B-Splines compatible finite element spaces.
Application to plasma physics

Mini Symposium: Finite element and compatible discretization,
Canum 2018, 28 may 2018.

Ynria Nancy Grand Est, France
2IRMA, university of Strasbourg, France

3IPP, Garching bei Munchen, Germany ,1 \

&’L’;ta/— E.Franck \ /26‘




Outline

Introduction

Physical and mathematical context

Finite element and B-Splines

Compatible isogeometric analysis for full MHD

Splitting and nonlinear solver: Full MHD

E.Franck \ /26‘




Introduction

E.Franck



Physical and mathematical context

E.Franck



Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. Free energy is released. At
those energies, the atoms are ionized
forming a plasma (which can be
controlled by magnetic fields).

Tokamak: toroidal chamber where the
plasma is confined using powerful
magnetic fields.

Difficulty: plasma instabilities.

U Disruptions: Violent instabilities
which can critically damage the
Tokamak.

U Edge Localized Modes (ELM):
Periodic edge instabilities which can
damage the Tokamak.

The simulation of these instabilities is
an important topic for ITER.
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MHD in a Tokamak

Visco-resistive MHD

athrV(pu) =0,
poru+pu-Vu+Vp=(VxB)xB+vV-II
9p+V-(pu)+(y—1)pV-u=V-q+7|VxB>HIl:Vu
9:B—V x (ux B) =1V x (V xB)

V-B=0

B with p the density, p the pressure, u the velocity, B the magnetic field, J the current,

IT stress tensor and q the heat flux.

MHD specificities in Tokamak

0 Strong anisotropic flows (direction of the magnetic field) ===> complex geometries

and aligned meshes ( flux surface or magnetic field lines).

& MHD scaling:

B Diffusion: Large Reynolds and magnetic Reynolds number.
u BH direction: compressible flow and small Prandlt number.
B B direction: quasi incompressible flow and large Prandlt number.

O MHD Scaling ===> compressible code with no discontinuities + fast waves.

O Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.

Ve
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Problem of implicit discretization

Spatial discretization

B No shocks + diffusion ==> Finite Element method.
B Strong anisotropy ==> Aligned meshes + high-order ==> Isogeometry analysis.

B Divergence constrains, stability ==> Compatible discretization.

B Solution for implicit schemes:
U Direct solver. CPU cost and consumption memory too large in 3D.
U Iterative solver. Problem of conditioning.

Problem of classical implicit schemes

B Huge ratio between the physical wave speeds (low Mach regime) ==> huge ratio
between discrete eigenvalues.

B Transport problem: anisotropic problem ==> huge ratio between discrete eigenvalues.

B High order scheme: small/high frequencies ==> huge ratio between discrete
eigenvalues.

Long term aim

B Propose High-order and stable finite element scheme.

B Propose an implicit formulation with small problems to solve (splitting).

| (4
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Finite element and B-Splines
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Finite element and B-Splines

Finit element method
B Equation: —Au=f

B We define a mesh and compact basis functions ¢;(x) for j € 1,.., N associated to the
degree of freedom j (node mesh for example).

B We write the equation on the weak form:

/(Vu,Vv) =/fv

B We expand the field on the basis function: v = Y ; uj¢;(x).

B | ot of possibilities for the basis functions: Py an Qj Lagrange, Hermite etc.

B Isogeometry idea: use functions used also for the geometry description in CAO.
B-Splines, Nurbs etc.

B Choice: B-Splines. Important property:

O Arbitrary order p.
0 Regularity can be also chosen: between C® and CP~1.
U For high regularity Splines we add a small number of DOF to increase the degree.

fo
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B-Splines Properties

B For same degree, the Low-regular Splines are more accurate that the high-regular
B-Splines (better constant).
B Conditioning better for high-regular B-Splines.

B |n 2D/3D on cartesian grids the 2D/3D Splines are obtained by tensor product. Can
be useful also for solving linear system associated.

Non cartesian grids

B We obtain non Cartesian
geometries mapping the square
with your physical geometry.

B Multi-patch version. Each part mapping_2.pdf
is mapped with a part of the
physical geometries.

B Drawback: sometimes the
mapping is singular.
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Solvers

B As all the finite element solver we need to invert matrix. Specific solver can be used.
B Example: Laplacian

—Au=f
B After discretization we obtain
SppxlU=Ff

with Sp, , « the stiffness matrix for h a step mesh, p the polynomial order and regularity.

Spectral property

O We can prove that at the spectral level (GLT theory, S. Serra-Capizzano):

Shpk = MppDp
with M}, , i, the mass matrix and Dj, the finite difference matrix of the Laplacian.
O Remark: mass contained high-order effects and mapping.

Conditioning problem: Low frequencies for Dj and high-frequencies for p >> 1 for
M, p,

Preconditioning

| A

U Multi-Grids for low frequencies.

] I\/lhf;'k (or approximation) for high-frequencies.

8 Mppx = Myp @ Myp for smooth mapping. Using to invert the mass.
O Ref: S. Serra-Capizzano, M. Mazza, G. Sangalli, M. Tani etc.

2\
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Numerical results: Convergence

Equation:

—Au=f

Square domain.

Dirichlet BC.

Convergence and
efficiency of B-Splines.

B_ordre_cvg.pdf

B CPU and memory cost compare to the regularity of B-Splines:

number of d.o.f number of nnz cpu-SuperLU cpu-CG
Cp—l CO Cp—l CO Cpfl CO Cp—l CO
p=2 | 4’096 | 16’129 98'596 253’009 0.23 0.35 71077 41103
p=3 | 4'225 | 36'481 196'249 | 896'809 0.61 1.64 1.110° 2104, \
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Numerical results: Anisotropic diffusion

B Coupling anisotropic diffusion 4 equilibrium.
T -V -(BB)VT+¢VT)=0

B with the magnetic field given by

B= —Fg/’) +%V1}J><e¢

B Poloidal flux solution i solution of the equilibrium code:

pp— _prdPl) _ dF()

F(y)

dy dy

B |nitial solution in left. Final solution in right.
B Solve with an Implicit in time third-order B-Splines code. r\
1

0’[’,/,. E.Franck \ 4



Compatible isogeometric analysis
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Compatible space |: general and properties

B Compatible space: DeRham sequence

3D Vector fields

curl div

grad
HY(Q) —  H(wrd, Q) —  H(div,Q) — L[2(Q)
HY(P) +«+— H(cur,P) <«— H(div,P) <«— L*(P)

E.Franck



Compatible space |: general and properties

B Compatible space: DeRham sequence

,—( 3D Vector fields approximations\

J
grad curl div
HY(P) —  H(cur,P) — H(div,P) — L2(P)
ﬁZN/ I’:If:,url I’:Igiv ‘L ﬁLz ‘L
gradh curl” div"
vh — vh, — vh — Xh
SpP=Lp.p Sp.p—1lp-1
SP.P.P SpP.p=1p Sp—lpp-1 Sp—1lp-1p-1
Sp.pp—1 Sp—Llp-1p

B Preservation of the operator properties:
divy(Curly,) =0, Curly(grad,) =0

and
Curly, = Curl,, grad} = divy

B Dual properties useful for energy conservation, kernel properties for constraints and
avoid spurious modes.

(2
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Compatible space |: general and properties

B Compatible space: DeRham sequence

~— 2D Vector fields 1
grad rot

HY(Q) —  H(rQ) — L[2(Q)

grad® rot*
HYP) <+— H(cur,P) <+— L%(P)

\.

~— 2D Vector fields 2

curl div
HY(Q) — H(div,Q) — Q)
HYP) <+«+— H(div,P) <+— L*(P)

\.

B with rotu = dxuz —dyuy and V x f = ( ajafxf )

B As in 3d, we have the preservation of the operator properties:

divy(Curl,) =0, roty(grad,) =0

E.Franck



Why compatible spaces ?

B Example: Low-Mach Euler equation (no viscosity)

Btp + aX(pu) :10

Btu-i- Llaxll"‘ Maxp =0

0tp + udxp + poxu =0
B | imit when M tends to zero:

d¢rho + udxp = O(M),  9xp = O(M), dxu= O(M).

B Discretization: classical finite element P;. Gradient gives by

Uj+1 — Uj—1
dxu); ~ 2272
( )J 2Ax
B Kernel of gradient: constant functions. Kernel of discret gradient P;: constant and
checkerboard modes.
B Result: we can compute a wrong limit.

Possible solution

L Add viscosity on the all the equations to kill unphysical modes.

Uit —2u; + uj_q
Mot ] =

U It is Stabilization.

0’5'7"":2 E.Franck



Why compatible spaces ?
B Example: Low-Mach Euler equation (no viscosity)
Btp + ax(pu) =0
Btu-i- uaxu-i- Maxp =0
0tp + udxp + poxu =0
B Limit when M tends to zero:
d¢rho + udxp = O(M), 9xp = O(M), 9xu= O(M).
B Discretization: classical finite element P;. Gradient gives by
Uj+1 — Uj—1
2Ax
B Kernel of gradient: constant functions. Kernel of discret gradient P;: constant and
checkerboard modes.
B Result: we can compute a wrong limit.

(dxu)j ~

Possible solution

U Use another discretization. For example Py FE:
uj —ujq

(dxu)j ~ T

O No unphysical modes, but less order.

0 Compatible FE: keep the order and the good kernel for classical operators in 2D/3D.

Not directly valid for advection. 16/
E.Franck \ 26‘




Example of Maxwell and properties

Advantage: strong-weak form. Example: Explicit Maxwell.

E™l = E"+ AtV xB"=0
Bl =B" - AtVXE"=0
V'Bn+1:0,V'En+1:p

We take the B equation, choose E € H(curl) and consequently B € H(div), multiply
by test function and integrate (no ipp) to obtain

Mgi, Bit! = My, B + AtCE?

My;, the mass matrix for h(Div) space and C the weak curl matrix.
Property of the space: C = My;, Curl;, with Curl, a " finite difference curl”. We obtain

Bt = B} + AtCurl ,EY,

Applying div, we obtain div,,BZJrl =0.
B € H(div) ==> no compatibility with the first equation. So ipp on the first
equation (weak form)

/(E"“, C) = /(E”, C) +At/(B”,V x C)
Taking C € H(curl) we obtain a consistent equation.

Meu E™Y = Moy E™ + AtCurl] Mgy, B”
Taking C € H(curl) we obtain a consistent equation. h
1

7
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Projector

Additionally, we need the commutative projection.
The 3D projectors are defined by:

¥ II],f = £ € X"
fh .= Iy f=fevh 23
n f;?(xk) =Xk, Vxp € Np / f / , Yve € Qp

with N, the nodes of the mesh. )}, the cells of the mesh.

l_[ curlf = fl € chrl ﬁh dlvf - f2 € Vd/v
w6 :/ ot Veel ) g n—/ fon, Vi cF,
ek ek fic fi

with Ej the edges of the mesh. (), the faces of the mesh.

Exemple: p2 = V x (2x(1 — x)y(1 — y)). Comparison between L? and commutative
projection in H(div):

00000016
00000012
00000008
06 . . 00000004 06 .
- .
00000000 .
0000000 .
00000001

-0.000001

- A
%5 02 04 05 08 10 oo %% 02 04 08 08 10 18 /
26
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Results of 3D Maxwell

01 Matrices of first and second order can by write using mass and " DF" matrices:

. . T
Matrixgrad = MCurIgradhv Matr’XIap/acian = gradh MCurIgradh

I Mapping and high-order polynomial contains in the mass matrices.

B Analytic solution fof Maxwell equations. Implicit code.

Total Energy vs Time: dt = 0.01

Divergence vs Time: dt = 0.01, ele = 8~3, p=2

0.0005

082 —~0.0005

2000 4000 6000 8000 10000 200 20 50 800 T000
“Time Step Time Step.

B |eft: Energy evolution. Right: magnetic field divergence evolution.

Problem of classical implicit schemes

B Good conservation properties.
B Need to be verified with complex mapping.

E.Franck \ / 26‘




Compatible space V: practical example
B Numerical example: 2D Maxwell model:
E™l = E" 4 AtCurl(B™) — pod

B™! = B" — Atrot(E")
V'Bn+1:0,V'En+1:p

B with CurlB = < 3583 ) and Rot(E) = d0xE, — 9y E.

B Property to preserve
V.0tE =0:p, since 0dp+V-J=0.
B Charge conservation for Implicit scheme with 16*16 cells. Order 3

1e-1§harge Cons cn Commuting Pro p=3 n=16 dt=0.1 Charge Cons cn regular pro p=3 n=16 dt=0.1

6
000010
s
0.00008
4
; N 3 0.00006
2 H
R 000004
1 000002
o 000000
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Time steps

Time Steps

B | eft: Compatible space with commutative projection. Right: Compatible space

without commutative projection. (20 \
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Splitting and nonlinear solver: Full MHD

E.Franck



Model

B Resistive MHD model for Tokamak:

atp—‘rV(pu) =0,

poeu+pu-Vu+Vp=(VxB)xB+vV-II

0tp+ V- (pu)+9pV - u=V-((k(B&B)+k 14)VT)+n(T) |V xB | +vI1: Vu
0:B—V x(uxB)=n(T)Vx(VxB)

V-B=0

B with p the density, u the velocity , p and T the pressure and temperature, B the
magnetic field, IT = II(Vu, B) the stress tensor.
B with v the viscosity, k|, k, the thermal conductivities and 7 the resistivity.

Important Properties

U Conservation in time: V- B =0 and

d lul> |BJ? P\ _
E/(p 2 t 2 t5-1)=°

Possible simplification

U V-II = Au.

0 Ohmic (17 | V x B |?) and viscous heating vII : Vu neglected.
r-
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Three stage Energy conserving Splitting

B Convection - diffusion step:

9tp+ V- (pu) =0, O Energy balance
00tu+pu-Vu =vAu )
atP:V-q+’7(T)|V><B|2+vH:Vu at/<| erlu‘ 4 P >:0
0:B=1n(T)V x(V x B) 2 v—1
B Acoustic step:
dip =0, 0 Energy balance
patu+Vp:O
9P+ V- (pu) + (1 —=1)pV-u=0 - u?
:B=0 at/(| +p| 2‘ + 51>=0
Y
V-B=0
B Magnetic step:
dtp =0,
pdtu = (V x B) x B 0 Energy balance
dep=0 2
9:B—-V x(uxB)=0 a/( |U\ P >:0
V-B=0 2 y—1

B Splitting and Equilibrium: the balance is not preserved.

0’[’,/,. E.Franck \ 4



Example of Compatible space for MHD: Acoustic part

B Algorithm for acoustic step
9epn+ V- (prttn) + (Y = 1)paV - up =0
pndtup + Vpy =0

® u, € H(Curl) and p € H'. The second is exactly true using the DehRham sequence
First equation needs to take on the week form.

B We solve
A(9:pn, q) — B(paun, q) — (v — 1)B(up, prg) = 0
prdetp + Vippp =0

with

Amm:/m,smm:/mvm

0’1’/” E.Franck



Example of Compatible space for MHD: Acoustic part

B Algorithm for acoustic step
{ 9epn+ V- (prttn) + (Y = 1)paV - up =0

Pndtup +Vp, =0

® u, € H(Curl) and p € H'. The second is exactly true using the DehRham sequence. .
B After time discretization

A(ppL,q) - ci (B(pp*lunt, q) + (v = 1)B(up ™, pf1q))
= A(ph. ) + ce (B(ppuj, q) + (v — 1) B(up, ppa))

n+1 n+1 __ n n
pnup" + ciVapp T = ppup — ceViapp

B with ¢; = At and c. = (1 —0)At.

0’[”,. E.Franck \ 4



Example of Compatible space for MHD: Acoustic part

B Algorithm for acoustic step
9epn+ V- (prttn) + (Y = 1)paV - up =0
pndtup + Vpy =0

® u, € H(Curl) and p € H'. The second is exactly true using the DehRham sequence. .
B We solve

{ A(pp™™ q) + Mi(pp ™ q) + (v = )Ma(py . q) = R(q)

1 1
ot 4+ 6 Vppptt = ppuf — ceViph

with
. B pn+1 o o pn+1
Mot q) = & /:T(vpﬁ ,Vq) —c,./(p;+ ug,vq)+c,-ce/ ;h (Vpl, Vq)

pn+1 . .
Ma(pptt, q) = c?/ZT(VpZ+1,vq)+cf/ Pih | Vprt! |2 ,C,/(ug,pZHVq)

n+1

—c,-/(uZ,Vp,’:“)q-‘rc,-ce/ p;’)h (Vp,’,’,Vq)-i—c,-ce/pih(VpZH,Vp,",)

and
R(q) = A(pp. q) + ce (B(ppuf, q) + (v — 1)B(up, pha))

0’[7,. E.Franck \ 4



Example of Compatible space for MHD: Acoustic part

B Algorithm for acoustic step
0tph + V- (prup) + (Y —1)ppV - up =0
Prdtup +Vp, =0

B u, € H(Curl) and p € H'. The second is exactly true using the DehRham sequence. .

B Final Algorithm with Picard: for each k the following system
A(ph ) + Mi(pj. q) + (v = 1)M2(pj, q) = R(q)
with p:H = wp} + (1 — w)pf and

k *
Mi(ph, q) = C?/%(VPZ,Vq) —c,-/(pZUZ,Vq)+C;ce/%(VpZ.Vq)

k
Ma(ph. @) = < [ P2(VP.Va) +-cF [ T (Vok. Vi) ~ci [ (uh.piVa)

" P q
—¢ /(uZ Ver)g+ c;ce/ p—:(Vp;,’, Vaq) + cice / p—h(Vp,,, Ver)
¥ When | p,f“ — pk | < € we take p;,’“ = p,f“ and we compute the velocity

+1 +1_
paty "+ ciVppp T = ppup — ceVipp

0’[7,. E.Franck \ 4
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Substep and solvers

Splitting allows to obtain more simple systems to solve. How ?

Example: acoustic.

At each nonlinear step we must solve an equation like:
—aAp+u-Vp+cp=f

and just a matrix-vector product for the velocity update.

Case | u |<< 1: classical multigrid method + GLT smoother for high-order B-Splines.
Other case. More complex. Stabilization helps probably.

Magnetic or Magneto-acoustic step. Problem like:
—a(V-u)+ bV x (Vx(uxb)xb+cu=F
B More complex since for d = 0 the kernel can be non zero. For d << 1 ill-conditioned
system.
B Works of A. Ratnani and M. Mazza. PC for
—aV(V-u)+ bV x (Vxu)=Ff

B Work well for 1073 < 2 < 103. On going work: Larger ratio and introduction of the

magnetic field. h
2
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Conclusion

Compatible spaces:

B Energy preserving time scheme 4+ compatible spaces allows:

O Preserve energy at the discrete level in the ideal case. More stability 7

0 Preserve strongly V- B = 0.

O In each step we solve simple problems (convection-diffusion-reaction problems) +
matrix vector product.

' High-order and High-regularity. Possible to align poloidal mesh to magnetic
surfaces.

U Have a simple way to assembly/store the matrices (product of mass with "DF”
matrices).

' Needs: stabilization for advection and preconditioning for elliptic solvers.

| A

Following works for MHD

B Validate the acoustic step and after the magnetic step.

¥ Write and validate the convection diffusion step. Stabilization for convection (
Holger's talk ?)

B Preconditioning for vectorial elliptic problems and anisotropic diffusion.
B Add the mapping to the circle and after the Tokamak. Realistic test cases.

o’

G
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