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Asymptotic Preserving scheme

B We consider PDE depending of a small parameter with an asymptotic limit.

B Exemple: hyperbolic heat equation

1
Otp + —0xu =0, 1
1 o — Otp — Ox (*(&(P'i‘g)) =0.
— g
Oru+ —Op=——-g— u,
€ € €

£ =0

B p°

Asymptotic preserving scheme

B AP scheme: a consistent scheme for the
initial PDE which gives at the limit a

consistent scheme of the limit PDE. =50 H=s.0

B Uniform AP scheme: convergence and
stability independent of e.

B Application: simulate problem with varying physical parameter and regime. Example:
radiative transfer (strong varying o).

B QOther application: use AP scheme to create a new scheme for the limit model.

Example: relaxation scheme for Euler equation.
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Applications

Applications considered

B Steady or quasi-steady flows (long time limit).
B Multi-scale model: capture the slow scale and filter the fast one (low mach limit).

B Fusion DT: At sufficiently high energies,
deuterium and tritium (plasma) can
fuse to Helium. Free energy is released.

Deuterium

¢ +@
B Tokamak: toroidal chamber where the \ /‘”
plasma is confined using magnetic e
fields. . \>,y
(29
B Difficulty: plasma instabilities. Tritiam Neutron

Important topic for ITER.

Simulation of MHD instabilities

B Simulation: slow flow around plasma equilibrium (in green):
Otp+ V- (pu) =0,
potu+pu-Vu+Vp=(VxB)xB+vV-N
Op+V-(pu)+(y—1)pV-u=V-q+7n |V xB]>+vN:Vu
9:B —V X (ux B)=nV x (V x B)
V-B=0
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Implicit method

Classical solution

B Explicit scheme: CFL given by the highest frequency discretized of the waves.
B Solution: implicit scheme to filter the frequencies not considered.

B Solution for implicit schemes:
U Direct solver. CPU cost and consumption memory too large in 3D.
U Iterative solver. Problem of conditioning.

Problem of conditioning

B Multi-scale PDE (low Mach regime) ==> huge ratio between discrete eigenvalues.
B High order scheme for transport: small/high discrete frequencies and anisotropy ==
huge ratio between discrete eigenvalues.

B Possible solution: preconditioning (often based on splitting and reformulation).
B Storage the matrix and perhaps the preconditioning: large memory consumption.

Main idea

B Step 1: Write a larger and simple system, depending of a small parameter with the
initial system as a limit.
B Step 2: Design an implicit AP scheme for the new larger system and use it.

| A

B Aim: Avoid conditioning and storage problem. ,-\
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E. Franck \ /37‘




Implicit Relaxation method and results
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Relaxation scheme

B We consider the classical Xin-Jin relaxation for a scalar system 0:u + 9xF(u) = 0:

Otu+0xv =0
v + a2du = 1(F(u) —v)
€

O The limit scheme of the relaxation system is

Bru + 5 F(u) = edx((N2— | OF (u) [?)dxu) + O(g?)
O Stability: the limit system is dissipative if (\2— | 9F (u) |?) > 0.

B We diagonalize the hyperbolic matrix ( )?2 é ) to obtain
1
Of— — NOxf— = —(foq — 1-)
Orfy + ANOxfy = g(f;g —fy)

B with u=f_+f and £ = 4 + FW.

First Generalization
O Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

0 Generalization: one Xin-Jin or D1Q2 model by macroscopic variable.
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Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:
U+ 0«F(U)=0
Lattice: W = {)\, ...., An, } a set of velocities.

Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".

Kinetic relaxation system:
1
Otf + Noxf = —=(f%I(U) — f)
€

We define the macroscopic variable by Pf = U.

Consistence conditon (R. Natalini, D. Aregba-Driollet, F. Bouchut) :

PfeI(U) =U
c{ PAFSI(U)=F(U)

In 1D : same property of stability that the classical relaxation method.
Limit of the system:

O:U + 0 F(U) = €0y ((PN*0feq— | DF(U) |*) 9xU) + O(€?)

(o=
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Space discretization - transport scheme

B Complex geometry, curved meshes or unstructured meshes,
B CFL-free,
B Matrix-free.

B High-Order in space

Candidates for transport discretization

B | BM-like: exact transport solver,
B |mplicit FV-DG schemes,

B Semi-Lagrangian schemes,

LBM-like method: exact transport

B Advantages:
O Exact transport at the velocity A = %

B Drawbacks:

O Link time step and mesh: complex to manage large time step, unstructured grids
and multiply kinetic velocities.

. Very very cheap cost.
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Space discretization

Semi Lagrangian methods

B Forward or Backward methods. Mass or nodes interpolation/projection.
B Advantages:

L Possible on unstructured meshes. High order in space.
U Exact in time and Matrix-free.

B Drawbacks:
L No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods

B |mplicit Crank Nicolson scheme + FV DG scheme
B Advantages:

| A

O Very general meshes. High order in space. Dissipation to stabilize.
L Upwind fluxes ==> triangular block matrices.

B Drawbacks:
[ Second order in time: numerical time dispersion.

B Current choice 1D: SL-scheme.

B Current choice in 2D-3D: DG schemes. 20 RN 2
U Block - triangular matrix solved " 5 »
avoiding storage. B <

0 Solve the problem in the topological

order given by connectivity graph. Yo (11 \
\ / 37,
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £49(U) explicit.

First order scheme (first order transport )

B We define the two operators for each step :
Tae : (lg + At lg)F™ = £
f"+1+9 (feq(U) Py = £ (179) (feq(U) fm)
B Final scheme: Tp; o RAt is consistent with

O:U + 0, F(U) = %@(PAzaxf) + ((2_270:;)&) 3 (D(U)dxU) + O(AL?)

B with w = B and D(U) = (PA20yf*— | OF(U) ?).

4
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Time discretization
Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £¢9(U) explicit.

First order scheme (exact transport )

B \We define the two operators for each step :

TA . eAt/\BX fn+1 — £
fn+1 + 9 (feq(U) fn+l) — fn_ ( ) (feq(U) )
B Final scheme: Tp; o RAt is consistent with
2 —w)A
BeU + O F(U) = (%) 0 (D(U)xU) + O(AF)
w

B with w = B and D(U) = (PA0yf* — OF (U)?).

Drawback

B For [D1Q2]? scheme we have a large error: D(U) = (X2ly — OF (U)?)

12/
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High-Order time schemes

Second-order scheme

' Order of convergence: one excepted for w = 2 and exact transport. In this case:
second order.

0 Remark: same results for Strang splitting. Probably true only for macro variables.

O Classical full second order scheme:

(A =T (%) oR(Atw=2)oT (A;)

O with T exact or second order time scheme (Crank-Nicolson).

Since R(At = 0) # l; We cannot prove convergence for all variables. Second order
scheme:

e = (2) o (28) o7 (Ao (B) 7 (22).

High order scheme

[ Using composition method
Mp(At) = Wap(71At) 0 Wap(12AL)..... 0 Wap(vsAt)

O with ~; € [-1, 1], we obtain a p-order schemes.
0 Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

")
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Burgers: convergence results

B Model: Burgers equation

2
Oep + O (%) =0

B Spatial discretization: SL-scheme, 2000 cells, degree 11.

B Test: p(t =0, x) = sin(2mx). Tf = 0.14 (before the shock) and no viscosity.
B Scheme: splitting schemes and Suzuki composition + splitting.

SPL1,6=1 SPL1,6=05 SPL2,6=05 Suzuki

At Error order Error order Error order Error order
0.005 2.6E -2 - 13E-3 - 7.6E —4 - 40E —4 -
0.0025 1.4E —2 0.91 3.4E — 4 1.90 1.9E — 4 2.0 3.3E-5 3.61
0.00125 | 7.1E -3 0.93 8.7E —5 1.96 47E -5 2.0 24E — 6 3.77
0.000625| 3.7E —3 0.95 22E -5 1.99 1.2E -5 2.0 1.6E -7 3.89

B Scheme: second order
splitting scheme.

B Same test after the shock: _—
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1D isothermal Euler : Convergence

Model: isothermal Euler equation

Orp + Ox(pu) =0
Bepu + Ox(pu? + c2p) =0

Lattice: (D1 — Q2)" Lattice scheme.

For the transport (and relaxations step) we use 6-order DG scheme in space.

Time step: At = 5% with X\ the lattice velocity. 8 = 1 explicit time step.

First test: acoustic wave with 8 =50 and Tf = 0.4, Second test: smooth contact
wave with 8 = 100 and Ty = 20.

log10(delta_x) .
-26 -24 -22 -2 -18 -16 -22-21 -2 -19-18-17-16-15"
-2 loglo@elta x) -

log10(error)

rrrrr slope =4 slope = 6 -~ slope=4 slope = 6
order 4 (suzuki_5) order 6 (kahan_li_9) order 4 (suzuki_5) order 6 (kahan_li_9)

Figure: convergence rates for the first test (left) and for the second test (right). h
1

\ 5/371

E. Franck



Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
17/37

E. Franck \ y




Classical kinetic representation

B High-order extension allows to correct the main default of relaxation: large error.

B |n two situations the High-order extension is not sufficient:

L For discontinuous solutions like shocks.
0 For strongly multi-scale problem like low-Mach problem.

B Euler equation: Sod problem.
B Second order time scheme + SL scheme:

t=0.2
! , 1.0

i i
-1.0 -0.5 0.0 0.5 1.0 DEl.D

X
B |eft: density At = 1.0~*. Right: density At =4.0~*
B Conclusion: shock and high order time scheme needs limiting methods. /\
18/
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Classical kinetic representation

B High-order extension allows to correct the main default of relaxation: large error.
B |n two situations the High-order extension is not sufficient:
L For discontinuous solutions like shocks.
U For strongly multi-scale problem like low-Mach problem.
B Euler equation: smooth contact (u =cts, p=cts).
B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22 ! t:!2.0 ! 22 ! t= !20.0 .
2.0 — 20 N S SO S S |
1.8 S S 18 |
16
. . 16 |
12 1.4 T N |
1.0 1.2 1
08 L 1 L 1 L 1 L 10 L 1 L 1 L 1
-2.0-1.5-1.0-0500 05 1.0 15 2.0 -2.0-1.5-1.0-0500 05 1.0 15 20
X

X

B Order 1 Left: M =0.1. Right: M =0.01

B Conclusion: First order method too much dissipative for low Mach flow (dissipation
with acoustic coefficient).
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kinetic representation

Classical

B High-order extension allows to correct the main default of relaxation: large error.
B |n two situations the High-order extension is not sufficient:
L For discontinuous solutions like shocks.
U For strongly multi-scale problem like low-Mach problem.
B Euler equation: smooth contact (u =cts, p=cts).
B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22 ! t:!2.0 ! 24 ! t= !20.0 .
20— 220N 1
) I S 20 ]
16 1.8 1
LAb- b 1.6 i
1.2 14 : : : 1
0'82.0—1.5—1.0—0.5 0.0 05 1.0 15 2.0 10

X
B Order 1 Left: M =0.1. Right: M =0.01
B Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with ac

oustic coefficient).

-2.0-1.5-1.0-0500 05 1.0 1.5 2.0
X

E. Franck
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Kinetic representation for multi-scale problems
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Classical kinetic representation

"Physic” kinetic representations

B Kinetic model mimics the moment model of Boltzmann equation. Euler isothermal

Op + Ox(pu) =0
O¢pu + Ox(pu? + c?p) =0

B D1Q3 model: three velocities {—X, 0, A}. Equilibrium: quadrature of Maxwellian.

3 (pu(u =) + ¢?p)
p="Ff_+fo+fr, q=pu=—XAxf_4+0xfo+Axfy, Ffeq= p(N2 — u? — c?)

3 (pu(u+ ) + ¢%p)

i . Oep+ Dx(pu) = 0
B Limit model : tf? P
it mode { Otpu + Ox(pu? + c2p) = € (Ot + U3 Osxp)

B Good point: no diffusion on p equation. Bad point: stable only for low mach. No
natural extension for more complex pde.

Vectorial kinetic representations

B Vectorial kinetic model (B. Graille 14): [D1Q2]? one relaxation model {—X, A}.
B Good point: stable on sub-characteristic condition A > Apax-

Bad point: Wave structure approximated by transport at maximal velocity. The idea
of D1Q2 equivalent to Rusanov scheme idea. Very bad accuracy for equilibrium or
multi-scale problems (low mach).

¥ 20
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Generic vectorial D1Q3

B Keep the vectorial structure: more stable since we can diffuse on all the variables.

B Add a central velocity (equal or close to zero) to capture the slow dynamics.

B Consistency condition:

Fk+ ffo+ £k =Uk, Vke{1.N}
A_FE f Noff + A\ FE=FK(U), Vk € {1.Nc}

{ A A =Uk, Vke{1.N}
(A= = X0)FE + (A — Xo)fF=FK(U) — Xoff, Vk € {1.Nc}
B We assume a decomposition of the flux (Bouchut 03)
FX(U) = Ff~(U) + F§(U) + Xoly
B We obtain the following equation for the equilibrium

£k + £+ £k =Uk, Vke{l.N}
(A= = 20)fK + (As — Xo)FE=FE(U) + FET(U), VK e {1.N}

B By analogy of the kinetic theory and kinetic flux splitting scheme we propose the
following decomposition 3° o vfk = Fé"*’(U) and 3, vk = Fé"f(U) . /\
2

1
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Generic vectorial D1Q3

B Keep the vectorial structure: more stable since we can diffuse on all the variables.

B Add a central velocity (equal or close to zero) to capture the slow dynamics.

B The lattice [D1Q3]" is defined by the velocity set V = [A_, Ao, A+] and

fe_q(U)=—ﬁ o (U)

i Fi(U)  Fo(u)
W = <U_ <(A+ —X) (Aoo— A-)))
PR = g P V)

b e
B Sufficient condition for L? stability: F7, —O0F, and 1 — M are positive.

B Condition too restrictive (Gerschgorin disc).

B Condition for entropy stablllty Fa' and F is an entropy decomposition of the flux +
same condition that for L2.

f21
\ /371
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D1Q3 for scalar case

B First choice: D1Q3 Rusanov (Ag = 0)

. (F(p) — A+p) + (F(p) —A-p)
F, = A\ — F = A A s
o () A A — A 0 (P) = Ay A — A
Consistency (for A_ = —Xy): Orp+ OxF(p) = o Atdx (N2~ | OF (p) ) Oup + O(AL?)

Second choice: D1Q3 Upwind

Fo (p) = XoF(o)<ret (F(P) = X0p)  Fo (p) = X{oF(p)>2r0} (F(P) — Aop)

with x the indicatrice function.
Consistency: 0¢p + OxF(p) = o Atdx (A | OF (p) | — | OF (p) |?) Oxp + O(At?)

Third choice: D1Q3 Lax-Wendroff (Ag = 0)
o= (Fo+ 5 [[erw?) rw =3 (Fo+5 [(orwy)

with A\o =0and A\- = —Ay and a > 1.
Consistency: 0¢p + OxF(p) = o Atdx ((w — 1) | OF (p) [2) Oxp + O(AL?).

The last one is not entropy stable and does not satisfy the sufficient L? stability
condition.

E. Franck \22/37
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D1Q3 for Euler equation |

B Euler equation. Two regimes where the classical method is not optimal.
U High-Mach regime: we use a negative and positive transport for purely positive or
negative flows.
U Low-Mach regime: X is closed to the sound speed so we have viscosity too large
for density equation for example.

B First possibility: use classical flux vector splitting for Euler equation.
O Stegel-Warming: F¥ = AL (U)U with AT positive/negative part of the Jacobian.
0 Van-Leer:

1
FE(U) = 4+ 2pe(m £ 1)2 | Gt
4 (y=1)u2c)?
2(v+1)(v—1)
0 AUSM method: convection of p, g and H as Van-Leer and separated
reconstruction of the pressure.
O Approximate Osher-Solomon: FE(U) = F(U)* | F(U) |

U 1
| F(U) ‘“/u | A(U) |=/0 | A(Up + (U — Ug)) | (U — Ug)dt

O Integral is approximated by a quadrature formula along the path (E. Toro , M
Dumbser)

O Approximate of | A | using Halley approximation (M. J . Castro) and Uy is the

average flow. r\
%y
\
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D1Q3 for Euler equation Il

B [ ow Mach case:
Orp+ Di(pu) = 0

Otpu + Ox (,ou2 + %) =0
OtE + Ox(Eu + pu) =0
B We want to preserve as possible the limit:
p=cts, u=cts, Op+ udxp=20
B |dea: Splitting of the flux (E. Toro):
(p)u

F(U)= | (p)u+p
(Gpu

L5pu

B |dea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.

B Use only u, p and A (= c) to reconstruct pressure. Important to preserve the low
mach limit.

B We obtain

P
. (pui”yzﬂH
FEU =5 | (P =% g)+p(1iv§)
(2pu2 + T%pu 711 i(p/\2 + 2\pu + N?u?)

B Preserve contact. Diffusion error for p in O(u?). r-\
24/
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Multi-D extension and relative velocity

B Extension of the vectorial scheme in 2D and 3D
B 2D extension: D2q(4 * k) or D2Qq(4 * k + 1) with k =1 or k = 2.
B 3D extension: D3q(6 * k), D2Qq(6 * k + 1) with k =1, k = 2 ore more.

6--------- 2------- - 5
: A I
} : 2 16-------- 23
I ! R

1 4 I
| ! A
| .

205 ----- c19k- - 7-

3 >1 [ 1 ,,,,,
‘ | o
[ SO ——
| 1 e I
1 ! Pt vy

1
: A/ X
T-mmmmmm - 4--------- 8

D2Q9
B |ncrease k ==> increase the isotropic property of the kinetic model.

B The vectorial models with 0 velocity are not currently extended to 2D.
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R R R R RRRRRERERRERERRREEEE==S=————————
Advection equation

B Equation
Bep -+ Ox(a(x)p) = 0
B with a(x) > 0 and dxa(x) > 0. Dissipative equation.
B Test case 1: a(x) = x. 10000 cells. Order 17. 6 =1 (first order).
Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order
At =0.05 6.4E2 - 2.7E? - 27E2 -
At = 0.025 38E2 ] 075 | 12E2 | 117 [ 57E 3| 224
At=00125 [19E-2 ]| 1.0 |42E %] 15 [55E %] 337
At=0.00625 | 79E-3 | 125 [ 13E 3| 17 [53E° | 338
B Test case 2: a(x) = 1+ 0.01(x — xg)2. 10000 cells. Order 17. Second order time
scheme.
n
N
|\ )r/ \
J /AN
B |eft At =0.01. Right At = 0.1. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff & = 1 (blue), Lax-Wendroff a = 2 (Yellow). h
26/
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R R R R RRRRRERERRERERRREEEE==S=————————
Advection equation

Equation
dtp + 9x(a(x)p) =0

with a(x) > 0 and dxa(x) > 0. Dissipative equation.
Test case 1: a(x) = x. 10000 cells. Order 17. § = 0.5 (second order).

Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order
At =0.05 3.8E2 1.2E—* - 1.2E70

At = 0.025 53E-3 | 284 | 81E°© 3.8 41E1T 1.55
At =0.0125 37E~* | 384 | 53E7 | 384 | 1.1E-* 11.5
At =0.00625 | 23E-° | 388 | 3.3E°% 4 6.2E-°% | 4.15

Test case 2: a(x) = 14 0.01(x — x)2. 10000 cells. Order 17. Second order time
scheme.

AR

Left At = 0.01. Right At = 0.1. Reference (black), Rusanov (violet), Upwind

(green), Lax-Wendroff o = 2 (Yellow) = 1 unstable. h
26/
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R R R R RRRRRERERRERERRREEEE==S=————————
Burgers

B Model: Viscous Burgers equations
2
Bep + x (%) =0

B Test case 1: p(t =0, x) = sin(2rx). 10000 cells. Order 17. First order time scheme.
Rusanov Upwind Lax Wendroff a =1
Error Order Error Order Error Order
At =0.01 3.9E? = 1.1E2 = 2.3E3 =
At = 0.005 21E-2 | 089 | 6.4E-3 | 078 | 6.0E* 1.94
At=0.0025 | 1.1E-2 | 093 | 35E3 | 087 | 1.5E* 2.00
At =0.00125 | 54E-3 | 1.03 | 1.8E-3 | 0.96 | 3.9E—° 1.95

B Shock wave. First order scheme in time.

|

B | eft At =0.002. Right At = 0.01. Reference (black), Rusanov (yellow), Upwind
(violet), Lax-Wendroff (green), Lax-Wendroff o = 1.5 (blue).

E. Franck \27/37
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Burgers

B Model: Viscous Burgers equations

2
Bep + s (%) =0

B Test case 1: p(t =0, x) = sin(2rx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff a =1

Error Order Error Order Error Order

At =0.01 3.9E2 - 1.1E2 - 23E3 -
At=0.005 |21E-2| 089 | 64E3| 078 | 6.0E~* 1.94
At=10.0025 | 1.1E~2 | 093 | 35E3 | 087 | 15E* 2.00
At=0.00125 | 54E-3 | 1.03 | 1.8E-3 | 096 | 3.9E° 1.95

B Rarefaction wave. First order scheme in time.
’ =
;f

B |eft At =0.002. Right At = 0.01. Reference (black), Rusanov (violet), Upwind

(green), Lax-Wendroff e =1 (blue), Lax-Wendroff a = 2 (Yellow).

E. Franck
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R R R R RRRRRERERRERERRREEEE==S=————————
1D Euler equations

B Model: Euler equation
Op + (9X(PU) =0

depu+ dx(pu® +p) =0
OtE 4+ Ox(Eu+ pu) =0

x2
B Test case: acoustic wave. p=1+0.1e" o, u=0and p=p.
B The domain is Q = [—2,2]. 4000 cells and 11-order SL. § = 1 (relaxation).

B | eft At =0.002. Right At = 0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), Low-Mach (red).

B Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other but very accurate on the material wave. r‘\
28
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R R R R RRRRRERERRERERRREEEE==S=————————
1D Euler equations

B Model: Euler equation
Orp + Ox(pu) =0

Oepu + Ox(pu® + p) =0
OtE + Ox(Eu+ pu) =0

x2
B Test case: acoustic wave. p=1+0.1e" o, u=0and p=p.
B The domain is Q = [—2,2]. 4000 cells and 11-order SL. 8 = 0.666 (relaxation).

U

B | eft At =0.002. Right At = 0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), Low-Mach (red).

B Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other but very accurate on the material wave. r‘\
28
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1D Euler equations Il

B Test case: Smooth contact. We take p =1 and u is also constant.

B Final aim: take At = O(%) when u decrease to have the same error.

B We choose At = 0.02 and Tr = 2. 4000 cells. We choose w = 1:

Schemes | Rusanov VL Osher LM
y—10-2 | P(tX) 0.35 12E-T [ 99E=7 [ 15E3
u(t, x) 0 53E73 | 1.1E-S 0
p(t, x) 0 3.6E73 | 6.1E~7 0
u10-4 | P(EX) 0.35 12E-T [ 99E—7 | 15E®
u(t, x) 0 53E~3 | 1.1E-® 0
p(t, x) 0 3.6E73 | 6.1E77 0
o(t, x) 0.35 I2E-T [ 99E7 0.0
u=0 u(t, x) 0 53E3 | 1.1E-® 0
p(t, x) 0 3.6E73 | 6.1E7 0

B Drawback: When the time step is too large we have dispersive effect.
B Possible explanation: the error would be homogeneous to

| p"(x) — p(t, x) |= [O(Atu?) + O(AtuNT)].
B with X closed to the sound speed.

B Problem: At the second order we recover partially the problem since A is closed to the

sound speed. h
2
WEL
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1D Euler equations Il

B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.

B We consider the following [D1Q5]% based on the following velocities:
V= [_)‘fv —Xs,0, As, )\f]

slow scale

B The convective part at the slow scale. The acoustic part at the fast scale.

B Smooth contact: We take 200 time step and At = %:
Error [T T TAf]
u=10"1 ] 25E3 2 2
u=10"2 [ 25E-3 | 0.2 9
u=10"3 [ 25E-3 | 0.02 90

B Conclusion: the error would be homogeneous to
| p"(x) — p(t, x) |~ [O(Atu?) + O(At?urd)].

B with \s which can be take small.
B Drawback: For the stability it seems necessary to have
AsAr > Cmax(u + c)
* 30
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1D Euler equations Il

B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.

B We consider the following [D1Q5]% based on the following velocities:
V= [_)\fv _)\sy 0. >\s, )\F]

fast scale

B The convective part at the slow scale. The acoustic part at the fast scale.

B Smooth contact: We take 200 time step and At = %:
Error [T T TAf]
u=10"1 ] 25E3 2 2
u=10"2 [ 25E-3 | 0.2 9
u=10"3 [ 25E-3 | 0.02 90

B Conclusion: the error would be homogeneous to
| p"(x) — p(t, x) |~ [O(Atu?) + O(At?urd)].

B with \s which can be take small.
B Drawback: For the stability it seems necessary to have
AsAr > Cmax(u + c)
* 30

e E. Franck \ /37‘




P ———
1D Euler equations Il
B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.
B We consider the following [D1Q5]% based on the following velocities:

V= [_)‘fv —Xs, 0, As, )\f]

coupling

B The convective part at the slow scale. The acoustic part at the fast scale.
B Smooth contact: We take 200 time step and At = 290L.

u
Error [ Xs | | | Af]
u=10"1 [ 25E—3 2 2
u=10"2 | 25E3 0.2 9
u=10"3 [ 25E-3 [ 0.02 90

B Conclusion: the error would be homogeneous to

| p"(x) — p(t, x) |~ [O(Atu2) + O(At2u)\sq)}.

B with A\s which can be take small.

B Drawback: For the stability it seems necessary to have
AsAfr > Cmax(u + ¢)
X

E. Franck \30/37
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Kinetic relaxation method for Diffusion problem

E. Franck
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Applications

Main parabolic problem

B Coupling anisotropic diffusion + resistivity.
{ T —V-(BRB)VT +eVT)=0

B -1V x (T"3V x B)=0
V.B=0

Psaudocolor

var phi
)

l 0001948

0001173

o00%s

00003749
Max: 0002720
Min: -0.000374%

B The temperature T for the case n = 0 and B given by magnetic equilibrium.

&’L”,. E. Franck
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Kinetic model and scheme for diffusion |

B We want solve the equation:  9¢p + Ox(up) = DIxxp
B D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):

A 1

Of — SO f = S (fy — )

O+ Zouf = S (fh — fy)
IS &

B with fif = 2 + =) The limit is given by:

Otp + Ox(up) = aX((/\2 - | u ‘Z)OX/)) + >‘2523X(6XX(“P) + udxxp) — )‘2528><XXXP
We introduce o >| u |. Choosing D = A2 — £2a? we obtain
Oep + 0x(up) = 0x(Ddxp) + O(<)
B Results (At >> Agp) (Order 1. Left: A% = 0.1, Middle: £ = 1, Right: 4 = 10):

0.9 i t= 0.1‘ 0.9 i t= 0.1‘ 20 i t= 0.1‘
0.8t 0.8

07t 0.7 150

0.6 0.6

05t 0.5

0.4f 04 S

0.3t 0.3

0.2 0.2 0.51

01t 0.1

0.05 < 0.0% 0.05
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Kinetic model and scheme for diffusion |

B We want solve the equation:  9¢p + Ox(up) = DIxxp
B D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):
A 1, .
Orf— — —Oxf = S (feq — =)
Oify + —0kfy = —2(1“;{7 —fy)
€ e
B with fif = 2 + =) The limit is given by:
Otp + Ox(up) = aX((/\2 - | u ‘Z)OX/)) + >‘2523X(6XX(“P) + udxxp) — )‘2528><XXXP
B \We introduce a >| u |. Choosing D = A2 — £2a? we obtain
Oep + 0x(up) = 0x(Ddxp) + O(<)

B Results (Order 2. Left: & = 0.1, Middle: &f =1, Right: £¢ = 10):
0.9 i t= 0.1‘ 18 i t= 0.1‘ 20 i t= 0.1‘
08} 16)
07t 14 150
0.6t 12}
o5t 10
04t 08} S
03t 0.6t
02f o4l o5b
o1f 02f
00} . 00} . 00}
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Kinetic model and scheme for diffusion |

B We want solve the equation:  9:p + Ox(up) = DOxxp
B D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):

A 1,
Q- — Souf = S (fg — )

Ocfy + —Oxfy = ?(fei; - f)

B with fif = £ + =) The limit is given by:
Bep + Ox(up) = (A% — €2 | 1 [2)9xp) + N220x (Brx (Up) + uBxxp) — N2 Drxx
B We introduce a >| u |. Choosing D = A2 — c2a? we obtain

dep + Ox(up) = Ox(Ddxp) + O(<?)

B We can choose ¢ = At” and w = 2.

=3 7=1 y=2
Error order | Error | order | Error | order
At =0.1 6.4E — 2 - 0.28 - 0.47 -
At =0.02 39E -3 1.74 0.27 0 0.48 0
At =0.01 45E — 4 3.1 0.27 0 0.48 0
At = 0.005 8.7E -5 2.37 0.27 0 0.48 0

B The splitting scheme is not AP. r\
' \33/37
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Kinetic model and scheme for diffusion Il

Consistency analysis

We consider 0tp = DOxx

We define the two operators for each step :
Ta: : eAtgaxf'hLl = f"

f"+1+9 (feq(U) i) = (179) S(Fe(U) - £7)

Final scheme: Tp; o0 RAt is consistent with
1—w 1)\ A2
dep = Atdy ((T 4 5) E—zaxp) + 0(At?)

Taking D = A2, 0 =0.5 and ¢ = /At we obtain the diffusion equation.

Question: what is the error term is this case ?

First results (for these choices of parameters):

0 Second order at the numerical level.
0 At the minimum the first order theoretically.

Question: what is the error term ? Can we optimize the constant of convergence ?

E. Franck



Kinetic model and scheme for diffusion Il

B We want solve the equation:  9:p + OxF(p) = O D(p)
B D1Q4 Kinetic system proposed (R. Natalini, F. Bouchut):

1
Of +TOF =~ (Fog — F)

with ' = A+ \[9 Consistency verified: if ©2f% = D(p) and ['f¢ = F(p).
B Results: We choose F(p) =0 and D(p) = (f) with 2000 cells, order 11.

B p =1 (green) p =2 (violet). Left At =0.001 . Right At = 0.005

0%0 05 1.0 15 20 25 3.0 35 40 0%0 05 1.0 1.5 20 25 3.0 35 40
X

B The second kinetic scheme allows to treat also nonlinear diffusion.

B Future work: consistency for nonlinear case and stability for different schemes.
B Extension for other diffusion models: V(V - Iy) or V - (AVIy). r‘\
35/
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Kinetic model and scheme for diffusion Il

B We want solve the equation:  9:p + 9xF(p) = 0xD(p)
B D1Q4 Kinetic system proposed (R. Natalini, F. Bouchut):

1
Otf +TOf = —(feqg — f)
€
with ' = A+ ﬁ@. Consistency verified: if ©2f% = D(p) and ['f¢ = F(p).

B Results: We choose F(p) =0 and D(p) = <p—:) with 2000 cells, order 11.

B p=3. Left At = 0.001. Right At = 0.005

0.9 i . i t7|0 1 i i i 0.9 i . i t7|0 1 i i i
08| 1 08| 1
0.7 1 0.7 1
0.6 1 0.6 1
05 oot - 05 oot -
0.4 1 0.4 1
03F 1 03F 1
021 1 021 1
0.1 1 0.1 1
0

‘0.0 05 1.0 15 2.0 25 3.0 3.5 40 0'%.0 05 1.0 1.5 20 25 3.0 35 40
X X

B The second kinetic scheme allows to treat also nonlinear diffusion.

B Future work: consistency for nonlinear case and stability for different schemes.
B Extension for other diffusion models: V(V - Iy) or V - (AVIy). r-\
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Conclusion

Application with too restrictive CFL
B Multi-scale models: different physical speeds. Low-Mach Euler low 5 MHD.

B Diffusion + other: CFL is given by the diffusion. Fine grids given by another problem.

B Varying parameters: waves/diffusion with strongly varying coefficient. Acoustic,
Maxwell, elasticity, neutronic.

B Meshes with local refinement: strong CFL in some area. Sismology for example.

Main idea

B Target: Nonlinear problem N.

B First: we construct the kinetic problem K. such that || Kc — N ||< C.e
B Second: we discretize K. such that || K. — K/At ||< CarAtP + Cyh9
|

We obtain a consistent method by triangular inequality.

| A

Advantages

B |nitial problem: invert a nonlinear conservation law is very difficult. High CPU cost
(storage and assembly of problem. Slow convergence of iterative solvers).

B Advantages: no matrices storage and inversion. High parallelism/optimization.
B Drawbacks: large error in some cases. Complex for boundary condition.
B Future: 2D/3D NS and MHD, BC, convergence/stability, kinetic models in plasma.

E. Franck
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Conclusion 11

B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV = 100, CFL HO =~ 300.
B Comparison: implicit Crank-Nicolson and D1Q2 implicit.

B |eft: scheme (1). Right: scheme (2), Black: reference solution.
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B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV = 100, CFL HO =~ 300.
B Comparison: implicit Crank-Nicolson and D1Q2 SL.

B | eft: scheme (1). Right: scheme (3), Black: reference solution.
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B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV = 100, CFL HO =~ 300.
B Comparison: implicit Crank-Nicolson and D1Q3 implicit.

B |eft: scheme (1). Right: scheme (4), Black: reference solution.
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Conclusion 11

B Test: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
B At =0.04: CFL FV =~ 100, CFL HO = 300.

B | eft: scheme (1). Right: scheme (4), Black: reference solution.

Conclusion: as expected D1Q3 (Van-Leer) SL closed to the CN implicit scheme.
CPU time difficult to compare since the code are different.

But: 170 sec for (1), 110 sec for (2), 1.6 sec for (3), 1.7 sec for (4)

¥37
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