Numerical methods for stiff hyperbolic systems

D. Coulette⁵, <u>E. Franck</u>¹², P. Helluy¹², C. Courtes², L. Navoret¹², L. Mendoza², M. Mehrenberger¹², B. Després⁴, C. Buet³, T. Leroy ³

Seminar Würzburg, 18 April 2018

 $^{1}/_{39}$

¹Inria Nancy Grand Est, France

²IRMA, Strasbourg university, France

³CEA DAM, Paris, France

⁴LJLL Jussieu, Paris, France

⁵ENS Lyon, France

Outline

Mathematical context

 $\ensuremath{\mathsf{AP}}/\ensuremath{\mathsf{WB}}$ schemes for hyperbolic PDE with source terms

Implicit relaxation method for low Mach Euler equations

E. Franck

Mathematical context

Stiff hyperbolic systems

Problem

■ We consider the general stiff problem:

$$\partial_t \boldsymbol{U} + \frac{1}{\varepsilon^a} \partial_x \boldsymbol{F}(\boldsymbol{U}) + \frac{1}{\varepsilon^b} \partial_x \boldsymbol{G}(\boldsymbol{U}) = \frac{1}{\varepsilon^c} \boldsymbol{R}(\boldsymbol{U}) - \frac{\sigma}{\varepsilon^d} \boldsymbol{D}(\boldsymbol{U})$$

Limit

First case: a = b = c = 1 and $\sigma = 0$. long time limit:

$$\partial_{x} F(U) + \partial_{x} G(U) = R(U)$$

• Second case: a = b = 0, c = 1 and $\sigma = 0$. relaxation limit:

$$\partial_t \mathbf{V} + \partial_x \mathbf{K}_1(\mathbf{V}) = 0$$

■ Third case: a = b = c = 1, d = 2 $\sigma = 1$. diffusion limit:

$$\partial_t \mathbf{V} + \partial_x \mathbf{K}_1(\mathbf{V}) - \partial_x (\mathbf{K}_2(\mathbf{V})\partial_x \mathbf{V}) = 0$$

• 4th: a = c = 0, b = 1 and $\sigma = 0$. fast wave limit:

$$\partial_t \mathbf{U} + \partial_x \tilde{\mathbf{G}}(\mathbf{U}) = 0, \quad \partial_x \tilde{\mathbf{F}}(\mathbf{U}) = 0$$

Diffusion limit: damped wave equation

Damped wave equation

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \partial_x u = 0 \\ \partial_t u + \frac{\varepsilon}{\varepsilon} \partial_x p = -\frac{\sigma}{\varepsilon^2} u \end{cases}, \longrightarrow \partial_t p - \partial_x \left(\frac{1}{\sigma} \partial_x p \right) = 0$$

- Ref: Jin-Levermore 96, Gosse-Toscani 01.
- We plug $u = -\frac{\varepsilon}{\sigma} \partial_x p + O(\varepsilon^2)$ in first equation.

Godunov scheme

$$\begin{cases} \frac{p_j^{n+1}-p_j}{\Delta t} + \frac{1}{\varepsilon} \frac{u_{j+1}-u_{j-1}}{\Delta x} - \frac{\Delta x}{2\varepsilon} \frac{p_{j+1}-2p_j+p_{j-1}}{\Delta x^2} = 0\\ \frac{u_j^{n+1}-u_j}{\Delta t} + \frac{1}{\varepsilon} \frac{p_{j+1}-p_{j-1}}{\Delta x} - \frac{\Delta x}{2\varepsilon} \frac{u_{j+1}-2u_j+u_{j-1}}{\Delta x^2} = -\frac{\sigma}{\varepsilon^2} u_j \end{cases}$$

Limit scheme:

$$\frac{p_j^{n+1} - p_j}{\Delta t} - \left(\frac{1}{\sigma} + \frac{\Delta x}{2\varepsilon}\right) \frac{p_{j+1} - 2p_j + p_{j-1}}{\Delta x^2} = O(\varepsilon)$$

Diffusion and numerical solutions for $\varepsilon = 0.001$.

(nría-

CFI condition $\Delta t < f(\epsilon)h$ E. Franck

Long time limit: Euler gravity

Euler gravity

$$\left\{ \begin{array}{l} \partial_t \rho + \frac{1}{\varepsilon} \partial_x (\rho u) = 0 \\ \partial_t (\rho u) + \frac{1}{\varepsilon} \partial_x (\rho u^2) + \frac{1}{\varepsilon} \partial_x p = -\frac{1}{\varepsilon} \rho \partial_x \phi \\ \partial_t E + \frac{1}{\varepsilon} \partial_x (E u + \rho u) = -\frac{1}{\varepsilon} \rho u \partial_x \phi \end{array} \right.$$

- Class of steady solutions: for u=0 and $\partial_x p=-\rho \partial_x \phi$ the system does not move.
- C. Berthon, C. Klingenberg (and al) 15-16-17.

Rusanov scheme

Example: $\rho = e^{-x\partial_X \phi}$, $p = e^{-x\partial_X \phi}$ and $\phi = gx$.

$$\begin{cases} \rho^{n+1} = \rho^n + \frac{\Delta x}{\lambda} \partial_{xx} \rho + O(\Delta x^2) \\ (\rho u)^{n+1} = (\rho u)^n + \frac{\Delta x}{\lambda} \partial_{xx} (\rho u) + O(\Delta x^2) \\ E^{n+1} = E^n + \frac{\Delta x}{\lambda} \partial_{xx} E + O(\Delta x^2) \end{cases}$$

- with $\lambda > \max_{x}(|u|+c)$ with c the sound speed.
 - Conclusion: the equilibriums are not preserved.

Pertubated equilibrium.

Relaxation limit: HRM model

HRM model

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho Y + \partial_x (\rho Y u) = \frac{1}{\varepsilon} \left(\rho Y^{eq}(\rho) - \rho Y \right) \\ \partial_t \rho u + \partial_x (\rho u^2 + \rho) = 0 \end{array} \right.$$

- with Y the mass fraction and $p = p(\rho, Y)$ (Ambrosso 09 etc).
- Relaxation limit: the mass fraction is close to given equilibrium.

Splitting scheme

Only write for the mass fraction part

and
$$(\rho Y)^* = (\rho Y)^n + \frac{\Delta t}{\varepsilon} (\rho^n Y^{eq}(\rho^n) - \rho^n Y^n)$$

$$\frac{(\rho Y)^{n+1} - (\rho Y)^*}{\Delta t} + \frac{(\rho Y u)_{j+1}^* - (\rho Y u)_{j-1}^*}{\Delta x} - \lambda \frac{(\rho Y)_{j+1}^* - 2(\rho Y)_j^* + (\rho Y)_{j-1}^*}{\Delta x} = 0$$

Stability we must take $\Delta t < C \varepsilon \Delta x$.

E. Franck

Fast wave limit: Low-Mach Euler equation

Euler low-mach

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \frac{1}{M} \partial_x \rho = 0 \\ \partial_t E + \partial_x (Eu + \rho u) = 0 \end{cases}$$

- S. Dellacherie, C. Chalons, C. Klingenberg (and al) 14-15-17.
- **Limit for M small**: u = cts + O(M), p = cts + O(M) and $\partial_t \rho + u \partial_x \rho = O(M)$.

Rusanov scheme

At the limit: density advection. Advection scheme:

$$\partial_t \rho_j + \frac{(\rho u)_{j+1} - (\rho u)_{j-1}}{\Delta x} - \left| \begin{array}{c} \textbf{\textit{u}} \end{array} \right| \frac{\rho_{j+1} - 2\rho_j + \rho_{j-1}}{\Delta x} = 0$$

Limit scheme of Rusanov scheme for Euler:

$$\partial_t \rho_j + \frac{(\rho u)_{j+1} - (\rho u)_{j-1}}{\Delta x} - \frac{\lambda}{\frac{M}{}} \frac{\rho_{j+1} - 2\rho_j + \rho_{j-1}}{\Delta x} = 0$$

- The scheme for Euler dissipate too much.
- **Stability**: $\Delta t \leq CM\Delta x$.
- CFL constrains by "fast velocity / small amplitude" acoustic waves. Filter in time/space these waves.

- Contact with u = 0.01. $T_f = 10$.
- Black curve: exact sol.
- Green curve: numerical sol with 100 cells.

Important notion: AP and Well-Balanced schemes

• We consider PDE depending of a small parameter ε with an asymptotic limit.

Asymptotic preserving scheme

- AP scheme: a consistent scheme for the initial PDE which gives at the limit a consistent scheme of the limit PDE.
- Uniform AP scheme: convergence and stability independent of ε .

- Application: simulate problem with varying physical parameter and regime. Example: radiative transfer.
- Other application: use AP scheme to create a new scheme for the limit model. Example: relaxation scheme for Euler equation.

Well Balanced scheme

A scheme which preserve exact (or with high accuracy?) a steady state of the continuous PDE.

lnría-

E. Franck

AP/WB schemes for hyperbolic PDE with source terms

Damped wave equation: Godunov scheme

Damped wave equation:

$$\begin{cases} \partial_t p + \frac{1}{\hat{\xi}} \partial_x u = 0 \\ \partial_t u + \frac{\hat{\xi}}{\varepsilon} \partial_x p = -\frac{\sigma}{\varepsilon^2} u \end{cases}$$

- **Riemann Invariant**: u + p (eigenvalue 1) and u p (eigenvalue -1).
- Important relation to obtain the limit: $\partial_x p = -\frac{\sigma}{\varepsilon} u$.
- Upwind scheme for $\partial_t u + \partial_x (au) = 0$:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{u_{j+\frac{1}{2}} - u_{j-\frac{1}{2}}}{\Delta x_j} = 0$$

with $x_j = \mid x_{j+\frac{1}{2}} - x_{j-\frac{1}{2}} \mid$ and $u_{j+\frac{1}{2}} = u_j^n$ for a > 0 and $u_{j+\frac{1}{2}} = u_{j+1}^n$ for a < 0.

Godunov acoustic scheme: Upwind scheme on the Riemann invariant. We obtain

$$\begin{cases} \frac{\rho_{j}^{n+1} - \rho_{j}^{n}}{\Delta t} + \frac{u_{j+\frac{1}{2}}^{n} - u_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} = 0 \\ \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + \frac{\rho_{j+\frac{1}{2}}^{n} - \rho_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} = 0, \end{cases} \begin{cases} u_{j+\frac{1}{2}} + \rho_{j+\frac{1}{2}} = u_{j}^{n} + \rho_{j}^{n} \\ u_{j+\frac{1}{2}} - \rho_{j+\frac{1}{2}} = u_{j+1}^{n} - \rho_{j+1}^{n}. \end{cases}$$

Main drawback: the fluxes ignore the balance between the pressure gradient and the source.

Damped wave equation: Jin-Levermore AP scheme

Jin-Levermore scheme:

- Plug the balance law $\partial_x p = -\frac{\sigma}{\varepsilon} u + O(\varepsilon^2)$ in the fluxes (Jin-Levermore 96).
- Scheme write on irregular grids.
- We write

$$p(x_j) = p(x_{j+\frac{1}{2}}) + (x_j - x_{j+\frac{1}{2}})\partial_x p(x_{j+\frac{1}{2}})$$

Coupling the previous relation (and the same for x_{i+1}) with the fluxes

$$\begin{cases} u_{j} + p_{j} = u_{j+\frac{1}{2}} + p_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}} \Delta x_{j}}{2\varepsilon} u_{j+\frac{1}{2}}, \\ u_{j+1} - p_{j+1} = u_{j+\frac{1}{2}} - p_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}} \Delta x_{j+1}}{2\varepsilon} u_{j+\frac{1}{2}}. \end{cases}$$

Jin-Levermore scheme:

$$\left\{ \begin{array}{l} \frac{p_{j}^{n+1}-p_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{n}-M_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} \\ \frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t} + \frac{p_{j+\frac{1}{2}}^{n}-p_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} + \frac{\sigma}{\varepsilon^{2}}u_{j}^{n} = 0, \end{array} \right. , \quad \left\{ \begin{array}{l} u_{j+\frac{1}{2}} = \frac{u_{j}+u_{j+1}}{2} + \frac{p_{j}-p_{j+1}}{2} \\ p_{j+\frac{1}{2}} = \frac{p_{j}+p_{j+1}}{2} + \frac{u_{j}-u_{j+1}}{2} \end{array} \right.$$

with $\Delta x_{j+\frac{1}{2}} = |x_{j+1} - x_j|$ and $M_{j+\frac{1}{2}} = \frac{2\varepsilon}{2\varepsilon + \sigma_{i+1} \Delta x_{i+1}}$.

(nría

Damped wave equation: Jin-Levermore AP scheme

Jin-Levermore scheme:

- Plug the balance law $\partial_x p = -\frac{\sigma}{\varepsilon} u + O(\varepsilon^2)$ in the fluxes (Jin-Levermore 96).
- Scheme write on irregular grids.
- We write

$$p(x_j) = p(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} u(x_{j+\frac{1}{2}})$$

• Coupling the previous relation (and the same for x_{j+1}) with the fluxes

$$\left\{ \begin{array}{l} u_{j}+p_{j}=u_{j+\frac{1}{2}}+p_{j+\frac{1}{2}}+\frac{\sigma_{j+\frac{1}{2}}\Delta x_{j}}{2\varepsilon}u_{j+\frac{1}{2}},\\ u_{j+1}-p_{j+1}=u_{j+\frac{1}{2}}-p_{j+\frac{1}{2}}+\frac{\sigma_{j+\frac{1}{2}}\Delta x_{j+1}}{2\varepsilon}u_{j+\frac{1}{2}}. \end{array} \right.$$

Jin-Levermore scheme:

$$\begin{cases} \frac{p_{j}^{n+1} - p_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{n} - M_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} \\ \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + \frac{p_{j+\frac{1}{2}}^{n} - p_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} + \frac{\sigma}{\varepsilon^{2}}u_{j}^{n} = 0, \end{cases}$$

with $\Delta x_{j+\frac{1}{2}} = \mid x_{j+1} - x_j \mid$ and $M_{j+\frac{1}{2}} = \frac{2\varepsilon}{2\varepsilon + \sigma_{j+\frac{1}{2}} \Delta x_{j+\frac{1}{2}}}$.

Damped wave equation: Jin-Levermore AP scheme

Jin-Levermore scheme:

- Plug the balance law $\partial_x p = -\frac{\sigma}{\varepsilon} u + O(\varepsilon^2)$ in the fluxes (Jin-Levermore 96).
- Scheme write on irregular grids.
- We write

$$p(x_j) = p(x_{j+\frac{1}{2}}) - \frac{\Delta x_j}{2} \frac{\sigma}{\varepsilon} u(x_{j+\frac{1}{2}})$$

• Coupling the previous relation (and the same for x_{i+1}) with the fluxes

$$\left\{ \begin{array}{l} u_{j}+p_{j}=u_{j+\frac{1}{2}}+p_{j+\frac{1}{2}}+\frac{\sigma_{j+\frac{1}{2}}\Delta x_{j}}{2\varepsilon}u_{j+\frac{1}{2}},\\ u_{j+1}-p_{j+1}=u_{j+\frac{1}{2}}-p_{j+\frac{1}{2}}+\frac{\sigma_{j+\frac{1}{2}}\Delta x_{j+1}}{2\varepsilon}u_{j+\frac{1}{2}}. \end{array} \right.$$

Jin-Levermore scheme:

$$\begin{cases} \frac{p_{j}^{n+1} - p_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^{n} - M_{j-\frac{1}{2}} u_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} \\ \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + \frac{p_{j+\frac{1}{2}}^{n} - p_{j-\frac{1}{2}}^{n}}{\varepsilon \Delta x_{j}} + \frac{\sigma}{\varepsilon^{2}} u_{j}^{n} = 0, \end{cases}$$

with $\Delta x_{j+\frac{1}{2}} = |x_{j+1} - x_j|$ and $M_{j+\frac{1}{2}} = \frac{2\varepsilon}{2\varepsilon + \sigma_{j+\frac{1}{2}} \Delta x_{j+\frac{1}{2}}}$.

Gosse-Toscani scheme

- Other scheme: Gosse Toscani scheme.
- Derivation of the scheme: Localization of the source on the interface and the Riemann problem associated.
- Other solution: we use the following source term $\frac{1}{2}(u_{j+\frac{1}{2}}+u_{j-\frac{1}{2}})$ with the Jin-Levermore scheme.

Gosse-Toscani scheme:

$$\begin{cases} \frac{p_{j}^{n+1} - p_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}}u_{j+\frac{1}{2} - M_{j-\frac{1}{2}}u_{j-\frac{1}{2}}}{\varepsilon \Delta x_{j}} \\ \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}}p_{j+\frac{1}{2} - M_{j-\frac{1}{2}}p_{j-\frac{1}{2}}}{\varepsilon \Delta x_{j}} - \frac{M_{j+\frac{1}{2} - M_{j-\frac{1}{2}}}p_{j-\frac{1}{2}}}{\Delta x_{j}\varepsilon} p_{j}^{n} + \left(\frac{\sigma_{j+\frac{1}{2}}\Delta x_{j+\frac{1}{2}}}{2\varepsilon^{2}\Delta x_{j}} + \frac{\sigma_{j-\frac{1}{2}}\Delta x_{j-\frac{1}{2}}}{2\varepsilon^{2}\Delta x_{j}}\right) u_{j}^{n} = 0 \end{cases}$$

with

$$u_{j+\frac{1}{2}} = \frac{u_j^n + u_{j+1}^n}{2} + \frac{p_j^n - p_{j+1}^n}{2}, \qquad p_{j+\frac{1}{2}} = \frac{p_j^n + p_{j+1}^n}{2} + \frac{u_j^n - u_{j+1}^n}{2}$$

and $M_{j+\frac{1}{2}}=rac{2arepsilon}{2arepsilon+\sigma_{j+\frac{1}{2}}\Delta x_{j+\frac{1}{2}}}.$

(nría-

E. Franck

Analysis

Analysis of the Godunov scheme

- Consistency error:
 - \Box First equation: $\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$. Second equation: $\left(\frac{\Delta x^2}{\varepsilon} + \Delta t\right)$
- Time discretization:
 - \square Explicit CFL: $\Delta t \left(\frac{1}{\Delta x \varepsilon + \varepsilon^2} \right) \le 1$. Semi-implicit CFL: $\Delta t \left(\frac{1}{\Delta x \varepsilon} \right) \le 1$.

Analysis of the Jin-Levermore scheme

- Consistency error:
 - \Box First equation: $(\Delta x + \Delta t)$. Second equation: $(\frac{\Delta x^2}{\epsilon} + \Delta t)$
- Time discretization:
 - $\ \, \Box \ \, \mathsf{Explicit} \,\, \mathsf{CFL} \colon \Delta t \left(\frac{1}{\Delta x \varepsilon + \varepsilon^2} \right) \leq 1. \,\, \mathsf{Semi-implicit} \,\, \mathsf{CFL} \colon \Delta t \left(\frac{1}{\Delta x \varepsilon} \right) \leq 1.$

Analysis of the Gosse-Toscani scheme

- Consistency error:
 - \Box First and second equation: $(\Delta x + \Delta t)$.
- Time discretization:
 - □ Explicit CFL: $\Delta t \left(\frac{1}{\Delta x \varepsilon}\right) \le 1$. Semi-implicit CFL: $\Delta t \left(\frac{1}{\Delta x \varepsilon + \Delta x^2}\right) \le 1$.

Numerical example

■ Validation test for the AP scheme: the data are p(0,x) = G(x) with G(x) a Gaussian u(0,x) = 0 and $\sigma = 1$, $\varepsilon = 0.001$.

Scheme	L^2 error	CPU time
Godunov, 10000 cells	0.0376	505 sec
Godunov, 500 cells	0.42	5.31 sec
AP-JL, 500 cells	4.3E-3	5.42 sec
AP-JL, 50 cells	0.012	0.46 sec
AP-GT, 500 cells	1.3E-4	2.38 sec
AP-GT, 50 cells	0.012	0.013 sec

Numerical example

■ Validation test for the AP scheme: the data are p(0,x) = G(x) with G(x) a Gaussian u(0,x) = 0 and $\sigma = 1$, $\varepsilon = 0.001$.

Scheme	L^2 error	CPU time
Godunov, 10000 cells	0.0376	505 sec
Godunov, 500 cells	0.42	5.31 sec
AP-JL, 500 cells	4.3E-3	5.42 sec
AP-JL, 50 cells	0.012	0.46 sec
AP-GT, 500 cells	1.3E-4	2.38 sec
AP-GT, 50 cells	0.012	0.013 sec

Test for Well-Balanced property

■ We propose to study also the Well-Balanced property for the family of steady state:

$$\begin{cases} u(t,x) = C_1 \\ p(t,x) = -\frac{\sigma}{\varepsilon} C_1 x + C_2 \end{cases}$$

- This steady-state generate also the affine steady state of the limit equation.
- For this, we initialize the different schemes with a steady state and simulate with a large final time (T_f =20).
- Results for different scheme and meshes.

Scheme/mesh	Uniform Mesh	Random Mesh
Godunov, 100 cells	0.0	2.83E-3
Godunov, 1000 cells	5.0E-17	2.7E-4
AP-JL, 100 cells	0.0	3.3E-3
AP-JL, 1000 cells	6.3E-17	3.9E-4
AP-GT, 100 cells	3.1E-16	3.1E-16
AP-GT, 1000 cells	3.0E-16	2.8E-15

Conclusion

Only the Gosse-Toscani scheme is WB for all meshes.

lnia

E. Franck

Test for uniform convergence in 1D

- We solve the damped wave equation for different values of ε .
- $p(t,x) = (\alpha(t) + \frac{\varepsilon^2}{\sigma}\alpha'(t))\cos(\pi x), \quad u(t,x) = (-\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi x))$
- Convergence uniform: convergence independent of ε .
- **Test**: $\varepsilon = h^{\gamma}$ on uniform and random meshes.

JL scheme on uniform mesh

JL scheme on random mesh

- The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the error homogeneous to $O(h\varepsilon + h^2)$.
- On Random mesh the JL scheme is not an uniform AP scheme.

Test for uniform convergence in 1D

- We solve the damped wave equation for different values of ε .
- $p(t,x) = (\alpha(t) + \frac{\varepsilon^2}{\sigma}\alpha'(t))\cos(\pi x), \quad u(t,x) = (-\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi x))$
- Convergence uniform: convergence independent of ε .
- **Test**: $\varepsilon = h^{\gamma}$ on uniform and random meshes.

GT scheme on uniform mesh

- The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the error homogeneous to $O(h\varepsilon + h^2)$.
- On Random mesh the JL scheme is not an uniform AP scheme.

Analysis of AP schemes: modified equations

 The modified equation associated with the Upwind scheme is

$$\left\{ \begin{array}{l} \partial_t p + \frac{1}{\varepsilon} \partial_x u - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p - \frac{\Delta x}{2\varepsilon} \partial_{xx} u = -\frac{\sigma}{\varepsilon^2} u. \end{array} \right.$$

■ Plugging $\varepsilon \partial_x p + O(\varepsilon^2) = -\sigma u$ in the first equation, we obtain

$$\partial_t p - \frac{1}{\sigma} \partial_{xx} p - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0.$$

Conclusion: the regime is captured only on fine grids. The modified equation associated to the Gosse-Toscani scheme is

$$\left\{ \begin{array}{l} \partial_t p + \frac{M}{\varepsilon} \partial_x u - \frac{M}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + \frac{M}{\varepsilon} \partial_x p - \frac{M}{2\varepsilon} \partial_{xx} u = - \frac{M}{\varepsilon^2} u. \end{array} \right.$$

■ Plugging $M\varepsilon\partial_x p + O(\varepsilon^2) = -M\sigma u$ in the first equation, we obtain

$$\partial_t p - \frac{M}{\sigma} \partial_{xx} p - \frac{1-M}{\sigma} \partial_{xx} p = 0.$$

Conclusion: the regime is captured on all grids.

AP schemes

- AP schemes modify the numerical diffusion to correct the scheme on coarse grid.
- The JL scheme does not converge in the intermediary regimes.
- Interpretation: since the linear steady states are not preserved the limit diffusion scheme in these regimes is not consistent.

Idea

■ The exact preservation of linear steady-state is necessary for uniform AP schemes ?

Uniform convergence in space

- Naive convergence estimate : $||P_h^{\varepsilon} P^{\varepsilon}||_{\text{naive}} \leq C\varepsilon^{-b}h^c$
- Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

$$||P_h^\varepsilon - P^\varepsilon||_{L^2} \leq \min(||P_h^\varepsilon - P^\varepsilon||_{\text{naive}}, ||P_h^\varepsilon - P_h^0|| + ||P_h^0 - P^0|| + ||P^\varepsilon - P^0||)$$

- Intermediary estimations :
 - $||P^{\varepsilon} P^{0}|| \leq C_{a} \varepsilon^{a},$ $||P_{h}^{0} P^{0}|| \leq C_{d} h^{d},$
 - $||P_h^{\varepsilon} P_h^0|| \leq C_e \varepsilon^e,$
 - \Box $d \geq c$, $e \geq a$.
- We using $\min(x, y + z) \le \min(x, y) + \min(x, z)$ and $d \ge c$, $e \ge a$ to obtain $||P_h^{\varepsilon} P^{\varepsilon}||_{L^2} \le C\left(\min(\varepsilon^{-b}h^c, \varepsilon^e) + h^d + \min(\varepsilon^{-b}h^c, \varepsilon^a)\right) \le 2C\left(h^d + \min(\varepsilon^{-b}h^c, \varepsilon^a)\right)$
- Defining $\varepsilon_{th}^{-b}h^c = \varepsilon_{th}^a$ we obtain $\min(\varepsilon^{-b}h^c, \varepsilon^a) \leq \varepsilon_{th}^a = h^{\frac{ac}{a+b}}$.

Space result

We assume that $\| \boldsymbol{V}^{\varepsilon}(0) - \boldsymbol{V}_{h}^{\varepsilon}(0) \|_{L^{2}(\Omega)} \leq Ch \| p(0) \|_{H^{2}}$ and $C_{1}h < \Delta x_{i} < C_{2}h \quad \forall j$.

$$\|\boldsymbol{V}^{\varepsilon}-\boldsymbol{V}_{h}^{\varepsilon}\|_{L^{2}([0,T]\times\Omega)}\leq C\min\left(h^{\frac{1}{2}}\varepsilon^{-\frac{1}{2}},h+2\varepsilon\right)\parallel p_{0}\parallel_{H^{3}(\Omega)}\leq Ch^{\frac{1}{3}}\parallel p_{0}\parallel_{H^{3}(\Omega)}$$

Euler equation with external forces

Euler equation with gravity and friction:

$$\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \partial_x (\rho u) = 0, \\ \partial_t \rho u + \frac{1}{\varepsilon} \partial_x (\rho u^2) + \frac{1}{\varepsilon} \partial_x \rho = -\frac{1}{\varepsilon} (\rho \partial_x \phi + \frac{\sigma}{\varepsilon} \rho u), \\ \partial_t E + \frac{1}{\varepsilon} \partial_x (Eu + \rho u) = -\frac{1}{\varepsilon} (\rho u \partial_x \phi + \frac{\sigma}{\varepsilon} \rho u^2). \end{cases}$$

with ϕ the gravity potential, σ the friction coefficient.

Subset of solutions:

Hydrostatic Steady-state ($\alpha = 1$, $\beta = 0$):

$$\left\{ \begin{array}{l} u=0,\\ \partial_x p=-\rho\partial_x \phi. \end{array} \right.$$

- High friction limit ($\alpha = 0$, $\beta = 1$), no gravity: u = 0
- Diffusion limit ($\alpha = 1$, $\beta = 1$):

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t E + \partial_x (E u) + \rho \partial_x u = 0, \\ u = -\frac{1}{\sigma} \left(\partial_x \phi + \frac{1}{\rho} \partial_x \rho \right). \end{cases}$$

Design of AP nodal scheme I

Jin Levermore method:

Plug the relation $\partial_x p + O(\varepsilon) = -\rho \partial_x \phi - \frac{\sigma}{\varepsilon} \rho u$ in the Lagrangian fluxes

Classical Lagrange+remap scheme (LP scheme):

$$\begin{cases} \partial_{t}\rho_{j} + \frac{\rho_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon \Delta x_{j}} = 0 \\ \partial_{t}(\rho u)_{j} + \frac{(\rho u)_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - (\rho u)_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon \Delta x_{j}} + \frac{\rho_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}^{*}}{\varepsilon \Delta x_{j}} = -\frac{1}{\varepsilon}\left(\rho_{j}(\partial_{x}\phi)_{j} + \frac{\sigma}{\varepsilon}\rho_{j}u_{j}\right) \\ \partial_{t}E_{j} + \frac{E_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - E_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon \Delta x_{j}} + \frac{\rho_{j+\frac{1}{2}}^{*}u_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}^{*}u_{j}^{*}}{\varepsilon \Delta x_{j}} = -\frac{1}{\varepsilon}\left(\rho_{j}u_{j}(\partial_{x}\phi)_{j} + \frac{\sigma}{\varepsilon}\rho_{j}u_{j}^{2}\right) \end{cases}$$

with Lagrangian fluxes

$$\left\{ \begin{array}{l} p_{j+\frac{1}{2}}^* + (\rho c)_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* = p_j + (\rho c)_{j+\frac{1}{2}} u_j \\ p_{j+\frac{1}{2}}^* - (\rho c)_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* = p_{j+1} - (\rho c)_{j+\frac{1}{2}} u_{j+1} \end{array} \right.$$

and the upwind flux

$$u_{j+\frac{1}{2}}^* f_{j+\frac{1}{2}} = \begin{cases} u_{j+\frac{1}{2}}^* f_j \\ u_{j+\frac{1}{2}}^* f_{j+1} \end{cases}$$

(nría-

 $^{21}/_{39}$

Design of AP nodal scheme I

Jin Levermore method:

Plug the relation $\partial_x p + O(\varepsilon) = -\rho \partial_x \phi - \frac{\sigma}{\varepsilon} \rho u$ in the Lagrangian fluxes

■ Classical Lagrange+remap scheme (LP scheme):

$$\left\{ \begin{array}{l} \partial_{t}\rho_{j} + \frac{\rho_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon\Delta_{x_{j}}} = 0 \\ \partial_{t}(\rho u)_{j} + \frac{(\rho u)_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - (\rho u)_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon\Delta_{x_{j}}} + \frac{\rho_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}^{*}}{\varepsilon\Delta_{x_{j}}} = -\frac{1}{\varepsilon}\left(\rho_{j}(\partial_{x}\phi)_{j} + \frac{\sigma}{\varepsilon}\rho_{j}u_{j}\right) \\ \partial_{t}E_{j} + \frac{E_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - E_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon\Delta_{x_{j}}} + \frac{\rho_{j+\frac{1}{2}}^{*}u_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}^{*}u_{j-\frac{1}{2}}^{*}}{\varepsilon\Delta_{x_{j}}} = -\frac{1}{\varepsilon}\left(\rho_{j}u_{j}(\partial_{x}\phi)_{j} + \frac{\sigma}{\varepsilon}\rho_{j}u_{j}^{2}\right) \end{array} \right.$$

with Lagrangian fluxes with the new Lagrangian fluxes

$$\begin{cases} p_{j+\frac{1}{2}}^* + (\rho c)_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* - \frac{\Delta x_{j+\frac{1}{2}}}{2} \left((\rho \partial_x \phi)_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}}{\varepsilon} \rho_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* \right) = p_j + (\rho c)_{j+\frac{1}{2}} u_j \\ p_{j+\frac{1}{2}}^* - (\rho c)_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* + \frac{\Delta x_{j+\frac{1}{2}}}{2} \left((\rho \partial_x \phi)_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}}{\varepsilon} \rho_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* \right) = p_{j+1} - (\rho c)_{j+\frac{1}{2}} u_{j+1} \end{cases}$$

with $\rho_{j+\frac{1}{2}}$ and $(\rho\partial_x\phi)_{j+\frac{1}{2}}$ averages between the interface and the upwind flux and the upwind flux

$$u_{j+\frac{1}{2}}^* f_{j+\frac{1}{2}} = \begin{cases} u_{j+\frac{1}{2}}^* f_j \\ u_{j+\frac{1}{2}}^* f_{j+1} \end{cases}$$

(nría-

 $^{21}/_{39}$

Design of AP nodal scheme I

Jin Levermore method:

Plug the relation $\partial_x p + O(\varepsilon) = -\rho \partial_x \phi - \frac{\sigma}{\varepsilon} \rho u$ in the Lagrangian fluxes

■ New scheme (LP-AP scheme):

$$\left\{ \begin{array}{l} \partial_{t}\rho_{j} + \frac{\rho_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon^{\alpha}\Delta x_{j}} = 0 \\ \partial_{t}(\rho u)_{j} + \frac{(\rho u)_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - (\rho u)_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon^{\alpha}\Delta x_{j}} + \frac{\rho_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}^{*}}{\varepsilon^{\alpha}\Delta x_{j}} = -\frac{1}{\varepsilon^{\alpha}} \left((\rho \partial_{x}\phi)_{j+\frac{1}{2}} + \frac{\sigma}{\varepsilon^{\beta}}\rho_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} \right) \\ \partial_{t}E_{j} + \frac{E_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} - E_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon^{\alpha}\Delta x_{j}} + \frac{\rho_{j+\frac{1}{2}}^{*}u_{j+\frac{1}{2}}^{*} - \rho_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^{*}}{\varepsilon^{\alpha}\Delta x_{j}} = -\frac{1}{\varepsilon^{\alpha}} \left((\rho \partial_{x}\phi)_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} + \frac{\sigma}{\varepsilon^{\beta}}\rho_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^{*} \right) \right. \end{aligned}$$

with Lagrangian fluxes

$$\begin{cases} p_{j+\frac{1}{2}}^* + (\rho c)_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* - \frac{\Delta x_{j+\frac{1}{2}}}{2} \left((\rho \partial_x \phi)_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}}{\varepsilon \beta} \rho_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* \right) = p_j + (\rho c)_{j+\frac{1}{2}} u_j \\ p_{j+\frac{1}{2}}^* - (\rho c)_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* + \frac{\Delta x_{j+\frac{1}{2}}}{2} \left((\rho \partial_x \phi)_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}}{\varepsilon \beta} \rho_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^* \right) = p_{j+1} - (\rho c)_{j+\frac{1}{2}} u_{j+1} \end{cases}$$

with $\rho_{i+\frac{1}{2}}$ and $(\rho\partial_{\mathbf{x}}\phi)_{i+\frac{1}{2}}$ averages between the interface and the upwind flux

$$u_{j+\frac{1}{2}}^* f_{j+\frac{1}{2}} = \begin{cases} u_{j+\frac{1}{2}}^* f_j \\ u_{j+\frac{1}{2}}^* f_{j+1} \end{cases}$$

Ap property

 $\hfill\Box$ The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

- □ The discrete steady state $p_{j+1} p_j = -\Delta x_{j+\frac{1}{2}} (\rho \partial_x \phi)_{j+\frac{1}{2}}$ is exactly preserved.
- Question: How the scheme preserved the continuous steady state ?
- First choice:

$$(\rho \partial_x \phi)_{j+\frac{1}{2}} = \frac{1}{2} (\rho_j + \rho_{j+1}) \frac{\phi_{j+1} - \phi_j}{\Delta x_{j+\frac{1}{2}}}$$

• Only the continuous steady state with $\rho \partial_x \phi = Cts$ are exactly preserved.

Idea

To treat general steady-state: construct a new discrete equilibrium which is a very high order approximation to the continuous one.

Ap property

 $\hfill\Box$ The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

- $\ \square$ The discrete steady state $p_{j+1}-p_j=-\Delta x_{j+\frac{1}{2}}(\rho\partial_x\phi)_{j+\frac{1}{2}}$ is exactly preserved.
- Question: How the scheme preserved the continuous steady state ?
- Second choice:

$$(\rho \partial_{x} \phi)_{j+\frac{1}{2}} = \left(\frac{\rho_{j+1} - \rho_{j}}{\ln(\rho_{j+1}) - \ln(\rho_{j})}\right) \frac{\phi_{j+1} - \phi_{j}}{\Delta x_{j+\frac{1}{2}}}$$

• Only the continuous steady state with $\rho = p = e^{-xg}$, $\phi = gx$ are exactly preserved.

Idea

To treat general steady-state: construct a new discrete equilibrium which is a very high order approximation to the continuous one.

$$\partial_{\mathsf{x}} \mathbf{p} = -\rho \partial_{\mathsf{x}} \phi$$

 $^{22}/_{39}$

Ap property

The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

- The discrete steady state $p_{j+1}-p_j=-\Delta x_{j+\frac{1}{2}}(\rho\partial_x\phi)_{j+\frac{1}{2}}$ is exactly preserved.
- **Question**: How the scheme preserved the continuous steady state?
- Second choice:

$$(\rho \partial_{x} \phi)_{j+\frac{1}{2}} = \left(\frac{\rho_{j+1} - \rho_{j}}{\ln(\rho_{j+1}) - \ln(\rho_{j})}\right) \frac{\phi_{j+1} - \phi_{j}}{\Delta x_{j+\frac{1}{2}}}$$

Only the continuous steady state with $\rho = p = e^{-xg}$, $\phi = gx$ are exactly preserved.

Idea

To treat general steady-state: construct a new discrete equilibrium which is a very high order approximation to the continuous one.

$$\Delta_{j+rac{1}{2}}\left(rac{1}{\Delta\mathsf{x}_{j+rac{1}{2}}}\int_{\mathsf{x}_{j}}^{\mathsf{x}_{j+1}}\partial_{\mathsf{x}}
ho
ight) = -\Delta_{j+rac{1}{2}}\left(rac{1}{\Delta\mathsf{x}_{j+rac{1}{2}}}\int_{\mathsf{x}_{j}}^{\mathsf{x}_{j+1}}
ho\partial_{\mathsf{x}}\phi
ight)$$

Ap property

☐ The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

- \Box The discrete steady state $p_{j+1}-p_j=-\Delta x_{j+\frac{1}{2}}(\rho\partial_x\phi)_{j+\frac{1}{2}}$ is exactly preserved.
- Question: How the scheme preserved the continuous steady state ?
- Second choice:

$$(\rho \partial_{x} \phi)_{j+\frac{1}{2}} = \left(\frac{\rho_{j+1} - \rho_{j}}{\ln(\rho_{j+1}) - \ln(\rho_{j})}\right) \frac{\phi_{j+1} - \phi_{j}}{\Delta x_{j+\frac{1}{2}}}$$

• Only the continuous steady state with $ho=p=e^{-xg}$, $\phi=gx$ are exactly preserved.

Idea

■ To treat general steady-state: construct a new discrete equilibrium which is a very high order approximation to the continuous one.

$$\Delta_{j+\frac{1}{2}}\left(\frac{1}{\Delta x_{j+\frac{1}{2}}}\int_{x_j}^{x_{j+1}}\partial_x\overline{\rho}_{j+\frac{1}{2}}\right) = -\Delta_{j+\frac{1}{2}}\left(\frac{1}{\Delta x_{j+\frac{1}{2}}}\int_{x_j}^{x_{j+1}}\overline{\rho}_{j+\frac{1}{2}}\partial_x\overline{\phi}_{j+\frac{1}{2}}\right)$$

with $\overline{p}_{i+\frac{1}{2}}$ (same for ρ and ϕ) average polynomial interpolation.

Ap property

☐ The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

- \Box The discrete steady state $p_{j+1}-p_j=-\Delta x_{j+\frac{1}{2}}(\rho\partial_x\phi)_{j+\frac{1}{2}}$ is exactly preserved.
- **Question**: How the scheme preserved the continuous steady state ?
- Second choice:

$$(\rho \partial_{\mathsf{x}} \phi)_{j+\frac{1}{2}} = \left(\frac{\rho_{j+1} - \rho_{j}}{\ln(\rho_{j+1}) - \ln(\rho_{j})}\right) \frac{\phi_{j+1} - \phi_{j}}{\Delta \mathsf{x}_{j+\frac{1}{2}}}$$

• Only the continuous steady state with $\rho = p = e^{-xg}$, $\phi = gx$ are exactly preserved.

Idea

■ To treat general steady-state: construct a new discrete equilibrium which is a very high order approximation to the continuous one.

the final equilibrium $p_{j+1}-p_j=-\Delta x_{j+rac{1}{2}}(
ho\partial_x\phi)_{j+rac{1}{2}}^{HO}$

$$(\rho \partial_{x} \phi)_{j+\frac{1}{2}}^{HO} = \Delta x_{j+\frac{1}{2}} \left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_{j}}^{x_{j+1}} \left(\partial_{x} \overline{\rho}_{j+\frac{1}{2}} + \overline{\rho}_{j+\frac{1}{2}} \partial_{x} \overline{\phi}_{j+\frac{1}{2}} \right) - \frac{p_{j+1} - p_{j}}{\Delta x_{j+\frac{1}{2}}} \right)$$

Results

Comparison between AP and Non AP scheme for Euler equation.

 Left: non AP, Right: AP. Red: fine solution, black: coarse solution and green: middle coarse solution.

Results

- Well-Balanced property.
- **Test case**: $\rho(t,x) = 3 + 2\sin(2\pi x)$ and $\phi(x) = -\sin(2\pi x)$. Random mesh

Schemes	LR		LR-AP (2)		LR-AP (3)		LR-AP (4)	
cells	Err	q	Err	q	Err	q	Err	q
20	0.8335	-	0.0102	-	0.0079	-	0.0067	-
40	0.4010	1.05	0.0027	1.91	8.4E-4	3.23	1.5E-4	5.48
80	0.2065	0.96	7.0E-4	1.95	7.7E-5	3.45	4.1E-6	5.19
160	0.1014	1.02	1.7E-4	2.04	7.0E-6	3.46	1.0E-7	5.36

■ **Test case**: $\rho(t,x) = e^{-gx}$, u(t,x) = 0, $p(t,x) = e^{-gx}$ et $\phi = gx$. Random mesh

Schemes	LR		LR-AP (2	2)	LR-AP (3)	LR-AP (4	-)
cells	Err	q	Err	q	Err	q	Err	q
20	0.0280	-	6.5E-4	-	1.8E-5	-	8.0E-7	-
40	0.0152	0.88	1.4E-4	2.21	2.0E-6	3.17	3.8E-8	4.4
80	0.0072	1.08	3.3E-5	2.08	2.0E-7	3.32	2.0E-9	4.25
160	0.0038	0.92	8.8E-6	1.90	2.8E-8	2.84	1.1E-10	4.18

WB scheme

Not exact preservation of general steady-state, but arbitrary high order accuracy around the steady-state

Implicit relaxation method for low Mach Euler equations

Low Mach and implicit scheme

Aim: Low Mach Euler equation

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \partial_t \rho \mathbf{u} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M} \nabla \rho = 0, \\ \partial_t E + \nabla \cdot ((E + \rho) \mathbf{u}) = 0, \end{array} \right.$$

- CFL condition $\Delta t < hM$.
- Aim: choose a time step adapted to u. Filter the fast waves.
- Solution: implicit scheme.

Implicit scheme

- **Direct solver**: too expensive in CPU time and memory consumption.
- **Iterative solver**: used in practice. But ofter ill-conditioning for hyperbolic models.
- **Euler equation**: ill-conditioned mainly in the low-Mach regime.

Idea

Using relaxation model and AP schemes to obtain implicit scheme without matrices.

Relaxation scheme

■ We consider the relaxation model (Jin-Xin 95) for a scalar system $\partial_t u + \partial_x F(u) = 0$:

$$\left\{ \begin{array}{l} \partial_t u + \partial_x v = 0 \\[0.2cm] \partial_t v + \alpha^2 \partial_x u = \frac{1}{\varepsilon} (F(u) - v) \end{array} \right.$$

Limit

 $\ \square$ The limit scheme of the relaxation system is

$$\partial_t u + \partial_x F(u) = \varepsilon \partial_x ((\lambda^2 - |\partial F(u)|^2) \partial_x u) + O(\varepsilon^2)$$

- \Box **Stability**: the limit system is dissipative if $(\lambda^2 |\partial F(u)|^2) > 0$.
- \blacksquare We diagonalize the hyperbolic matrix $\left(\begin{array}{cc} 0 & 1 \\ \lambda^2 & 0 \end{array}\right)$ to obtain

$$\begin{cases} \partial_t f_- - \lambda \partial_x f_- = \frac{1}{\varepsilon} (f_{eq}^- - f_-) \\ \partial_t f_+ + \lambda \partial_x f_+ = \frac{1}{\varepsilon} (f_{eq}^+ - f_+) \end{cases}$$

with $u = f_- + f_+$ and $f_{eq}^{\pm} = \frac{u}{2} \pm \frac{F(u)}{2\lambda}$.

Remark

☐ Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = 0$$

- **Lattice**: $W = \{\lambda_1,, \lambda_{n_v}\}$ a set of velocities.
- Mapping matrix: P a matrix $n_c \times n_v$ $(n_c < n_v)$ such that U = Pf, with $U \in \mathbb{R}^{n_c}$.
- Kinetic relaxation system:

$$\partial_t \mathbf{f} + \Lambda \partial_{\mathsf{x}} \mathbf{f} = \frac{1}{\varepsilon} (\mathbf{f}^{eq}(\mathbf{U}) - \mathbf{f})$$

- We define the macroscopic variable by $Pm{f} = m{U}$.
- Consistence conditon (R. Natalini, D. Aregba-Driollet, F. Bouchut) :

$$C \begin{cases} Pf^{eq}(\mathbf{U}) = \mathbf{U} \\ P\Lambda f^{eq}(\mathbf{U}) = \mathbf{F}(\mathbf{U}) \end{cases}$$

- In 1D: same property of stability that the classical relaxation method.
- Limit of the system:

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \varepsilon \partial_x \left(\left(P \Lambda^2 \partial \mathbf{f} eq - |\partial \mathbf{F}(\mathbf{U})|^2 \right) \partial_x \mathbf{U} \right) + O(\varepsilon^2)$$

First Generalization

□ **Generalization** $[D1Q2]^n$: one Xin-Jin or D1Q2 model by macroscopic variable.

Time scheme

Time scheme

- Property: the nonlinearity is local and non-locality is linear.
- Main idea: time splitting scheme between transport and source.

Consistency in time

■ We define the two operators for each step :

$$T_{\Delta t}: e^{\Delta t \wedge \partial_{\mathsf{x}}} f^{n+1} = f^n$$

$$R_{\Delta t}: \boldsymbol{f}^{n+1} + heta rac{\Delta t}{arepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^{n+1}) = \boldsymbol{f}^n - (1- heta) rac{\Delta t}{arepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^n)$$

■ Final scheme: $\Psi(\Delta t) = T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \left(\frac{(2-\omega)\Delta t}{2\omega}\right) \partial_x \left(D(\boldsymbol{U})\partial_x \boldsymbol{U}\right) + O(\Delta t^2)$$

• with $\omega = \frac{\Delta t}{\epsilon + \theta \Delta t}$ and $D(\mathbf{U}) = (P\Lambda^2 \partial_{\mathbf{U}} \mathbf{f}^{eq} - A(\mathbf{U})^2)$.

Drawback

• For $[D1Q2]^2$ scheme we have a large error: $D(\mathbf{U}) = (\lambda^2 I_d - A(\mathbf{U})^2)$

(nría-

E. Franck

High-order extension

High order scheme

Second order splitting

$$\Psi(\Delta t) = T\left(\frac{1}{2}\Delta t\right) \circ R\left(\Delta t\right) \circ T\left(\frac{1}{2}\Delta t\right)$$

Higher order scheme using composition:

$$M_p(\Delta t) = \Psi(\gamma_1 \Delta t) \circ \Psi(\gamma_2 \Delta t) \dots \circ \Psi(\gamma_s \Delta t)$$

- with $\gamma_i \in [-1, 1]$, we obtain a *p*-order schemes.
- Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.
- High-order convergence only for macroscopic variables.

Space solver

- **Exact transport**: the choice of the velocities link time and space discretization.
- **Semi-** Lagrangian: Interpolation 2q+1 gives a consistency error $O(\frac{h^{2d+2}}{\Delta t})$.
- **implicit DG**: DG (k polynomial and Gauss-Lobatto) point gives a consistency error $O(h^k) + O(\Delta t^2)$.

 $^{29}/_{39}$

Burgers: convergence results

■ Model: Burgers equation

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2} \right) = 0$$

- Spatial discretization: SL-scheme, 2000 cells, degree 11.
- **Test**: $\rho(t=0,x) = \sin(2\pi x)$. $T_f = 0.14$ (before the shock) and no viscosity.
- Scheme: splitting schemes and Suzuki composition + splitting.

	SPL 1,	$\theta = 1$	SPL 1, θ	0.5	SPL 2, θ	= 0.5	Suzi	ıki
Δt	Error	order	Error	order	Error	order	Error	order
0.005	$2.6E^{-2}$	-	$1.3E^{-3}$	-	$7.6E^{-4}$	-	$4.0E^{-4}$	-
0.0025	$1.4E^{-2}$	0.91	$3.4E^{-4}$	1.90	$1.9E^{-4}$	2.0	$3.3E^{-5}$	3.61
0.00125	$7.1E^{-3}$	0.93	8.7 <i>E</i> ⁻⁵	1.96	$4.7E^{-5}$	2.0	2.4 <i>E</i> ⁻⁶	3.77
0.000625	$3.7E^{-3}$	0.95	$2.2E^{-5}$	1.99	$1.2E^{-5}$	2.0	$1.6E^{-7}$	3.89

- Scheme: second order splitting scheme.
- Same test after the shock:

Numerical results: 2D-3D fluid models

■ Model : liquid-gas Euler model with gravity.

• Kinetic model : $(D2 - Q4)^n$. Symmetric Lattice.

■ Transport scheme: 2 order Implicit DG scheme. 3th order in space. CFL around 6.

■ **Test case** : Rayleigh-Taylor instability.

2D case in annulus

3D case in cylinder

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- **Test case** : Rayleigh-Taylor instability.

2D case in annulus

2D cut of the 3D case

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Classical kinetic representation

Limitation

- High-order extension allows to correct the main default of relaxation: large error.
- In two situations the High-order extension is not sufficient:
 - For discontinuous solutions like shocks.
 - ☐ For strongly multi-scale problem like low-Mach problem.
- Euler equation: Sod problem.
- Second order time scheme + SL scheme:

- Left: density $\Delta t = 1.0^{-4}$. Right: density $\Delta t = 4.0^{-4}$
- **Conclusion**: shock and high order time scheme needs limiting methods.

(nría-

Classical kinetic representation

Limitation

- High-order extension allows to correct the main default of relaxation: large error.
- In two situations the High-order extension is not sufficient:
 - For discontinuous solutions like shocks.
 - ☐ For strongly multi-scale problem like low-Mach problem.
- **Euler equation**: smooth contact (u =cts, p=cts).
- First/Second order time scheme + SL scheme. $T_f = \frac{2}{M}$ and 100 time step.

- Order 1 Left: M = 0.1. Right: M = 0.01
- Conclusion: First order method too much dissipative for low Mach flow (dissipation with acoustic coefficient).

Classical kinetic representation

Limitation

- High-order extension allows to correct the main default of relaxation: large error.
- In two situations the High-order extension is not sufficient:
 - For discontinuous solutions like shocks.
 - ☐ For strongly multi-scale problem like low-Mach problem.
- **Euler equation**: smooth contact (u =cts, p=cts).
- First/Second order time scheme + SL scheme. $T_f = \frac{2}{M}$ and 100 time step.

- Order 1 Left: M = 0.1. Right: M = 0.01
- Conclusion: Second order method too much dispersive for low Mach flow (dispersion with acoustic coefficient).

Generic vectorial D1Q3

Idea

- Add a central velocity (equal or close to zero) to capture the slow dynamics.
- Consistency condition:

$$\begin{cases} f_{-}^{k} + f_{0}^{k} + f_{+}^{k} &= \mathbf{U}^{k}, & \forall k \in \{1..N_{c}\} \\ \lambda_{-} f_{-}^{k} + \lambda_{0} f_{0}^{k} + \lambda_{+} f_{+}^{k} = F^{k}(\mathbf{U}), & \forall k \in \{1..N_{c}\} \end{cases}$$

$$\begin{cases} f_{-}^{k} + f_{0}^{k} + f_{+}^{k} &= \mathbf{U}^{k}, & \text{quad} \forall k \in \{1..N_{c}\} \\ (\lambda_{-} - \lambda_{0}) f_{-}^{k} + (\lambda_{+} - \lambda_{0}) f_{+}^{k} = F^{k}(\mathbf{U}) - \lambda_{0} f_{0}^{k}, & \forall k \in \{1..N_{c}\} \end{cases}$$

■ We assume a decomposition of the flux (Bouchut 03, Natalini -Aregba 00)

$$F^{k}(\mathbf{U}) = F_{0}^{k,-}(\mathbf{U}) + F_{0}^{k,+}(\mathbf{U}) + \lambda_{0}I_{d}$$

■ We obtain the following equation for the equilibrium

$$\left\{ \begin{array}{l} f_{-}^{k} + f_{0}^{k} + f_{+}^{k} &= U^{k}, \quad \forall k \in \{1..N_{c}\} \\ (\lambda_{-} - \lambda_{0})f_{-}^{k} + (\lambda_{+} - \lambda_{0})f_{+}^{k} = F_{0}^{k,-}(\mathbf{U}) + F_{0}^{k,+}(\mathbf{U}), \quad \forall k \in \{1..N_{c}\} \end{array} \right.$$

By analogy of the kinetic theory and kinetic flux splitting scheme we propose the following decomposition $\sum_{v>0} vf^k = F_0^{k,+}(\textbf{\textit{U}})$ and $\sum_{v<0} vf^k = F_0^{k,-}(\textbf{\textit{U}})$.

Generic vectorial D1Q3

Idea

- Add a central velocity (equal or close to zero) to capture the slow dynamics.
- The lattice $[D1Q3]^N$ is defined by the velocity set $V = [\lambda_-, \lambda_0, \lambda_+]$ and

$$\begin{cases} \mathbf{f}_{-}^{eq}(\mathbf{U}) = -\frac{1}{(\lambda_0 - \lambda_-)} \mathbf{f}_{0}^{-}(\mathbf{U}) \\ \mathbf{f}_{0}^{eq}(\mathbf{U}) = \left(\mathbf{U} - \left(\frac{\mathbf{f}_{0}^{+}(\mathbf{U})}{(\lambda_+ - \lambda_0)} - \frac{\mathbf{f}_{0}^{-}(\mathbf{U})}{(\lambda_0 - \lambda_-)}\right)\right) \\ \mathbf{f}_{+}^{eq}(\mathbf{U}) = \frac{1}{(\lambda_+ - \lambda_0)} \mathbf{f}_{0}^{+}(\mathbf{U}) \end{cases}$$

Stability

- Condition only on the macroscopic flux splitting.
- Condition for entropy stability:
 - $\ \square$ ${\it F}_0^+$ and ${\it F}_0^-$ is an entropy decomposition of the flux
 - \Box $\partial \mathbf{F}_0^+$, $-\partial \mathbf{F}_0^-$ and $1 \frac{\partial \mathbf{F}_0^+ \partial \mathbf{F}_0^-}{\lambda}$ are positive.

E. Franck

D1Q3 for scalar case

First choice: D1Q3 Rusanov ($\lambda_0 = 0$)

$$F_0^-(\rho) = -\lambda_- \frac{(F(\rho) - \lambda_+ \rho)}{\lambda_+ - \lambda_-}, \quad F_0^+(\rho) = \lambda_+ \frac{(F(\rho) - \lambda_- \rho)}{\lambda_+ - \lambda_-}$$

- Consistency (for $\lambda_{-} = -\lambda_{+}$): $\partial_{t}\rho + \partial_{x}F(\rho) = \sigma\Delta t\partial_{x}\left(\lambda^{2} |\partial F(\rho)|^{2}\right)\partial_{x}\rho + O(\Delta t^{2})$
- Second choice: D1Q3 Upwind

$$F_0^-(\rho) = \chi_{\{\partial F(\rho) < \lambda_0\}} \left(F(\rho) - \lambda_0 \rho \right) \quad F_0^+(\rho) = \chi_{\{\partial F(\rho) > \lambda_0\}} \left(F(\rho) - \lambda_0 \rho \right)$$

- with χ the indicatrice function.
- Consistency: $\partial_t \rho + \partial_x F(\rho) = \sigma \Delta t \partial_x \left(\lambda \mid \partial F(\rho) \mid \mid \partial F(\rho) \mid^2 \right) \partial_x \rho + O(\Delta t^2)$
- Third choice: D1Q3 Lax-Wendroff ($\lambda_0 = 0$)

$$F_0^-(\rho) = \frac{1}{2} \left(F(\rho) + \frac{\alpha}{\lambda} \int^{\rho} (\partial F(u))^2 \right) \quad F_0^+(\rho) = \frac{1}{2} \left(F(\rho) + \frac{\alpha}{\lambda} \int^{\rho} (\partial F(u))^2 \right)$$

- with $\lambda_0 = 0$ and $\lambda_- = -\lambda_+$ and $\alpha \ge 1$.
- Consistency: $\partial_t \rho + \partial_x F(\rho) = \sigma \Delta t \partial_x \left((\alpha 1) \mid \partial F(\rho) \mid^2 \right) \partial_x \rho + O(\Delta t^2)$.
- The last one is not entropy stable and L^2 stability in some case.

D1Q3 for Euler equation II

Low Mach case:

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho u + \partial_x \left(\rho u^2 + \frac{p}{M} \right) = 0 \\ \partial_t E + \partial_x (Eu + \rho u) = 0 \end{array} \right.$$

■ We want to preserve as possible the limit:

$$p = cts$$
, $u = cts$, $\partial_t \rho + u \partial_x \rho = 0$

Idea: Splitting of the flux (E. Toro 12):

$$F(U) = \begin{pmatrix} (\rho)u \\ (\rho u)u + p \\ (E)u + pu \end{pmatrix}$$

- Idea: Lax-Wendroff Flux splitting for convection and AUSM-type (M. Liou 93) for the pressure term.
 - Use only u, p and λ (\approx c) to reconstruct pressure. Important to preserve the low mach limit
- We obtain

$$\mathbf{F}^{\pm}(\mathbf{U}) = \frac{1}{2} \begin{pmatrix} (\rho u \pm \frac{u^2}{\lambda} \rho) + p \\ (\rho u^2 \pm \frac{u^2}{\lambda} q) + p(1 \pm \gamma \frac{u}{\lambda}) \\ (E u \pm \frac{u^2}{\lambda} E) + (\rho u \pm \frac{1}{\lambda} \gamma (u^2 + \lambda^2) p) \end{pmatrix}$$

Preserve contact. Diffusion error for ρ in $O(u^2)$.

Burgers

■ Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = 0$$

■ **Test case 1**: $\rho(t = 0, x) = sin(2\pi x)$. 10000 cells. Order 17. First order time scheme.

	Rusanov		Upwind		Lax Wendroff $lpha=1$	
	Error	Order	Error	Order	Error	Order
$\Delta t = 0.01$	$3.9E^{-2}$	-	$1.1E^{-2}$	-	$2.3E^{-3}$	-
$\Delta t = 0.005$	$2.1E^{-2}$	0.89	6.4 <i>E</i> ⁻³	0.78	$6.0E^{-4}$	1.94
$\Delta t = 0.0025$	$1.1E^{-2}$	0.93	$3.5E^{-3}$	0.87	$1.5E^{-4}$	2.00
$\Delta t = 0.00125$	5.4 <i>E</i> ⁻³	1.03	$1.8E^{-3}$	0.96	$3.9E^{-5}$	1.95

Shock wave. First order scheme in time.

Left $\Delta t = 0.002$. Right $\Delta t = 0.01$. Reference (black), Rusanov (yellow), Upwind (violet), Lax-Wendroff (green), Lax-Wendroff $\alpha = 1.5$ (blue).

Burgers

■ Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2} \right) = 0$$

■ **Test case 1**: $\rho(t=0,x) = \sin(2\pi x)$. 10000 cells. Order 17. First order time scheme.

	Rusanov		Upwind		Lax Wendroff $\alpha=1$	
	Error	Order	Error	Order	Error	Order
$\Delta t = 0.01$	$3.9E^{-2}$	-	$1.1E^{-2}$	-	$2.3E^{-3}$	-
$\Delta t = 0.005$	$2.1E^{-2}$	0.89	$6.4E^{-3}$	0.78	$6.0E^{-4}$	1.94
$\Delta t = 0.0025$	$1.1E^{-2}$	0.93	$3.5E^{-3}$	0.87	1.5E ⁻⁴	2.00
$\Delta t = 0.00125$	5.4 <i>E</i> ⁻³	1.03	$1.8E^{-3}$	0.96	$3.9E^{-5}$	1.95

Rarefaction wave. First order scheme in time.

Left $\Delta t = 0.002$. Right $\Delta t = 0.01$. Reference (black), Rusanov (violet), Upwind (green), Lax-Wendroff $\alpha = 1$ (blue), Lax-Wendroff $\alpha = 2$ (Yellow).

1D Euler equations II

- **Test case**: Smooth contact. We take p = 1 and u is also constant.
- **Final aim**: take $\Delta t = O(\frac{1}{u})$ when u decrease to have the same error.
- We choose $\Delta t = 0.02$ and $T_f = 2$. 4000 cells. First order time scheme. We compare different D1Q3 schemes.

	Schemes	Rusanov	VL	Osher	Low Mach
	$\rho(t,x)$	0.26	$1.0E^{-1}$	8.4 <i>E</i> ⁻²	$1.0E^{-3}$
$u = 10^{-2}$	u(t,x)	0	$3.4E^{-3}$	$6.0E^{-7}$	0
	p(t,x)	0	5.0 <i>E</i> ⁻⁴	$4.3E^{-8}$	0
	$\rho(t,x)$	0.26	$1.0E^{-1}$	$8.4E^{-2}$	$1.0E^{-5}$
$u = 10^{-4}$	u(t,x)	0	$3.4E^{-3}$	$6.0E^{-7}$	0
	p(t,x)	0	5.0 <i>E</i> ⁻⁴	$4.3E^{-8}$	0
	$\rho(t,x)$	0.26	$1.0E^{-1}$	$4.8E^{-2}$	0.0
u=0	u(t,x)	0	$3.4E^{-3}$	$6.0E^{-7}$	0
	p(t,x)	0	5.0 <i>E</i> ⁻⁴	$4.3E^{-8}$	0

- Drawback: When the time step is too large we have dispersive effect.
- Possible explanation: the error would be homogeneous to

$$|\rho^{n}(x) - \rho(t,x)| \approx [O(\Delta t u^{2}) + O(\Delta t^{2} u \lambda^{q})].$$

- with λ closed to the sound speed.
- **Problem**: At the second order we recover partially the problem since λ is closed to the sound speed.

lnría-

E. Franck

1D Euler equations III

- **Possible solution**: decrease λ for the density equation.
- We propose two-scale kinetic model.
- We consider the following $[D1Q5]^3$ based on the following velocities:

$$V = [-\lambda_f, -\lambda_s, 0, \lambda_s, \lambda_f]$$
slow scale

- The convective part at the slow scale. The acoustic part at the fast scale.
- Smooth contact: We take 200 time step and $\Delta t = \frac{0.001}{u}$:

Error	$u = 10^{-1}$	$u = 10^{-2}$	$u = 10^{-3}$	$u = 10^{-4}$
$\alpha = 1$	$2.5E^{-3}$	$2.5E^{-3}$	$2.5E^{-3}$	2.5 <i>E</i> -3
λ_s	2	0.2	0.02	0.002
λ_f	2	20	200	2000

Conclusion

Conclusion: the error <u>would be</u> homogeneous to

$$|\rho^n(x) - \rho(t,x)| \approx [O(\Delta t u^2) + O(\Delta t^2 u \lambda_s^q)].$$

- with λ_s which can be take small.
- Drawback: For the stability it seems necessary to have

$$\lambda_s \lambda_f \geq C \max(u+c)$$

1D Euler equations III

- **Possible solution**: decrease λ for the density equation.
- We propose two-scale kinetic model.
- We consider the following $[D1Q5]^3$ based on the following velocities:

$$\underbrace{V = [-\lambda_f, -\lambda_s, 0, \lambda_s, \lambda_f]}_{\text{fast scale}}$$

- The convective part at the slow scale. The acoustic part at the fast scale.
- Smooth contact: We take 200 time step and $\Delta t = \frac{0.001}{u}$:

Error	$u = 10^{-1}$	$u = 10^{-2}$	$u = 10^{-3}$	$u = 10^{-4}$
$\alpha = 1$	$2.5E^{-3}$	$2.5E^{-3}$	$2.5E^{-3}$	2.5 <i>E</i> -3
λ_s	2	0.2	0.02	0.002
λ_f	2	20	200	2000

Conclusion

■ Conclusion: the error would be homogeneous to

$$|\rho^n(x) - \rho(t,x)| \approx [O(\Delta t u^2) + O(\Delta t^2 u \lambda_s^q)].$$

- with λ_s which can be take small.
- Drawback: For the stability it seems necessary to have

$$\lambda_s \lambda_f \geq C \max(u+c)$$

1D Euler equations III

- **Possible solution**: decrease λ for the density equation.
- We propose two-scale kinetic model.
- We consider the following $[D1Q5]^3$ based on the following velocities:

$$\underbrace{V = [-\lambda_f, -\lambda_s, 0, \lambda_s, \lambda_f]}_{\text{coupling}}$$

- The convective part at the slow scale. The acoustic part at the fast scale.
- Smooth contact: We take 200 time step and $\Delta t = \frac{0.001}{u}$:

Error	$u = 10^{-1}$	$u = 10^{-2}$	$u = 10^{-3}$	$u = 10^{-4}$
$\alpha = 1$	$2.5E^{-3}$	$2.5E^{-3}$	$2.5E^{-3}$	2.5 <i>E</i> -3
λ_s	2	0.2	0.02	0.002
λ_f	2	20	200	2000

Conclusion

■ Conclusion: the error would be homogeneous to

$$|\rho^{n}(x) - \rho(t,x)| \approx [O(\Delta t u^{2}) + O(\Delta t^{2} u \lambda_{s}^{q})].$$

- with λ_s which can be take small.
- Drawback: For the stability it seems necessary to have

$$\lambda_s \lambda_f \geq C \max_x (u+c)$$

(nría

36/3

Conclusion

Ap schemes for diffusion limit

- AP scheme: plug the term source effect in the fluxes.
- Uniform AP: scheme: previous construction not sufficient. WB also ?
- Other Works:
 - 2D extension on unstructured meshes for damped wave equations [BDF12], [FHNG11], [BDFL16].
 - □ Extension on 2D unstructured meshes for Friedrich's systems [BDF14].
 - Extension on 2D unstructured meshes for nonlinear radiative problem [BDF11],
 [BDF12] and Euler equations [F14], [FM16].

Kinetic relaxation schemes

- Implicit schemes: without matrices based on kinetic relaxation schemes.
- High order time extension [CFHMN17], [CFHMN18] and parallel algorithm [Cemracs18].
- Future Works:
 - D1Q3 schemes for hyperbolic problem in 1D (in redaction). Extension in 2D/3D application to low-Mach Euler equation.
 - ☐ Implicit Kinetic schemes for anisotropic diffusion (in redaction).
 - □ Boundary conditions (Post doc of F. Drui).
 - ☐ Incompressibility, divergence constrains.

39/39