∆t
ε

= 1, Right: ∆t
ε

= 10):
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Kinetic model and scheme for diffusion I
� We want solve the equation: ∂tρ+ ∂x (uρ) = D∂xxρ
� D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):

∂t f− −
λ

ε
∂x f− =

1

ε2
(f −eq − f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq − f+)

� with f ±eq = ρ
2
± ε(uρ)

2λ
. The limit is given by:

∂tρ+ ∂x (uρ) = ∂x ((λ2 − ε2 | u |2)∂xρ) + λ2ε2∂x (∂xx (uρ) + u∂xxρ)− λ2ε2∂xxxxρ

� We introduce α >| u |. Choosing D = λ2 − ε2α2 we obtain

∂tρ+ ∂x (uρ) = ∂x (D∂xρ) + O(ε2)

� Results (Order 2. Left: ∆t
ε

= 0.1, Middle: ∆t
ε

= 1, Right: ∆t
ε

= 10):
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Kinetic model and scheme for diffusion I
� We want solve the equation: ∂tρ+ ∂x (uρ) = D∂xxρ

� D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):
∂t f− −

λ

ε
∂x f− =

1

ε2
(f −eq − f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq − f+)

� with f ±eq = ρ
2
± ε(uρ)

2λ
. The limit is given by:

∂tρ+ ∂x (uρ) = ∂x ((λ2 − ε2 | u |2)∂xρ) + λ2ε2∂x (∂xx (uρ) + u∂xxρ)− λ2ε2∂xxxxρ

� We introduce α >| u |. Choosing D = λ2 − ε2α2 we obtain

∂tρ+ ∂x (uρ) = ∂x (D∂xρ) + O(ε2)

� We can choose ε = ∆tγ and ω = 2.

γ = 1
2

γ = 1 γ = 2
Error order Error order Error order

∆t = 0.1 6.4E − 2 - 0.28 - 0.47 -
∆t = 0.02 3.9E − 3 1.74 0.27 0 0.48 0
∆t = 0.01 4.5E − 4 3.1 0.27 0 0.48 0
∆t = 0.005 8.7E − 5 2.37 0.27 0 0.48 0

� The splitting scheme is not AP.
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Kinetic model and scheme for diffusion II

Consistency analysis
� We consider ∂tρ = D∂xx .

� We define the two operators for each step :

T∆t : e∆t Λ
ε
∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε2
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε2
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tρ = ∆t∂x

((
1− ω
ω

+
1

2

)
λ2

ε2
∂xρ

)
+ O(∆t2)

� Taking D = λ2, θ = 0.5 and ε =
√

∆t we obtain the diffusion equation.

� Question: what is the error term is this case ?

� First results (for these choices of parameters):

� Second order at the numerical level.
� At the minimum the first order theoretically.

� Question: what is the error term ? Can we optimize the constant of convergence ?
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Kinetic model and scheme for diffusion II
� We want solve the equation: ∂tρ+ ∂xF (ρ) = ∂xxD(ρ)
� D1Q4 Kinetic system proposed (R. Natalini, F. Bouchut):

∂t f + Γ∂x f =
1

ε
(f eq − f )

with Γ = Λ + 1√
ε

Θ. Consistency verified: if Θ2f eq = D(ρ) and Γf eq = F (ρ).

� Results: We choose F (ρ) = 0 and D(ρ) =
(
ρp

p

)
with 2000 cells, order 11.

� p = 1 (green) p = 2 (violet). Left ∆t = 0.001 . Right ∆t = 0.005

� The second kinetic scheme allows to treat also nonlinear diffusion.

� Future work: consistency for nonlinear case and stability for different schemes.
� Extension for other diffusion models: ∇(∇ · Id ) or ∇ · (A∇Id ).
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Kinetic model and scheme for diffusion II
� We want solve the equation: ∂tρ+ ∂xF (ρ) = ∂xxD(ρ)
� D1Q4 Kinetic system proposed (R. Natalini, F. Bouchut):

∂t f + Γ∂x f =
1

ε
(f eq − f )

with Γ = Λ + 1√
ε

Θ. Consistency verified: if Θ2f eq = D(ρ) and Γf eq = F (ρ).

� Results: We choose F (ρ) = 0 and D(ρ) =
(
ρp

p

)
with 2000 cells, order 11.

� p = 3. Left ∆t = 0.001. Right ∆t = 0.005

� The second kinetic scheme allows to treat also nonlinear diffusion.

� Future work: consistency for nonlinear case and stability for different schemes.
� Extension for other diffusion models: ∇(∇ · Id ) or ∇ · (A∇Id ).
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Conclusion

Application with too restrictive CFL
� Multi-scale models: different physical speeds. Low-Mach Euler low β MHD.
� Diffusion + other: CFL is given by the diffusion. Fine grids given by another problem.

� Varying parameters: waves/diffusion with strongly varying coefficient. Acoustic,
Maxwell, elasticity, neutronic.

� Meshes with local refinement: strong CFL in some area. Sismology for example.

Main idea
� Target: Nonlinear problem N.
� First: we construct the kinetic problem Kε such that ‖ Kε − N ‖≤ Cεε
� Second: we discretize Kε such that ‖ Kε − Kh,∆t

ε ‖≤ C∆t∆tp + Chh
q

� We obtain a consistent method by triangular inequality.

Advantages
� Initial problem: invert a nonlinear conservation law is very difficult. High CPU cost

(storage and assembly of problem. Slow convergence of iterative solvers).

� Advantages: no matrices storage and inversion. High parallelism/optimization.
� Drawbacks: large error in some cases. Complex for boundary condition.
� Future: 2D/3D NS and MHD, BC, convergence/stability, kinetic models in plasma.
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Conclusion II

� Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
� ∆t = 0.04: CFL FV ≈ 100, CFL HO ≈ 300.
� Comparison: implicit Crank-Nicolson and D1Q2 implicit.

� Left: scheme (1). Right: scheme (2), Black: reference solution.
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Conclusion II

� Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
� ∆t = 0.04: CFL FV ≈ 100, CFL HO ≈ 300.
� Comparison: implicit Crank-Nicolson and D1Q2 SL.

� Left: scheme (1). Right: scheme (3), Black: reference solution.
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Conclusion II

� Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
� ∆t = 0.04: CFL FV ≈ 100, CFL HO ≈ 300.
� Comparison: implicit Crank-Nicolson and D1Q3 implicit.

� Left: scheme (1). Right: scheme (4), Black: reference solution.
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Conclusion II
� Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
� ∆t = 0.04: CFL FV ≈ 100, CFL HO ≈ 300.

� Left: scheme (1). Right: scheme (4), Black: reference solution.

Conclusion
� Conclusion: as expected D1Q3 (Van-Leer) SL closed to the CN implicit scheme.
� CPU time difficult to compare since the code are different.

� But: 170 sec for (1), 110 sec for (2), 1.6 sec for (3), 1.7 sec for (4)
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