B-Splines compatible finite element spaces. Application to plasma physics

E.Franck¹², M. Gaja³, A. Ratnani³, E. Sonnendrücker³

Mini Symposium: Finite element and compatible discretization, Canum 2018, 28 may 2018.

¹Inria Nancy Grand Est, France

²IRMA, university of Strasbourg, France

³IPP, Garching bei Munchen, Germany

Outline

Introduction

Physical and mathematical context

Finite element and B-Splines

Compatible isogeometric analysis for full MHD

Splitting and nonlinear solver: Full MHD

Introduction

Physical and mathematical context

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

Figure: Tokamak

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM):
 Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

MHD in a Tokamak

Visco-resistive MHD

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0, \\ \rho \partial_t \textbf{\textit{u}} + \rho \textbf{\textit{u}} \cdot \nabla \textbf{\textit{u}} + \nabla \rho = (\nabla \times \textbf{\textit{B}}) \times \textbf{\textit{B}} + \nu \nabla \cdot \boldsymbol{\Pi} \\ \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) + (\gamma - 1) \rho \nabla \cdot \textbf{\textit{u}} = \nabla \cdot \mathbf{q} + \eta \mid \nabla \times \textbf{\textit{B}} \mid^2 + \nu \boldsymbol{\Pi} : \nabla \textbf{\textit{u}} \\ \partial_t \textbf{\textit{B}} - \nabla \times (\textbf{\textit{u}} \times \textbf{\textit{B}}) = \eta \nabla \times (\nabla \times \textbf{\textit{B}}) \\ \nabla \cdot \textbf{\textit{B}} = 0 \end{array} \right.$$

• with ρ the density, p the pressure, \mathbf{u} the velocity, \mathbf{B} the magnetic field, \mathbf{J} the current, Π stress tensor and \mathbf{q} the heat flux.

MHD specificities in Tokamak

- Strong anisotropic flows (direction of the magnetic field) ===> complex geometries and aligned meshes (flux surface or magnetic field lines).
- MHD scaling:
 - Diffusion: Large Reynolds and magnetic Reynolds number.
 - lacksquare B_{\parallel} direction: compressible flow and small Prandlt number.
 - \blacksquare \vec{B}_{\perp} direction: quasi incompressible flow and large Prandlt number.
- □ MHD Scaling ===> compressible code with no discontinuities + fast waves.
- □ Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.

Problem of implicit discretization

Spatial discretization

- No shocks + diffusion ==> Finite Element method.
- Strong anisotropy ==> Aligned meshes + high-order ==> Isogeometry analysis.
- Divergence constrains, stability ==> Compatible discretization.
- Solution for implicit schemes:
 - □ Direct solver. CPU cost and consumption memory too large in 3D.
 - ☐ Iterative solver. Problem of conditioning.

Problem of classical implicit schemes

- Huge ratio between the physical wave speeds (low Mach regime) ==> huge ratio between discrete eigenvalues.
- Transport problem: anisotropic problem ==> huge ratio between discrete eigenvalues.
- High order scheme: small/high frequencies ==> huge ratio between discrete eigenvalues.

Long term aim

- Propose High-order and stable finite element scheme.
- Propose an implicit formulation with small problems to solve (splitting).

(nría-

Finite element and B-Splines

Finite element and B-Splines

Finit element method

- **Equation**: $-\Delta u = f$
- We define a mesh and compact basis functions $\phi_j(\mathbf{x})$ for $j \in 1, ..., N$ associated to the degree of freedom j (node mesh for example).
- We write the equation on the weak form:

$$\int (\nabla u, \nabla v) = \int fv$$

- We expand the field on the basis function: $u = \sum_{j} u_{j} \phi_{j}(\mathbf{x})$.
- Lot of possibilities for the basis functions: P_k an Q_k Lagrange, Hermite etc.
- Isogeometry idea: use functions used also for the geometry description in CAO.
 B-Splines, Nurbs etc.

B-Splines

- Choice: B-Splines. Important property:
 - □ Arbitrary order *p*.
 - Regularity can be also chosen: between C^0 and C^{p-1} .
 - For high regularity Splines we add a small number of DOF to increase the degree.

B-Splines Properties

- For same degree, the Low-regular Splines are more accurate that the high-regular B-Splines (better constant).
- Conditioning better for high-regular B-Splines.

Construction

In 2D/3D on cartesian grids the 2D/3D Splines are obtained by tensor product. Can be useful also for solving linear system associated.

Non cartesian grids

- We obtain non Cartesian geometries mapping the square with your physical geometry.
- Multi-patch version. Each part is mapped with a part of the physical geometries.
- Drawback: sometimes the mapping is singular.

mapping_2.pdf

LO / 26

Solvers

- As all the finite element solver we need to invert matrix. Specific solver can be used.
- Example: Laplacian

$$-\Delta u = f$$

After discretization we obtain

$$S_{h,p,k} U = f$$

with $S_{h,p,k}$ the stiffness matrix for h a step mesh, p the polynomial order and regularity.

Spectral property

 \square We can prove that at the spectral level (GLT theory, S. Serra-Capizzano):

$$S_{h,p,k} \approx M_{h,p,k} D_h$$

with $M_{h,p,k}$ the mass matrix and D_h the finite difference matrix of the Laplacian.

- Remark: mass contained high-order effects and mapping.
- \square Conditioning problem: Low frequencies for D_h and high-frequencies for p>>1 for $M_{h.o.k}$

Preconditioning

- □ Multi-Grids for low frequencies.
- \square $M_{h,p,k}^{-1}$ (or approximation) for high-frequencies.
- □ $M_{h,p,k} \approx M_{1D} \otimes M_{1D}$ for smooth mapping. Using to invert the mass.
- Ref: S. Serra-Capizzano, M. Mazza, G. Sangalli, M. Tani etc.

Numerical results: Convergence

Equation:

$$-\Delta u = f$$

- Square domain. Dirichlet BC.
- Convergence and efficiency of B-Splines.

B_ordre_cvg.pdf

CPU and memory cost compare to the regularity of B-Splines:

	number of d.o.f		number of nnz		cpu-SuperLU		cpu-CG	
	\mathcal{C}^{p-1}	\mathcal{C}^0	C^{p-1}	\mathcal{C}^0	C^{p-1}	\mathcal{C}^0	\mathcal{C}^{p-1}	\mathcal{C}^0
p=2	4'096	16'129	98'596	253'009	0.23	0.35	$7 \ 10^{-4}$	$4.1 \ 10^{-3}$
p=3	4'225	36'481	196'249	896'809	0.61	1.64	$1.1 \ 10^{-2}$	2 10-12

1.

Numerical results: Anisotropic diffusion

Coupling anisotropic diffusion + equilibrium.

$$\partial_t T - \nabla \cdot ((\mathbf{B} \otimes \mathbf{B}) \nabla T + \varepsilon \nabla T) = 0$$

with the magnetic field given by

$$oldsymbol{\mathcal{B}} = rac{F(\psi)}{R} + rac{1}{R}
abla \psi imes \mathrm{e}_{oldsymbol{\phi}}$$

Poloidal flux solution ψ solution of the equilibrium code:

$$\Delta^* \psi = -R^2 \frac{dp(\psi)}{d\psi} - \frac{dF(\psi)}{d\psi} F(\psi)$$

- Initial solution in left. Final solution in right.
- Solve with an Implicit in time third-order B-Splines code.

Compatible isogeometric analysis

Compatible space I: general and properties

■ Compatible space: DeRham sequence

Compatible space I: general and properties

■ Compatible space: DeRham sequence

Preservation of the operator properties:

$$div_h(\mathbf{Curl}_h) = 0$$
, $\mathbf{Curl}_h(\mathbf{grad}_h) = 0$

and

$$Curl_h^* = Curl_h$$
, $grad_h^* = div_h$

Dual properties useful for energy conservation, kernel properties for constraints and avoid spurious modes.

Compatible space I: general and properties

Compatible space: DeRham sequence

- with $rot \mathbf{u} = \partial_x u_2 \partial_y u_1$ and $\nabla \times f = \begin{pmatrix} \partial_y f \\ -\partial_x f \end{pmatrix}$.
- As in 3d, we have the preservation of the operator properties:

$$\operatorname{div}_h(\operatorname{\it Curl}_h)=0, \quad \operatorname{\it rot}_h(\operatorname{\it grad}_h)=0$$

Why compatible spaces ?

Example: Low-Mach Euler equation (no viscosity)

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t u + u \partial_x u + \frac{1}{M} \partial_x \rho = 0 \\ \partial_t \rho + u \partial_x \rho + \frac{1}{p} \partial_x u = 0 \end{cases}$$

Limit when M tends to zero:

$$\partial_t rho + u\partial_x \rho = O(M), \quad \partial_x p = O(M), \quad \partial_x u = O(M).$$

 \blacksquare Discretization: classical finite element P_1 . Gradient gives by

$$(dxu)_j \approx \frac{u_{j+1} - u_{j-1}}{2\Delta x}$$

- Kernel of gradient: constant functions. Kernel of discret gradient P₁: constant and checkerboard modes.
- Result: we can compute a wrong limit.

Possible solution

☐ Add viscosity on the all the equations to kill unphysical modes.

$$\eta \partial_{xx} u \approx \eta \frac{u_{j+1} - 2u_j + u_{j-1}}{\Delta x^2}$$

It is Stabilization.

Why compatible spaces?

Example: Low-Mach Euler equation (no viscosity)

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t u + u \partial_x u + \frac{1}{M} \partial_x \rho = 0 \\ \partial_t \rho + u \partial_x \rho + \rho \partial_x u = 0 \end{array} \right.$$

Limit when M tends to zero:

$$\partial_t rho + u\partial_x \rho = O(M), \quad \partial_x p = O(M), \quad \partial_x u = O(M).$$

Discretization: classical finite element P_1 . Gradient gives by

$$(dxu)_j pprox rac{u_{j+1} - u_{j-1}}{2\Delta x}$$

- Kernel of gradient: constant functions. Kernel of discret gradient P₁: constant and checkerboard modes.
- **Result**: we can compute a wrong limit.

Possible solution

Use another discretization. For example P_0 FE:

$$(dxu)_j \approx \frac{u_j - u_{j-1}}{\Delta \times}$$

- No unphysical modes, but less order.
- Compatible FE: keep the order and the good kernel for classical operators in 2D/3D. Not directly valid for advection.

Example of Maxwell and properties

Advantage: strong-weak form. Example: Explicit Maxwell.

$$\left\{ \begin{array}{l} \boldsymbol{E}^{n+1} = \boldsymbol{E}^n + \Delta t \nabla \times \boldsymbol{B}^n = 0 \\ \boldsymbol{B}^{n+1} = \boldsymbol{B}^n - \Delta t \nabla \times \boldsymbol{E}^n = 0 \\ \nabla \cdot \boldsymbol{B}^{n+1} = 0, \nabla \cdot \boldsymbol{E}^{n+1} = \rho \end{array} \right.$$

■ We take the **B** equation, choose $E \in H(curl)$ and consequently $B \in H(div)$, multiply by test function and integrate (no ipp) to obtain

$$M_{div}\boldsymbol{B}_{h}^{n+1}=M_{div}\boldsymbol{B}_{h}^{n}+\Delta t C \boldsymbol{E}_{h}^{n}$$

- M_{div} the mass matrix for h(Div) space and C the weak curl matrix.
- Property of the space: $C = M_{div} Curl_h$ with $Curl_h$ a "finite difference curl". We obtain

$$\boldsymbol{B}_h^{n+1} = \boldsymbol{B}_h^n + \Delta t \boldsymbol{Curl}_h \boldsymbol{E}_h^n$$

- Applying div_h we obtain $div_h B_h^{n+1} = 0$.
- **B** $\in H(div) ==>$ no compatibility with the first equation. So ipp on the first equation (weak form)

$$\int (\boldsymbol{E}^{n+1}, \boldsymbol{C}) = \int (\boldsymbol{E}^{n}, \boldsymbol{C}) + \Delta t \int (\boldsymbol{B}^{n}, \nabla \times \boldsymbol{C})$$

Taking $C \in H(curl)$ we obtain a consistent equation.

$$M_{curl} \mathbf{E}^{n+1} = M_{curl} \mathbf{E}^n + \Delta t Curl_h^T M_{div} \mathbf{B}^n$$

Taking $C \in H(curl)$ we obtain a consistent equation.

Projector

Innia-

- Additionally, we need the commutative projection.
- The 3D projectors are defined by:

$$\widetilde{\Pi}_{h1}^{h} := \left\{ \begin{array}{l} \widetilde{\Pi}_{h1}^{h} f = f_{p}^{0} \in V^{h} \\ f_{p}^{0}(\mathbf{x}_{k}) = \mathbf{x}_{k}, \quad \forall \mathbf{x}_{k} \in N_{h} \end{array} \right. \quad \widetilde{\Pi}_{L2}^{h} := \left\{ \begin{array}{l} \widetilde{\Pi}_{L2}^{h} \mathbf{f} = \mathbf{f}_{p}^{3} \in X^{h} \\ \int_{V_{k}} \mathbf{f}_{p}^{3} = \int_{s_{k}} \mathbf{f}, \quad \forall v_{k} \in \Omega_{h} \end{array} \right.$$

• with N_h the nodes of the mesh. Ω_h the cells of the mesh.

$$\widetilde{\Pi}_{curl}^{h} := \left\{ \begin{array}{l} \widetilde{\Pi}_{curl}^{h} \mathbf{f} = \mathbf{f}_{p}^{1} \in V_{curl}^{h} \\ \int_{e_{k}} \mathbf{f}_{p}^{1} \cdot \mathbf{t} = \int_{e_{k}} \mathbf{f} \cdot \mathbf{t}, \quad \forall e_{k} \in E_{h} \end{array} \right. \quad \widetilde{\Pi}_{div}^{h} := \left\{ \begin{array}{l} \widetilde{\Pi}_{div}^{h} \mathbf{f} = \mathbf{f}_{p}^{2} \in V_{div}^{h} \\ \int_{f_{k}} \mathbf{f}_{p}^{2} \cdot \mathbf{n} = \int_{f_{k}} \mathbf{f} \cdot \mathbf{n}, \quad \forall f_{k} \in F_{h} \end{array} \right.$$

- with E_h the edges of the mesh. Ω_h the faces of the mesh.
- Exemple: $\rho_2 = \nabla \times (2x(1-x)y(1-y))$. Comparison between L^2 and commutative projection in H(div):

Results of 3D Maxwell

Remarks

☐ Matrices of first and second order can by write using mass and "DF" matrices:

$$Matrix_{Grad} = M_{Curl} \operatorname{grad}_h$$
, $Matrix_{laplacian} = \operatorname{grad}_h^T M_{Curl} \operatorname{grad}_h$

- □ Mapping and high-order polynomial contains in the mass matrices.
- Analytic solution fof Maxwell equations. Implicit code.

Left: Energy evolution. Right: magnetic field divergence evolution.

Problem of classical implicit schemes

- Good conservation properties.
- Need to be verified with complex mapping.

19/2

Compatible space V: practical example

Numerical example: 2D Maxwell model:

$$\left\{ \begin{array}{l} \boldsymbol{E}^{n+1} = \boldsymbol{E}^n + \Delta t Curl(\boldsymbol{B}^n) - \mu_0 \boldsymbol{J} \\ \boldsymbol{B}^{n+1} = \boldsymbol{B}^n - \Delta trot(\boldsymbol{E}^n) \\ \nabla \cdot \boldsymbol{B}^{n+1} = 0, \nabla \cdot \boldsymbol{E}^{n+1} = \rho \end{array} \right.$$

- $\begin{tabular}{l} \blacksquare & {\sf with} \ \, {\it CurlB} = \left(\begin{array}{c} \partial_y B \\ -\partial_x B \end{array} \right) \ \, {\sf and} \ \, {\it Rot}({\it \textbf{E}}) = \partial_x E_y \partial_y E_x. \\ \end{tabular}$
- Property to preserve

$$abla \cdot \partial_t \boldsymbol{E} = \partial_t \rho, \quad \text{ since } \quad \partial_t \rho + \nabla \cdot \boldsymbol{J} = 0.$$

Charge conservation for Implicit scheme with 16*16 cells. Order 3

 Left: Compatible space with commutative projection. Right: Compatible space without commutative projection. Splitting and nonlinear solver: Full MHD

Model

Resistive MHD model for Tokamak:

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0, \\ \rho \partial_t \textbf{\textit{u}} + \rho \textbf{\textit{u}} \cdot \nabla \textbf{\textit{u}} + \nabla \rho = (\nabla \times \textbf{\textit{B}}) \times \textbf{\textit{B}} + \nu \nabla \cdot \boldsymbol{\Pi} \\ \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) + \gamma \rho \nabla \cdot \textbf{\textit{u}} = \nabla \cdot ((k_{\parallel} (\textbf{\textit{B}} \otimes \textbf{\textit{B}}) + k_{\perp} \textbf{\textit{I}}_d) \nabla \textbf{\textit{T}}) + \eta (\textbf{\textit{T}}) \mid \nabla \times \textbf{\textit{B}} \mid^2 + \nu \boldsymbol{\Pi} : \nabla \textbf{\textit{u}} \\ \partial_t \textbf{\textit{B}} - \nabla \times (\textbf{\textit{u}} \times \textbf{\textit{B}}) = \eta (\textbf{\textit{T}}) \nabla \times (\nabla \times \textbf{\textit{B}}) \\ \nabla \cdot \textbf{\textit{B}} = 0 \end{array} \right.$$

- with ρ the density, **u** the velocity, **p** and **T** the pressure and temperature, **B** the magnetic field, $\Pi = \Pi(\nabla u, B)$ the stress tensor.
- with ν the viscosity, k_{\parallel} , k_{\perp} the thermal conductivities and η the resistivity.

Important Properties

Conservation in time: $\nabla \cdot \mathbf{B} = 0$ and

$$\frac{d}{dt}\int\left(\rho\frac{|\boldsymbol{u}|^2}{2}+\frac{|\boldsymbol{B}|^2}{2}+\frac{p}{\gamma-1}\right)=0$$

Possible simplification

- $\square \nabla \cdot \Pi \approx \Lambda u$
- Ohmic $(\eta \mid \nabla \times \boldsymbol{B} \mid^2)$ and viscous heating $\nu \Pi : \nabla \boldsymbol{u}$ neglected.

Three stage Energy conserving Splitting

Convection - diffusion step:

$$\begin{cases} \partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \rho \partial_{t} \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \nu \Delta \mathbf{u} \\ \partial_{t}\rho = \nabla \cdot \mathbf{q} + \eta(T) \mid \nabla \times \mathbf{B} \mid^{2} + \nu \Pi : \nabla \mathbf{u} \\ \partial_{t} \mathbf{B} = \eta(T) \nabla \times (\nabla \times \mathbf{B}) \end{cases}$$

Acoustic step:

$$\left\{ \begin{array}{l} \partial_t \rho = 0, \\ \rho \partial_t \boldsymbol{u} + \nabla \rho = 0 \\ \partial_t \boldsymbol{p} + \nabla \cdot (\boldsymbol{p} \boldsymbol{u}) + (\gamma - 1) \boldsymbol{p} \nabla \cdot \boldsymbol{u} = 0 \\ \partial_t \boldsymbol{B} = 0 \\ \nabla \cdot \boldsymbol{B} = 0 \end{array} \right.$$

Magnetic step:

$$\begin{cases} \begin{array}{l} \partial_t \rho = \mathbf{0}, \\ \rho \partial_t \mathbf{u} = (\nabla \times \mathbf{B}) \times \mathbf{B} \\ \partial_t p = 0 \\ \partial_t \mathbf{B} - \nabla \times (\mathbf{u} \times \mathbf{B}) = 0 \\ \nabla \cdot \mathbf{B} = 0 \end{array}$$

Splitting and Equilibrium: the balance is not preserved.

Energy balance

$$\partial_t \int \left(\frac{\mid \boldsymbol{B}\mid^2}{2} + \rho \frac{\mid \boldsymbol{u}\mid^2}{2} + \frac{p}{\gamma - 1} \right) = 0$$

Energy balance

$$\partial_t \int \left(\frac{|\mathbf{B}|^2}{2} + \rho \frac{|\mathbf{u}|^2}{2} + \frac{\rho}{\gamma - 1} \right) = 0$$

Energy balance

$$\partial_t \int \left(\frac{|\mathbf{B}|^2}{2} + \rho \frac{|\mathbf{u}|^2}{2} + \frac{p}{\gamma - 1} \right) = 0$$

Algorithm for acoustic step

$$\left\{ \begin{array}{l} \partial_t p_h + \nabla \cdot (p_h \mathbf{u}_h) + (\gamma - 1) p_h \nabla \cdot \mathbf{u}_h = 0 \\ \\ \rho_h \partial_t \mathbf{u}_h + \nabla p_h = 0 \end{array} \right.$$

- $u_h \in H(Curl)$ and $p \in H^1$. The second is exactly true using the DehRham sequence. .
- First equation needs to take on the week form.
- We solve

$$\left\{ \begin{array}{l} A(\partial_t p_h,q) - B(p_h \textbf{\textit{u}}_h,q) - (\gamma-1)B(\textbf{\textit{u}}_h,p_hq) = 0 \\ \rho_h \partial_t \textbf{\textit{u}}_h + \nabla_h p_h = 0 \end{array} \right.$$

with

$$A(p,q) = \int pq, \quad B(\boldsymbol{u},p) = \int (\boldsymbol{u}, \nabla p)$$

Algorithm for acoustic step

$$\left\{ \begin{array}{l} \partial_t p_h + \nabla \cdot (p_h \boldsymbol{u}_h) + (\gamma - 1) p_h \nabla \cdot \boldsymbol{u}_h = 0 \\ \\ \rho_h \partial_t \boldsymbol{u}_h + \nabla p_h = 0 \end{array} \right.$$

- $\mathbf{u}_h \in H(Curl)$ and $p \in H^1$. The second is exactly true using the DehRham sequence. .
- After time discretization

$$\left\{ \begin{array}{l} A(\boldsymbol{p}_h^{n+1},\boldsymbol{q}) - c_i \left(B(\boldsymbol{p}_h^{n+1}\boldsymbol{u}_h^{n+1},\boldsymbol{q}) + (\gamma-1)B(\boldsymbol{u}_h^{n+1},\boldsymbol{p}_h^{n+1}\boldsymbol{q}) \right) \\ = A(\boldsymbol{p}_h^n,\boldsymbol{q}) + c_e \left(B(\boldsymbol{p}_h^n\boldsymbol{u}_h^n,\boldsymbol{q}) + (\gamma-1)B(\boldsymbol{u}_h^n,\boldsymbol{p}_h^n\boldsymbol{q}) \right) \\ \rho_h \boldsymbol{u}_h^{n+1} + c_i \nabla_h \boldsymbol{p}_h^{n+1} = \rho_h \boldsymbol{u}_h^n - c_e \nabla_h \boldsymbol{p}_h^n \end{array} \right.$$

• with $c_i = \theta \Delta t$ and $c_e = (1 - \theta) \Delta t$.

Algorithm for acoustic step

$$\left\{ \begin{array}{l} \partial_t p_h + \nabla \cdot (p_h u_h) + (\gamma - 1) p_h \nabla \cdot u_h = 0 \\ \\ \rho_h \partial_t u_h + \nabla p_h = 0 \end{array} \right.$$

- $u_h \in H(Curl)$ and $p \in H^1$. The second is exactly true using the DehRham sequence. .
- We solve

$$\begin{cases} A(\boldsymbol{p_h^{n+1}}, q) + M_1(\boldsymbol{p_h^{n+1}}, q) + (\gamma - 1)M_2(\boldsymbol{p_h^{n+1}}, q) = R(q) \\ \rho_h \boldsymbol{u_h^{n+1}} + c_i \nabla_h \boldsymbol{p_h^{n+1}} = \rho_h \boldsymbol{u_h^{n}} - c_e \nabla_h \boldsymbol{p_h^{n}} \end{cases}$$

with

$$M_{1}(\boldsymbol{p}_{h}^{n+1},q) = c_{i}^{2} \int \frac{\boldsymbol{p}_{h}^{n+1}}{\rho_{h}} (\nabla \boldsymbol{p}_{h}^{n+1}, \nabla q) - c_{i} \int (\boldsymbol{p}_{h}^{n+1} \boldsymbol{u}_{h}^{n}, \nabla q) + c_{i} c_{e} \int \frac{\boldsymbol{p}_{h}^{n+1}}{\rho_{h}} (\nabla \boldsymbol{p}_{h}^{n}, \nabla q)$$

$$\begin{split} M_{2}(\pmb{p_{h}^{n+1}},q) &= c_{i}^{2} \int \frac{\pmb{p_{h}^{n+1}}}{\rho_{h}} (\nabla \pmb{p_{h}^{n+1}}, \nabla q) + c_{i}^{2} \int \frac{q}{\rho_{h}} \mid \nabla \pmb{p_{h}^{n+1}} \mid^{2} - c_{i} \int (\pmb{u_{h}^{n}}, \pmb{p_{h}^{n+1}} \nabla q) \\ &- c_{i} \int (\pmb{u_{h}^{n}}, \nabla \pmb{p_{h}^{n+1}}) q + c_{i} c_{e} \int \frac{\pmb{p_{h}^{n+1}}}{\rho_{h}} (\nabla \pmb{p_{h}^{n}}, \nabla q) + c_{i} c_{e} \int \frac{q}{\rho_{h}} (\nabla \pmb{p_{h}^{n+1}}, \nabla p_{h}^{n}) \end{split}$$

and

$$R(q) = A(p_h^n,q) + c_e\left(B(p_h^n \boldsymbol{u}_h^n,q) + (\gamma-1)B(\boldsymbol{u}_h^n,p_h^nq)\right)$$

Algorithm for acoustic step

$$\left\{ \begin{array}{l} \partial_t p_h + \nabla \cdot (p_h \boldsymbol{u}_h) + (\gamma - 1) p_h \nabla \cdot \boldsymbol{u}_h = 0 \\ \\ \rho_h \partial_t \boldsymbol{u}_h + \nabla p_h = 0 \end{array} \right.$$

- $u_h \in H(Curl)$ and $p \in H^1$. The second is exactly true using the DehRham sequence. .
- \blacksquare Final Algorithm with Picard: for each k the following system

$$A(\boldsymbol{p_h^*},q) + M_1(\boldsymbol{p_h^*},q) + (\gamma-1)M_2(\boldsymbol{p_h^*},q) = R(q)$$

with $p_h^{k+1} = w p_h^* + (1-w) p_h^k$ and

$$M_1(\mathbf{p}_h^*, q) = c_i^2 \int \frac{\mathbf{p}_h^k}{\rho_h} (\nabla \mathbf{p}_h^*, \nabla q) - c_i \int (\mathbf{p}_h^* \mathbf{u}_h^n, \nabla q) + c_i c_e \int \frac{\mathbf{p}_h^*}{\rho_h} (\nabla \mathbf{p}_h^n, \nabla q)$$

$$\begin{aligned} \mathcal{M}_{2}(\boldsymbol{p}_{h}^{*},\boldsymbol{q}) &= c_{i}^{2} \int \frac{\boldsymbol{p}_{h}^{k}}{\rho_{h}} (\nabla \boldsymbol{p}_{h}^{*},\nabla \boldsymbol{q}) + c_{i}^{2} \int \frac{\boldsymbol{q}}{\rho_{h}} (\nabla \boldsymbol{p}_{h}^{k},\nabla \boldsymbol{p}_{h}^{*}) - c_{i} \int (\boldsymbol{u}_{h}^{n},\boldsymbol{p}_{h}^{*}\nabla \boldsymbol{q}) \\ &- c_{i} \int (\boldsymbol{u}_{h}^{n},\nabla \boldsymbol{p}_{h}^{*}) \boldsymbol{q} + c_{i}c_{e} \int \frac{\boldsymbol{p}_{h}^{*}}{\rho_{h}} (\nabla \boldsymbol{p}_{h}^{n},\nabla \boldsymbol{q}) + c_{i}c_{e} \int \frac{\boldsymbol{q}}{\rho_{h}} (\nabla \boldsymbol{p}_{h}^{n},\nabla \boldsymbol{p}_{h}^{n}) \end{aligned}$$

■ When $|p_h^{k+1} - p_k| < \varepsilon$ we take $p_h^{n+1} = p_h^{k+1}$ and we compute the velocity

$$\rho_h \mathbf{u}_h^{n+1} + c_i \nabla_h \mathbf{p}_h^{n+1} = \rho_h \mathbf{u}_h^n - c_e \nabla_h \mathbf{p}_h^n$$

Substep and solvers

- Splitting allows to obtain more simple systems to solve. How ?
- Example: acoustic.
- At each nonlinear step we must solve an equation like:

$$-a\Delta p + \mathbf{u} \cdot \nabla p + cp = f$$

- and just a matrix-vector product for the velocity update.
- Case |u| << 1: classical multigrid method + GLT smoother for high-order B-Splines.
- Other case. More complex. Stabilization helps probably.
- Magnetic or Magneto-acoustic step. Problem like:

$$-\mathbf{a}(\nabla\cdot\mathbf{u})+\mathbf{b}\nabla\times(\nabla\times(\mathbf{u}\times\mathbf{b}))\times\mathbf{b}+c\mathbf{u}=\mathbf{f}$$

- More complex since for d=0 the kernel can be non zero. For d<<1 ill-conditioned system.
- Works of A. Ratnani and M. Mazza. PC for

$$-a\nabla(\nabla\cdot\boldsymbol{u})+b\nabla\times(\nabla\times\boldsymbol{u})=\mathbf{f}$$

 \blacksquare Work well for $10^{-3} \leq \frac{a}{b} \leq 10^3$. On going work: Larger ratio and introduction of the magnetic field.

(nría-

E.Franck

Conclusion

Compatible spaces:

- Energy preserving time scheme + compatible spaces allows:
 - □ Preserve energy at the discrete level in the ideal case. More stability ?
 - □ Preserve strongly $\nabla \cdot \mathbf{B} = 0$.
 - ☐ In each step we solve simple problems (convection-diffusion-reaction problems) + matrix vector product.
 - High-order and High-regularity. Possible to align poloidal mesh to magnetic surfaces.
 - Have a simple way to assembly/store the matrices (product of mass with "DF" matrices).
 - □ **Needs**: stabilization for advection and preconditioning for elliptic solvers.

Following works for MHD

- Validate the acoustic step and after the magnetic step.
- Write and validate the convection diffusion step. Stabilization for convection (Holger's talk ?)
- Preconditioning for vectorial elliptic problems and anisotropic diffusion.
- Add the mapping to the circle and after the Tokamak. Realistic test cases.

lnría-

 $^{20}/_{2}$