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Stiff hyperbolic systems

B \We consider the general stiff problem:

0 U + iaaxF(U) + ibaXG(U) — icR(U) - Zb)
€ & = &

Limit

B First case: a=b=c=1and o =0. long time limit:

| A

OxF(U) +0«G(U) = R(U)
B Second case: a=b =0, c =1 and o = 0. relaxation limit:
0tV + 0xK1(V) =0
B Third case: a=b=c=1,d =2 o = 1. diffusion limit:
0tV + 0xK1(V) — 0x(K2(V)oxV) =0
B 4th: a=c=0, b=1 and o0 = 0. fast wave limit:

8:U+0,G(U) =0, 6xF(U)=0
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Diffusion limit: damped wave equation

Damped wave equation

1
Otp+ —0xu=0 1
;s o —ow-0(0p) =0
o2

Otu+ —Oxp=——u
e 6}

B Ref: Jin-Levermore 96, Gosse-Toscani 01.
B We plug u=—<0xp+ O(£?) in first equation.

Godunov scheme

ntl_ o,
{ P; Pj + 1YH1—Uji—1  Ax Pi+1—2pj+pj—1 -0

At € Ax 2e Ax?2
/A R /5 e/ U Ax U 22Ut o
At € Ax 2e Ax2? e2 ™

B |imit scheme:

1
P —pj 1 Ax\ pit1—2pi+pi1
T T (24 N BRI o) . .
At o 2¢e Ax B Diffusion and numerical
solutions for € = 0.001. /\
B CFl _condition: At < f(=\h 5/39
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Long time limit: Euler gravity

Euler gravity

1
Otp + —0x(pu) =0
1 1 1
Oe(pu) + =0x(pu?) + =0xp = —=pdx
1 € € 1 =
OtE + EBX(EU + pu) = —gpuaxqﬁ

B (Class of steady solutions: for u = 0 and 9xp = —pOx¢ the system does not move.
B C. Berthon, C. Klingenberg (and al) 15-16-17.

Rusanov scheme

B Example: p = e *%¢ p= e *%¢ and ¢ = gx.

A
pn+1 — pn 4 Txaxxp + O(AX2)
A
()" = (pu)" + = 0c(p) + O(Ax%)
EHl=En g %&XE +0(Ax?)

B with A > max(| u | +c) with ¢ the sound speed. B Pertubated equilibrium.
B Conclusion: the equilibriums are not preserved.
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Relaxation limit: HRM model

HRM model

9tp + Ox(pu) =0 )
OtpY + Ox(pYu) = = (pY*(p) — pY)
depu + Ox(pu® +p) =0

B with Y the mass fraction and p = p(p, Y) ( Ambrosso 09 etc).

B Relaxation limit: the mass fraction is close to given equilibrium.

4

Splitting scheme

B Only write for the mass fraction part

. At
and (pY)" = (V)" + =5 (0" Y9 (p") = oY)

(pY)™1! — (pY)* N (pYU)iy — (pYU)r /\(pY e = 20Y)F + (P

At Ax Ax
B Stability we must take At < CeAx.
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Fast wave limit: Low-Mach Euler equation

Euler low-mach

Otp + Ox(pu) =0
B (pu) + Ox(pu?) + i6'Xp =0
OtE + 8x(Eu+ pu) =0
B S Dellacherie, C. Chalons, C. Klingenberg (and al) 14-15-17.
B Limit for M small: u = cts + O(M), p = cts + O(M) and 9:p + udxp = O(M).

Rusanov scheme

B At the limit: density advection. Advection scheme:
(pu)j1 — (pu)j-1 Pi+1—2pj + pj-1
Bepj + —|u =0
tP) Ax | ul Ax
B |imit scheme of Rusanov scheme for Euler:
(pu)js1 — (pu)i—1 A pit1 —2pj +pj—1
Oepj + Ax M Ax =0 B Contact with u = 0.01.
B The scheme for Euler dissipate too much. LSy
B Stability: At < CMAx. B Black curve: exact sol.
B CFL constrains by "fast velocity / small amplitude” B Green curve: numerical
acoustic waves. Filter in time/space these waves. sol with 100 cells. r'\
ol 8
p—
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Important notion: AP and Well-Balanced schemes

B We consider PDE depending of a small parameter ¢ with an asymptotic limit.

Asymptotic preserving

scheme

B AP scheme: a consistent
scheme for the initial PDE
which gives at the limit a
consistent scheme of the limit
PDE.

B Uniform AP scheme:
convergence and stability
independent of e.

PE

h—0 h—0

B Application: simulate problem with varying physical parameter and regime. Example:

radiative transfer.

B QOther application: use AP scheme to create a new scheme for the limit model.
Example: relaxation scheme for Euler equation.

Well Balanced scheme

B A scheme which preserve exact (or with high accuracy ?) a steady state of the

continuous PDE.

E. Franck
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AP /WB schemes for hyperbolic PDE with source terms

E. Franck
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Damped wave equation: Godunov scheme

Damped wave equation:

1
Otp+ —0xu=0
Otu+ —0xp = —%u
€ 5

B Riemann Invariant: u + p (eigenvalue 1) and u — p (eigenvalue —1) .

B Important relation to obtain the limit: dxp = —Zu.

B Upwind scheme for 9:u + 0x(au) = 0:
n+1 A .
o/ A s S b

At Ax;

with x; = Xip1 = X1 | and U1 = for a> 0 and Uipl = Ul fora<0

B Godunov acoustic scheme: Upwind scheme on the Riemann invariant. We obtain

n+1 n Uf' 1 —Ufl 1
pP; " —Pj jt5 i3
J J 2 igp— — yh n
At + ., eAx; =0 uj+% + pj+% - uj + pJ
n+1 n P. —-P —p. = u” — ph
Y4 3 -3 0 41 TP+ T Y T P
At eAx; !

B Main drawback: the fluxes ignore the balance between the pressure gradient and the

source.
11/39
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Damped wave equation: Jin-Levermore AP scheme
Jin-Levermore scheme:

B Plug the balance law dxp = —Zu+ O(e?) in the fluxes (Jin-Levermore 96).
B Scheme write on irregular grids.

B We write
P(xj) = P(x, 1) + (x5 = x;,1)0xp(x;, 1)
B Coupling the previous relation (and the same for x;;1) with the fluxes

. (Tj+% Ax;
i+3 T P+ 2

Uiy
. 14X
Tl O

i) 05 1 = S — 2 || B0 W = e
2
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Damped wave equation: Jin-Levermore AP scheme
Jin-Levermore scheme:

B Plug the balance law dxp = —Zu+ O(e?) in the fluxes (Jin-Levermore 96).
B Scheme write on irregular grids.

B We write

g
pOg) = Pl 1) = by = %) Zulx. 1)

B Coupling the previous relation (and the same for x;;1) with the fluxes

0. 10x;
Fp= U
YT P =Yl TP 2 Uil
o 1Ax41
. - itz
Ujt1 — pj+1 = j+%—pj+%+ 5z U 1.

P J+35 ji—1 . ) . .
J 2 Jjt3 2 J=3 Y _uj+uj+1+pj—pj+1
At eAx; i+1 2 2
uttt oy p"1+l — P o v — Pit P | U~ Ui
J JJdf I L 9 n_p Pir1 = > + >
At eAx; g2 J '
a 2¢e
with Ax; 1 =|xjp1 —xj|and M, 1 = 5——==——.
Jt3 J J Jts 2s+aj+%AXj+%
E. Franck




Damped wave equation: Jin-Levermore AP scheme
Jin-Levermore scheme:

B Plug the balance law dxp = —Zu+ O(e?) in the fluxes (Jin-Levermore 96).
B Scheme write on irregular grids.

B We write
_ Ax; o
Plg) = pOx,1) — =~ —ulx,1)
B Coupling the previous relation (and the same for x;;1) with the fluxes

0. 10x;
C— a2
Yt P =t tp e
0. 1Axj411
. - j+3
Ujitl = Pj+1 = Ui 1 = Pyl + 5z Upi1.

Jt+3 =1
J P 2 Jtj 2 J—3 Uit Ui P — P+
At eAx; Uil 2 + 2
ymtt _yn p"1+l —pP 1 o v = Bt P U U
J J + JT3 ) + n_o P_H_l == +
—u =0, 2 2 2
At eAx; €
g 2¢e
with Ax., 1 =| xj41 —xj |and M., 1 = ;—=——.
T J J Jts 25+0j+%AXj+%
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Gosse-Toscani scheme

B QOther scheme: Gosse - Toscani scheme.

B Derivation of the scheme: Localization of the source on the interface and the

Riemann problem associated.

B QOther solution: we use the following source term %(“j\ 1ty
2

Jin-Levermore scheme.

Gosse-Toscani scheme:

) with the

1 . L 1—M.
P —pf + i+3 ity ~5Y-3
At eAx;
+1 M. L 1—M. . M. 1—M. A
i a3 S W o G TS e WY 18 o 18 W 5 G R W
At cAx; Axe P 2e7Ax 2:2Ax i =
With n n n n n
b= Ul P P _ Pt P — Ui
Jt+3 2 2 ' Jt3 2 2
2¢e
and M. 1 .
Jt3 25+UJ+IAX+%
.
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Analysis

Analysis of the Godunov scheme

B Consistency error:

0O First equation: (% + At). Second equation: (A?Xz + At)

B Time discretization:
O Explicit CFL: At (m) < 1. Semi-implicit CFL: At () < 1.

Analysis of the Jin-Levermore scheme

B Consistency error:

U First equation: (Ax + At). Second equation: (A?ﬁ 4F At)
B Time discretization:
O Explicit CFL: At (ﬁﬁz) < 1. Semi-implicit CFL: At (£) < 1.

4

Analysis of the Gosse-Toscani scheme

B Consistency error:
O First and second equation: (Ax + At) .
B Time discretization:
0 Explicit CFL: At (ﬁ) < 1. Semi-implicit CFL: At(

1
AxE+Ax2) <L

f‘E\
")
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Numerical example

Godunov scheme

B Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a

Gaussian u(0,x) =0 and ¢ = 1, ¢ = 0.001.

Jin-Levermore scheme

Scheme LZ error | CPU time
Godunov, 10000 cells 0.0376 505 sec
Godunov, 500 cells 0.42 5.31 sec
AP-JL, 500 cells 4.3E-3 5.42 sec
AP-JL, 50 cells 0.012 0.46 sec
AP-GT, 500 cells 1.3E-4 2.38 sec
AP-GT, 50 cells 0.012 0.013 sec
E. Franck
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Numerical example

B Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a

Gaussian u(0,x) =0 and ¢ = 1, ¢ = 0.001.

{

f

Godunov scheme

Gosse-Toscani scheme
N N\
[ [\
/ \ / \
/ \ / \
/ \ / \
. / \ ‘s/ |
/ \ / \
/o -
Scheme LZ error | CPU time
Godunov, 10000 cells 0.0376 505 sec
Godunov, 500 cells 0.42 5.31 sec
AP-JL, 500 cells 4.3E-3 5.42 sec
AP-JL, 50 cells 0.012 0.46 sec
AP-GT, 500 cells 1.3E-4 2.38 sec
AP-GT, 50 cells 0.012 0.013 sec
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Test for Well-Balanced property
B We propose to study also the Well-Balanced property for the family of steady state:

u(t,x) =G
p(t,x) = —-2Cx+ G

B This steady-state generate also the affine steady state of the limit equation.

B For this, we initialize the different schemes with a steady state and simulate with a
large final time ( T¢=20).

B Results for different scheme and meshes.

Scheme/mesh Uniform Mesh | Random Mesh
Godunov, 100 cells 0.0 2.83E-3
Godunov, 1000 cells 5.0E-17 2.7E-4

AP-JL, 100 cells 0.0 3.3E-3
AP-JL, 1000 cells 6.3E-17 3.9E-4
AP-GT, 100 cells 3.1E-16 3.1E-16
AP-GT, 1000 cells 3.0E-16 2.8E-15

O Only the Gosse-Toscani scheme is WB for all meshes.

E. Franck 39‘



Test for uniform convergence in 1D

We solve the damped wave equation for different values of e.
p(t,x) = (a(t) + %O&’(t))COS(TFX), u(t, x) = (—£a(t) sin(wx))

Convergence uniform: convergence independent of ¢.

Test: ¢ = h” on uniform and random meshes.

JL scheme on uniform mesh JL scheme on random mesh

.
i)

B The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the
error homogeneous to O(he + h?).

B On Random mesh the JL scheme is not an uniform AP scheme. r-\
17
/39
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Test for uniform convergence in 1D

B We solve the damped wave equation for different values of ¢.
B p(t,x) = (a(t) + o (1)) cos(mx),

u(t, x) = (—£a(t) sin(wx))
B Convergence uniform: convergence independent of ¢.

B Test: ¢ = h” on uniform and random meshes.

GT scheme on uniform mesh

GT scheme on random mesh

il

ik
fiifin

B The GT scheme and the JL scheme (only on uniform mesh) are
error homogeneous to O(he + h?).

uniform AP with the
B On Random mesh the JL scheme is not an uniform AP scheme.

E. Franck

\‘ 17/39

4



Analysis of AP schemes: modified equations

B The modified equation associated with B The modified equation associated to

the Upwind scheme is the Gosse-Toscani scheme is
Oep+ L8u— %0,p =0, dep+ M1 axu—ngaxxp—o
Oeu+ 20xp — SOy = —Fu. Otu+ MZ0xp — M3Z Ot = =M% u.
B Plugging edxp + O(e?) = —ou inthe ™ Plugging Medxp + 0(e?) = —Mou in
first equation, we obtain the first equation, we obtain
1 A M 1-M
8tp— —8XXP— laxxPZO- 8l‘P_ 78XXP_ 6><Xp:0
o 2e o
B Conclusion: the regime is captured B Conclusion: the regime is captured on
only on fine grids. all grids.

AP schemes

B AP schemes modify the numerical diffusion to correct the scheme on coarse grid.

B The JL scheme does not converge in the intermediary regimes.

B Interpretation: since the linear steady states are not preserved the limit diffusion
scheme in these regimes is not consistent.

B The exact preservation of linear steady-state is necessary for uniform AP schemes ?

E. Franck -\18/39
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Uniform convergence in space

B Naive convergence estimate : ||P; — P%||aive < Cebhe
B |dea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

1P = Pell2 < min(|[P; = P¥||naive, [|P; — PRIl 4 [|PR — PPl +[|PF — P°l))

e—0 B |ntermediary estimations :
" 0 [1PE = PYY| < Cae?,
o |PY—PY| < Cyh9,
h—0 h—o0 O ||Ps — Pl < Cee®,
O d>c, e>a

pp—.p

e—0
B We using min(x, y + z) < min(x,y) + min(x,z) and d > ¢, e > a to obtain
[|Pr—P¢ll2 < C (min(e_bhc, €®) + h? 4+ min(e~bh°, sa)) <2C (hd + min(e~Phe, 53))

_ac_
B Defining sglbhc = &3, we obtain min(e "Ph¢,£?) < 2, = hatb.

Space result

We assume that [|[V<(0) — V§(0)[|2(q) < Ch || p(0) [|2 and Cih < Ax; < Gh V).

£ e . 1 _1 1
IVE = Villz (o, rx) < € min (h2€ 2:h+25) Il po ll3@)< Ch3 |l Po llks(q)

110
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Euler equation with external forces

B Euler equation with gravity and friction:
1
Orp + —0x(pu) =0,
‘1 1 1 o
Oepu + =0x(pu?) + =0xp = —=(pdx + — pu),
£ € 1 € o €
OE + gax(Eu + pu) = —g(puaxzj)—i- gpu2).

B with ¢ the gravity potential, o the friction coefficient.

Subset of solutions :
B Hydrostatic Steady-state (o =1, 8 = 0):

u=0,
Oxp = —pOxd.

B High friction limit (e =0, 8 = 1), no gravity: u=0
B Diffusion limit (a =1, 8 =1):

Orp + Ox(pu) =0,
O+E + Ox(Eu) + pOxu = 0,

u= ,l <8X¢+ 1<9Xp).
o P

’.g\
")
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Design of AP nodal scheme |

Jin Levermore method:

Plug the relation dxp + O(e) =

—pOxd — Zpu in the Lagrangian fluxes

B (Classical Lagrange+remap scheme (LP scheme):

P Pt TP-4Y -1
0 + elx; -
(pu), 1u’ 1 —(pu),_1u” 4 Pl 1P 1
Jt3 its3 =2 -3 Jt3 i3 1 o

Be(pu); + y + g =~ (pi(0x0)i + Zpju)

E vl —E_quf o Pl w1 P Ut

3 vy I3 73 Jtp Jt3 =3 73 L T 2
Ok} + ey + vy =—2 (Pu(0x9)j + Zpju;

and the upwind flux

+ (pC)jJr% uf_{_% =pj+ (pC)jJr% u;j

* — . .
- (Pc)j+%”j+% = Pj+1 — (PC)J'+%”J+1
* .
uf  f1 = UHI)S
PN SN S *
J+5 Jt3 ut | f;
2 1+% j+1

E. Franck



Design of AP nodal scheme |

Jin Levermore method:

Plug the relation Oxp + O(e) = —pdx¢ — Zpu in the Lagrangian fluxes

B (lassical Lagrange+remap scheme (LP scheme):

* *
jpll 1P 1U g
Jtg it im3 i—3
6tpj+ eAx; =0
(pu)., 1u’ 1 —(pu) 1uf 1 P’ 1—P,* 1
Jts jt3 =5 -3 itz =3
. 2 2 2 2 2 _ _ 1/, P APS
9(pu)j + By + Ay e (pi(0x9); + Zpju;)
176 14 PY iU 1 =P Ul
J+2 j+2 J—3 Ji—3 Jjt3 it -3 i—3 1 o 2
6tE + elx; + elx; - T & pjuj(8x¢)j + e Pl

with Lagrangian fluxes with the new Lagrangian fluxes

Ax
J+2

1
+ 0 gur,y - =5 (600 + o ) = e+ (0

.
Pit1

*

Ax .1
J+ jt+5 .
Py~ (pc)H_l u+1 . : ((paxd))ﬁrl + szj+%uj+%) = P+l — (pc)j+%Uj+1

with P+l and (p@ﬂb)H% averages between the interface and the upwind flux and the

upwind flux
*
ut o f
* Jjt5
u 1= e
J+iits u* i

e (21/39
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Design of AP nodal scheme |

Jin Levermore method:

Plug the relation Oxp + O(e) = —pdx$ — < pu in the Lagrangian fluxes

B New scheme (LP-AP scheme):

.
P 1U. 1 —pP;_1U. 1
oy Jtaty Jm3 i
Opj+ ——amg =0
(pu), 1u’ 1 —(pu),_1u” 1 P 1—P 1

. Jta it3 ] Jjts i—3 1 o *

Ot(pu)j + ELy. + Rk e (Pax¢)j+% + ETaPH_%UjJr%
—E. 1'-’?‘1 P?‘lu.*l—Pf 1Uf
J+2 /+§ J—3 i—3 jt3 Jty =3 i—3 1 * o % 2
OtEj + cTAx; + <O Ax; = T za (P8x¢)j+%uj+% + E,gpj+%uj+%
with Lagrangian fluxes
. 2ieh +3
Pyt (pC),+1u+1 = (POxd);, 1 + d /J,+1u+1 =P+ (pc)jy 1y
N1 i+l
* _ * ] ] * — p: — 0
Pir1 (”C)j+%“j+§+ 2 <(pax¢)j+%+ B Pj+§”j+5) = pi+1 — (€)1 i1
with p.. 1 and (pdx¢ ) 1 averages between the interface and the upwind flux
2
*
ut 1 f
* Jt+3
ul 1 f 1 = :
3 ts “J* 1 i1
2

‘ 21
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Properties

Ap property

0 The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

L The discrete steady state p;11 — pj = —A><j+;(p3x¢)j+; is exactly preserved.
2 2

B Question: How the scheme preserved the continuous steady state ?
B First choice:

_ 1 ¢J+1 ‘251
(P6X¢)j+% =5 (PJ +pj+1) AXj+1
2

B Only the continuous steady state with pdx¢ = Cts are exactly preserved.

B To treat general steady-state: construct a new discrete equilibrium which is a very
high order approximation to the continuous one.

E. Franck 4
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Properties

Ap property

0 The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

L The discrete steady state p;11 — pj = —A><j+;(p3x¢)j+; is exactly preserved.
2 2

B Question: How the scheme preserved the continuous steady state ?

B Second choice: P P
Pj+1 — Pj ji+1 — @
() = )
S Nnlpjaa) = In(p)) ) Bxg

B Only the continuous steady state with p = p = e™*, ¢ = gx are exactly preserved.

B To treat general steady-state: construct a new discrete equilibrium which is a very
high order approximation to the continuous one.

Oxp = _P8x¢

122/39
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Properties

Ap property

0 The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

L The discrete steady state p;11 — pj = —A><j+;(p3x¢)j+; is exactly preserved.
2 2

B Question: How the scheme preserved the continuous steady state ?

B Second choice: P P
Pj+1 — Pj ji+1 — @
() = )
S Nnlpjaa) = In(p)) ) Bxg

B Only the continuous steady state with p = p = e™*, ¢ = gx are exactly preserved.

B To treat general steady-state: construct a new discrete equilibrium which is a very
high order approximation to the continuous one.

A — ["a A L[ o
i+1 xP | = — ji+1 / POx
T\ Bxpt Sy T\ Axp Sy

122/39
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Properties

Ap property

0 The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

L The discrete steady state p;11 — pj = —ij+l(p8)<¢)j+l is exactly preserved.
2 2

B Question: How the scheme preserved the continuous steady state ?

B Second choice: P P
Pj+1 — Pj ji+1 — @
() = )
S Nnlpjaa) = In(p)) ) Bxg

B Only the continuous steady state with p = p = e™*, ¢ = gx are exactly preserved.

B To treat general steady-state: construct a new discrete equilibrium which is a very
high order approximation to the continuous one.

A 1 /XH—I 5.5 A 1 X1 0.3
i *Pitl | = 78+ Pi+19xPjt 1
2 ij+% x; 2 2 AXj-%—% x; 2 2

with ﬁj+l (same for p and ¢) average polynomial interpolation.
2

122/39
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Properties

Ap property

0 The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

L The discrete steady state p;11 — pj = —ij+l(p8)<¢)j+l is exactly preserved.
2 2

B Question: How the scheme preserved the continuous steady state ?

B Second choice: P P
Pj+1 — Pj ji+1 — @
() = )
S Nnlpjaa) = In(p)) ) Bxg

B Only the continuous steady state with p = p = e™*, ¢ = gx are exactly preserved.

B To treat general steady-state: construct a new discrete equilibrium which is a very
high order approximation to the continuous one.

the final equilibrium pj 3 — Ax+1 (pBX¢>)

1 Xj 41 . — p:
(b0 )10, = A, I (ax iip + P30,y ) - L
X,

+3 ijJr% G ijJr% m
/39
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Results

B Comparison between AP and Non AP scheme for Euler equation.

B |eft: non AP, Right: AP. Red: fine solution, black: coarse solution and green: middle

coarse solution.
23
/39
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Results
B Well-Balanced property.
B Test case: p(t,x) =3+ 2sin(27x) and ¢(x) = —sin(27x). Random mesh
| Schemes | LR | LR-AP (2) | LR-AP (3) | LR-AP (4)
\ cells \ Err q \ Err q \ Err q \ Err q \
20 0.8335 - 0.0102 - 0.0079 - 0.0067 -
40 0.4010 1.05 | 0.0027 191 | 8.4E-4 3.23 | 1.5E-4 5.48
80 0.2065 0.96 | 7.0E-4 1.95| 7.7E-5 3.45| 4.1E-6 5.19
160 0.1014 1.02| 1.7E-4 2.04 | 7.0E-6 3.46 | 1.0E-7 5.36

B Test case: p(t,x) = e &, u(t,x) =0, p(t,x) = e & et ¢ = gx. Random mesh

| Schemes | LR | LR-AP (2) | LR-AP (3) | LR-AP (4) |
\ cells \ Err q \ Err q \ Err q \ Err q
20 0.0280 - 6.5E-4 - 1.8E-5 - 8.0E-7 -
40 0.0152 0.88 | 1.4E-4 2.21 | 2.0E-6 3.17 | 3.8E-8 4.4
80 0.0072 1.08 | 3.3E-5 2.08 | 2.0E-7 3.32 | 2.0E-9 4.25
160 0.0038 0.92 | 8.8E-6 1.90 | 2.8E-8 2.84 | 1.1E-10 4.18
WB scheme
Not exact preservation of general steady-state, but arbitrary high order accuracy around
the steady-state -
E. Franck \ /39




Implicit relaxation method for low Mach Euler equations
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Low Mach and implicit scheme

Aim: Low Mach Euler equation

Otp+V - (pu) =0, )
c')tpu+V~(pu®u)+ﬁVp=0,
OtE+V - ((E + p)u) =0,

B CFL condition At < hM.

B Aim: choose a time step adapted to u. Filter the fast waves.
B Solution: implicit scheme.

Implicit scheme

| A

B Direct solver: too expensive in CPU time and memory consumption.
B |terative solver: used in practice. But ofter ill-conditioning for hyperbolic models.
B Euler equation: ill-conditioned mainly in the low-Mach regime.

B Using relaxation model and AP schemes to obtain implicit scheme without matrices.

E. Franck
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Relaxation scheme

B We consider the relaxation model (Jin-Xin 95) for a scalar system d:u + dxF(u) = 0:

Otu+Oxv =0
1

v + aPdu = = (F(u) — v)
€

O The limit scheme of the relaxation system is

et + O F(u) = eBx((N2— | OF (u) [?)8xu) + O(£?)
O Stability: the limit system is dissipative if (\>— | 8F(u) |?) > 0.

B We diagonalize the hyperbolic matrix ( ;)2 (1) > to obtain
1,
Of— — NOxf— = —(fg — =)

Bufy +X0ufy = (i — F+)

B withu=f +f and fif = 4+ 2.

O Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

€5
\ /391
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Generic kinetic relaxation scheme

Kinetic relaxation system

B Considered model:
U+ 0«F(U)=0
B |attice: W = {\1,...., A\p, } a set of velocities.

B Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".
B Kinetic relaxation system:

0F + Ao F = L(F9(U) — F)
€

B We define the macroscopic variable by Pf = U.

B Consistence conditon (R. Natalini, D. Aregba-Driollet, F. Bouchut) :

PfeI(U) =U
c{ PAFSI(U)=F(U)

B In 1D : same property of stability that the classical relaxation method.
B Limit of the system:

O:U + O F(U) = €0y ((PN*0feq— | DF(U) |*) 9xU) + O(€?)

O Generalization [D1Q2]": one Xin-Jin or D1Q2 model by macroscopic variable.

¥ 27
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==
Time scheme

Time scheme

B Property: the nonlinearity is local and non-locality is linear.

B Main idea: time splitting scheme between transport and source.

| A

Consistency in time

B \We define the two operators for each step :
TAt . eAt/\BX fn+1 — £
oS re() - iy = 17— (- 0 25 (re(w) - £7)
B Final scheme: V(At) = TAt o Rp; is consistent with
2 — w)At
U + 04 F(U) = (%) 8. (D(U)2,U) + O(AP2)
w

B with w= and D(U) = (PN29yfe — A(U)?).

£+9At

Drawback

B For [D1Q2]? scheme we have a large error: D(U) = (X2l — A(U)?)

\
e E. Franck 68/39
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High-order extension

High order scheme

B Second order splitting

1 1
V(At)=T (EAt) oR(At)o T (EAt)
B Higher order scheme using composition:

Mp(At) = W(y1At) o W(ypAt)..... o W(ysAt)

B with +; € [-1, 1], we obtain a p-order schemes.
B Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

B High-order convergence only for macroscopic variables.

Space solver

B Exact transport: the choice of the velocities link time and space discretization.

o R g q . 2d+2
B Semi- Lagrangian: Interpolation 2q + 1 gives a consistency error O( hAt ).

B implicit DG: DG (k polynomial and Gauss-Lobatto) point gives a consistency error
O(h*) + O(At?).

E. Franck 4
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Burgers: convergence results

B Model: Burgers equation

B Spatial discretization: SL-scheme, 2000 cells, degree 11.

2
Oep + O (%) =0

B Test: p(t =0, x) = sin(2mx). Tf = 0.14 (before the shock) and no viscosity.

B Scheme: splitting schemes and Suzuki composition + splitting.

SPL1,6=1 SPL1,6=05 SPL2,6=05 Suzuki
At Error order Error order Error order Error order
0.005 2.6E—2 - 13E3 - 7.6E* - 40E—* -
0.0025 1.4E-7 0.91 3.4E—* 1.90 1.9E-* 2.0 33E~° 3.61
0.00125 | 7.1E—3 0.93 8.7E—® 1.96 47E® 2.0 2.4E~°® 3.77
0.000625| 3.7E—3 0.95 22E 1.99 1.2E—° 2.0 1.6E-7 3.89
B Scheme: second order =
splitting scheme.

B Same test after the shock:

//

E. Franck
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas

‘31/39
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
31/39
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Classical kinetic representation

B High-order extension allows to correct the main default of relaxation: large error.

B |n two situations the High-order extension is not sufficient:

L For discontinuous solutions like shocks.
0 For strongly multi-scale problem like low-Mach problem.

B Euler equation: Sod problem.
B Second order time scheme + SL scheme:

t=0.2
! , 1.0

i i
-1.0 -0.5 0.0 0.5 1.0 DEl.D

X
B |eft: density At = 1.0~*. Right: density At =4.0~*
B Conclusion: shock and high order time scheme needs limiting methods. /\
32/
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Classical kinetic representation

B High-order extension allows to correct the main default of relaxation: large error.
B |n two situations the High-order extension is not sufficient:
L For discontinuous solutions like shocks.
U For strongly multi-scale problem like low-Mach problem.
B Euler equation: smooth contact (u =cts, p=cts).
B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22 ! t:!2.0 ! 22 ! t= !20.0 .
2.0 — 20 N S SO S S |
1.8 S S 18 |
16
. . 16 |
12 1.4 T N |
1.0 1.2 1
08 L 1 L 1 L 1 L 10 L 1 L 1 L 1
-2.0-1.5-1.0-0500 05 1.0 15 2.0 -2.0-1.5-1.0-0500 05 1.0 15 20
X

X

B Order 1 Left: M =0.1. Right: M =0.01

B Conclusion: First order method too much dissipative for low Mach flow (dissipation
with acoustic coefficient).

E. Franck \32/39
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kinetic representation

Classical

B High-order extension allows to correct the main default of relaxation: large error.
B |n two situations the High-order extension is not sufficient:
L For discontinuous solutions like shocks.
U For strongly multi-scale problem like low-Mach problem.
B Euler equation: smooth contact (u =cts, p=cts).
B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22 ! t:!2.0 ! 24 ! t= !20.0 .
20— 220N 1
) I S 20 ]
16 1.8 1
LAb- b 1.6 i
1.2 14 : : : 1
0'82.0—1.5—1.0—0.5 0.0 05 1.0 15 2.0 10

X
B Order 1 Left: M =0.1. Right: M =0.01
B Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with ac

oustic coefficient).

-2.0-1.5-1.0-0500 05 1.0 1.5 2.0
X

E. Franck
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Generic vectorial D1Q3

B Add a central velocity (equal or close to zero) to capture the slow dynamics.

B Consistency condition:

£k + fk+ £k =UkK,  Vke{l.N:}
A_FE £ Xoff + A FE=FK(U),  Vk e {1..Nc}

K+ ffo+ £k =Uk, quadVk € {1..N:}
(A= = X0)FX + (A — Xo)FE=FK(U) — Xoff, Vk € {1..N:}

B We assume a decomposition of the flux (Bouchut 03, Natalini -Aregba 00)
FA(U) = Fy™ (U) + Fg™ (U) + ol

B We obtain the following equation for the equilibrium

fk+ £k + £k =Uk, Vke{l.N}
(A= = 20)fK + Ay — Xo)FE=FE—(U) + FEH(U), VK e {1.N}

B By analogy of the kinetic theory and kinetic flux splitting scheme we propose the
following decomposition 3~ o vk = Fé""’(U) and >, o vk = Fé"_(U) . /\
33/39

é’ur" ........ E. Franck 4



Generic vectorial D1Q3

B Add a central velocity (equal or close to zero) to capture the slow dynamics.

B The lattice [D1Q3]"V is defined by the velocity set V = [A_, A9, A+] and

1

fEU) = —m’:g(u)

e _ Fg(U) Fq (U)
) = (U— <()\+O ) ()\007 )\_)))
fE(U) = m’:g(u)

B Condition only on the macroscopic flux splitting.

B Condition for entropy stability:
] FE," and Fj is an entropy decomposition of the flux

e
F§—98F
X

O OFF, —9Fy and 1 — 9 0 are positive.

0’& ~~~~~~~~~ E. Franck 39‘



D1Q3 for scalar case

B First choice: D1Q3 Rusanov (Ao = 0)

_ (F)—2ep) (F(p)— )
Fo(p) = —A_ Fi(p) = A
o (p) A — 0 () + s — A
B Consistency (for A= = —A1): Oep+0xF(p) = o Atdx (A= | OF(p) |?) xp + O(AL?)

B Second choice: D1Q3 Upwind

Fo (p) = X{oF(p)<ro} (F(P) — X0p)  Fo (p) = X{aF(p)>2e} (F(P) — Xop)

B with x the indicatrice function.
B Consistency: 9¢p + OxF(p) = o Atdy (M| OF (p) | — | OF (p) [2) Oxp + O(AL?)

B Third choice: D1Q3 Lax-Wendroff (Ag = 0)
=3 (Fo+ 5 [(orwp) mw =3 (Fo+ S ["erwr)

B with \p =0and A\_ = —A; and a > 1.
B Consistency: 9¢p + OxF(p) = o Atdy ((a — 1) | OF (p) |?) Oxp + O(AL?).

B The last one is not entropy stable and L2 stability in some case.
34
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D1Q3 for Euler equation |l

B [ow Mach case:
Otp + Ox(pu) =0

Orpu + Ox u2+£ =0
3;;_ + 8x(l:§5+ pu)M)O
B \We want to preserve as possible the limit:
p=cts, u=cts, Op+ udxp=20
B |dea: Splitting of the flux (E. Toro 12):
(p)u

F(U) = [ (ou)u+p
(E)u+ pu
B |dea: Lax-Wendroff Flux splitting for convection and AUSM-type (M. Liou 93) for the
pressure term.
B Use only u, p and X (= c) to reconstruct pressure. Important to preserve the low

mach limit.
B We obtain

2
(put 5p)+p
FEU) =2 | (ou? £ %q)+p(1+74)
(Eu+ 5 E) + (pu+ $7(u? + X2)p)

B Preserve contact. Diffusion error for p in O(u?). f \
35/
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Burgers

B Model: Viscous Burgers equations
2
Bep + x (%) =0

B Test case 1: p(t =0, x) = sin(2rx). 10000 cells. Order 17. First order time scheme.
Rusanov Upwind Lax Wendroff a =1
Error Order Error Order Error Order
At =0.01 3.9E? = 1.1E2 = 2.3E3 =
At = 0.005 21E-2 | 089 | 6.4E-3 | 078 | 6.0E* 1.94
At=0.0025 | 1.1E-2 | 093 | 35E3 | 087 | 1.5E* 2.00
At =0.00125 | 54E-3 | 1.03 | 1.8E-3 | 0.96 | 3.9E—° 1.95

B Shock wave. First order scheme in time.

|

B | eft At =0.002. Right At = 0.01. Reference (black), Rusanov (yellow), Upwind
(violet), Lax-Wendroff (green), Lax-Wendroff o = 1.5 (blue).

E. Franck \36/39
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Burgers

B Model: Viscous Burgers equations

2
Bep + s (%) =0

B Test case 1: p(t =0, x) = sin(2rx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff a =1

Error Order Error Order Error Order

At =0.01 3.9E2 - 1.1E2 - 23E3 -
At=0.005 |21E-2| 089 | 64E3| 078 | 6.0E~* 1.94
At=10.0025 | 1.1E~2 | 093 | 35E3 | 087 | 15E* 2.00
At=0.00125 | 54E-3 | 1.03 | 1.8E-3 | 096 | 3.9E° 1.95

B Rarefaction wave. First order scheme in time.
’ =
;f

B |eft At =0.002. Right At = 0.01. Reference (black), Rusanov (violet), Upwind

(green), Lax-Wendroff e =1 (blue), Lax-Wendroff a = 2 (Yellow).
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1D Euler equations Il

Test case: Smooth contact. We take p = 1 and u is also constant.
Final aim: take At = O(%) when u decrease to have the same error.

We choose At = 0.02 and T = 2. 4000 cells. First order time scheme. We compare
different D1Q3 schemes.

Schemes | Rusanov VL Osher Low Mach
o(t, x) 0.26 1.0E-T [ 8.4E~? 1.0E3
u=10"2 u(t, x) 0 3.4E73 | 6.0E~7 0
p(t, x) 0 5.0E* | 43E~8 0
o(t, x) 0.26 T.0E-T | 84E7 1.0E—®
u=10"* u(t, x) 0 3.4E73 | 6.0E77 0
p(t, x) 0 5.0E* | 43E8 0
o(t, x) 0.26 1.0E-T | 48E2 0.0
u=0 u(t, x) 0 3.4E73 | 6.0E77 0
p(t, x) 0 50E~* | 43E-8 0

Drawback: When the time step is too large we have dispersive effect.
Possible explanation: the error would be homogeneous to

| p"(x) — p(t, x) |~ [O(Atuz) + O(Atzu)\q)}.
with \ closed to the sound speed.
Problem: At the second order we recover partially the problem since X is closed to the

sound speed. h
7
3 /39

E. Franck \ y



1D Euler equations Il

B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.

B We consider the following [D1Q5]% based on the following velocities:
V= [_)‘fv —Xs,0, As, )\f]

slow scale

B The convective part at the slow scale. The acoustic part at the fast scale.
B Smooth contact: We take 200 time step and At = 200L.

u

Error [ u=10"1 [ u=10"7 ] u=103 [ u=10""%

a=1 25E3 25E3 2.5E-3 25E-3
As 2 0.2 0.02 0.002
Af 2 20 200 2000

B Conclusion: the error would be homogeneous to

| p"(x) — p(t, x) |~ [O(AtuQ) + O(Atzu)\g)}.

B with \s which can be take small.
B Drawback: For the stability it seems necessary to have

AsAf > Cmax(u + ¢)
X

¥ 38
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1D Euler equations Il

B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.

B We consider the following [D1Q5]% based on the following velocities:
V= [_)\fv _)\sy 0. >\s, )\F]

fast scale

B The convective part at the slow scale. The acoustic part at the fast scale.
B Smooth contact: We take 200 time step and At = 200L.

u

Error [ u=10"1 [ u=10"7 ] u=103 [ u=10""%

a=1 25E3 25E3 2.5E-3 25E-3
As 2 0.2 0.02 0.002
Af 2 20 200 2000

B Conclusion: the error would be homogeneous to

| p"(x) — p(t, x) |~ [O(AtuQ) + O(Atzu)\g)}.

B with \s which can be take small.
B Drawback: For the stability it seems necessary to have

AsAf > Cmax(u + ¢)
X
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1D Euler equations Il

B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.

B We consider the following [D1Q5]% based on the following velocities:
V= [_)‘fv —Xs, 0, As, )\f]

coupling

B The convective part at the slow scale. The acoustic part at the fast scale.
B Smooth contact: We take 200 time step and At = 290L.

u
Error [ u=10"1 [ u=10"? [ u=10"3 ] u=10"%
a=1] 25E73 2.5E3 25E3 25E-3
As 2 0.2 0.02 0.002
Af 2 20 200 2000

B Conclusion: the error would be homogeneous to

| p"(x) — p(t, x) |= [O(Atu?) + O(At?urT)].

B with \s which can be take small.
B Drawback: For the stability it seems necessary to have

AsAr > Cmax(u + c)
X

{38
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Conclusion

Ap schemes for diffusion limit

B AP scheme: plug the term source effect in the fluxes.
B Uniform AP: scheme: previous construction not sufficient. WB also ?
B Other Works:

[ 2D extension on unstructured meshes for damped wave equations [BDF12],
[FHNG11], [BDFL16].

0 Extension on 2D unstructured meshes for Friedrich’s systems [BDF14].

0 Extension on 2D unstructured meshes for nonlinear radiative problem [BDF11],
[BDF12] and Euler equations [F14], [FM16].

Kinetic relaxation schemes

| A

B Implicit schemes: without matrices based on kinetic relaxation schemes.

B High order time extension [CFHMN17], [CFHMN18] and parallel algorithm
[Cemracs18].

B Future Works:

0 D1Q3 schemes for hyperbolic problem in 1D (in redaction). Extension in 2D/3D

application to low-Mach Euler equation.

O Implicit Kinetic schemes for anisotropic diffusion (in redaction).
O Boundary conditions (Post doc of F. Drui).
O

Incompressibility, divergence constrains.

E. Franck
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