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Application

Applications considered

B Steady or quasi-steady flows (long time limit).
B Multi-scale problem: capture the slow scale and filter the fast one (ex: low mach).

B Fusion DT: At sufficiently high
energies, deuterium and tritium

(plasmas) can fuse to Helium. Free DS““*T’" Helium
energy is released. g\ /‘++G
B Tokamak: toroidal chamber where 6

magnetic fields. Energy

the plasma is confined using \

Tritium Neutron

B Difficulty: plasma instabilities.
Important topic for ITER.

Simulation of MHD instabilities

B Simulation: slow flow around plasmas equilibrium (in green):
Otp+ V- (pu) =0,
potu+ pu-Vu+Vp=(VxB)xB+vV-N
Op+V-(pu)+(y—1)pV-u=V-q+n |V xB]>+vN:Vu
9:B —V X (ux B)=nV x (V x B)
V-B=0
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Implicit method and general grids

Classical solution

B Explicit scheme: CFL given by the high frequency discretized of the waves.
B Solution: implicit scheme to filter the frequencies not considered.

B Solution for implicit schemes:

O Direct solver. CPU cost and consumption memory too large in 3D.
U Iterative solver. Problem of conditioning.

Problem of conditioning

B Multi-scale PDE (low Mach regime) ==> huge ratio between discrete eigenvalues.
B High order scheme for transport: small/high frequencies and anisotropy ==> huge
ratio between discrete eigenvalues.

B Storage the matrix and perhaps the preconditioning: large memory consumption.

Mesh and geometry

B Geometry: toroidal geometry. Poloidal section: circle or D-shape.
B Meshes: curved meshes, unstructured meshes, Multi-Patch + mapping.

B | BM-type algorithm: CFL free and matrix-free on complex geometries.
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LBM as implicit relaxation method
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LBM

B We consider the following system 9:U + 0xF(U) = 0.
B We consider the new variable Mf = U and the velocities set V = [vy, ..., va].

B At the time t”, we have f".

B We apply the transport step:
¥ (x) = f"(x —viAt) Vi< N

B Relaxation step:
fn+1 = (7= + Q(feq(u) _ f*)

with Q = M~1SM with S a diagonal matrix with s, € {0, 2}

4

B To write the first substep we choose v; = k)\% with k an integer (in general: 0, 1, 2).
B Consistency :

0:U + 0xF(U) = At (A(U, X, S)xU) + At20,B(U, 8, U, 8 U, A, S)

B We can increase the order with the good parameters.

B Advantages: very very simple algorithm.

B Drawbacks: complicate to manage with large At and complex grids. r-\
7
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Rewritting: transport step

Transport step:
fF(x) = f"(x —viAt) Vi< N
We solve O:f; + v;Oxf; = 0 with the characteristic method.
Possible since we choose the velocity v; = k)\A
Avoiding this constrains, x — v;At in not a mesh node but inside a cell. Natural
solution: Backward or Forward Semi-Lagrangian method.

BSL: we compute the origin of the characteristic curve and interpolate (high-order)
the value obtained.

FSL: we follow of the characteristic curve and project (high-order) the value obtained.

B-splines, Lagrange interpolation. Nodal or average projection. etc

The transport step can be rewrite as advection equation:
Ofi + viokf; =0, Vi< N

solved with BSL (or FSL) with exact interpolation (projection).

Natural extension
| |

Relax assumption on the velocities and use full BSL solver for advection (or other
solver like FV or DG).

s
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Rewritting: relaxation step

B Relaxation step:
fn+1 — F* 4 Q(’:eq(u) _ f*)
B \We recognize an operator closed to BGK operator.

B BGK operator:

Oef = g(feq(U) —f)

B Dicretizating the previous scheme with a 6 scheme you obtain:
fn+1 _fn
At

B The equilibrium is construct such that U"! = U”".
B Consequently

frL_f" GR
- ZR(fa(ym) — il
At € (F(U7) )+

— @(feq(uw»l) _ fn+1) + (1 — O)R
€ €

(F9(U™) — ")

(1 769)R(feq(un) _ f")

B The relaxation can be write as a f-scheme for a generalized BGK operator.

B Remark: Q = Ip is equivalent to ¢ =0, R = Iy and 6 = 1 (first order scheme).
Q = 2Ip is equivalent to ¢ =0, R = I; and 0 = 0.5 (second order scheme). /\
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Rewritting: relaxation step
B Relaxation step:
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Rewritting: algorithm
B On one time step, the first step (T) is a discretization of
8tf + /\Bxf =0
B The second step (C) is a discretization of
R
Of = —(f%9(U) - f)
€
B The algorithm can be view as a first order Lie splitting scheme in time:
f7=[T(At)o (AD)]"F°
B Natural extension: Second order strang splitting scheme in time:
1 1 "
= [T <§At) o(At)o T <§At)] fO.

B However T (%At) oT (%At) = T(At).
B So the second order splitting is given by

fr=T (%At) o[T(At)o (At)]"o T (%At) 0

B The algorithm can be view as a first order splitting or a second order splitting if we
add a beginning and final transport step.

10
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Rewritting: advantages and drawbacks

Conclusion

B A LBM method can be view the discretization of the model

ef + Aoxf = D (Fea(u) — F)
£

which gives at the limit 0tU 4 0xF(U) = O(e)
obtained with

O A time Lie splitting scheme,
O A 0-scheme for the relaxation step (unconditionnaly stable)==> AP scheme.
0 A BSL scheme for the transport with exact interpolation (choice of velocities).

Idea: use this other formulation to use different schemes in space and time.

To treat complex geometries and large time steps. We propose

O Use a high order BSL scheme (without exact interpolation) or implicit DG schemes.

0 Use another time scheme for relaxation (not studied).
U Increase the time order of the full algorithm.

General model: [D1Q2]". One D1Q2 by equation (B. Graille, S. Jin):

Oefy + Noxfy = 2(F7 —F1)
Ocf - —Nouf_ = L(F9—f_)

with £ = 1u+ £,

E. Franck
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High-order CFL free schemes and unstructured meshes
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Consistency

Consistency space

B Exact transport: the choice of the velocities link time and space discretization.

o R 5 q . 2d+2
B Semi- Lagrangian: Interpolation 2q + 1 gives a consistency error O(hTt)'

| A

Consistency in time

B \We define the two operators for each step :

TAt . eAtI\BX fn+1 — fn

f"+1+0 (feq(U) foirt) = fo— (1—6) (feq(U) f)
B Final scheme: Tp; o RAt is consistent with
BeU + 0, F(U) = (%) 0 (D(U)d,U) + O(AF2)
w

B with w =

me and D(U) = (PA29yf — A(U)?).

Drawback

B For [D1Q2]? scheme we have a large error: D(U) = (X21y — A(U)?)

0’;; »»»»»»»» E. Franck



High-Order time schemes

Second-order scheme

0 Scheme for transport step T(At): Crank Nicolson or exact time scheme.
0 Classical full second order scheme:

V(AL =T <%) oR(At)o T <%) .

0 Numerical test: first and second order splitting: converge at second order.
Second order: probably only for the macroscopic variables.

O 0O

AP full second order scheme:

Vap(AL) = T(%) oR(?t) o T(%) oR(%) o T(%).
)

0 W and V,, symmetric in time. W,,(0) = Ig.

| A\

High order scheme
0 Using composition method
Mp(At) = Wap(71At) 0 Wap(12AtL)..... 0 Wap(vsAt)

O with v; € [-1, 1], we obtain a p-order schemes.
0 Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

O Splitting non AP for e = 0 converge with high-order for macroscopic variables. 6 \
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Space discretization

Semi Lagrangian methods

B Forward or Backward methods. Mass or nodes interpolation/projection.
B Advantages:

L Possible on unstructured meshes. High order in space.
U Exact in time and Matrix-free.

B Drawbacks:
L No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods

B |mplicit Crank Nicolson scheme + FV DG scheme
B Advantages:

| A

O Very general meshes. High order in space. Dissipation to stabilize.
L Upwind fluxes ==> triangular block matrices.

B Drawbacks:
[ Second order in time: numerical time dispersion.

B Current choice 1D: SL-scheme.

B Current choice in 2D-3D: DG schemes. 20 RN 2
U Block - triangular matrix solved " 5 »
avoiding storage. B <

0 Solve the problem in the topological

order given by connectivity graph. Yo (15 \
\ / 39
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Burgers: convergence results

B Model: Burgers equation

B Spatial discretization: SL-scheme, 2000 cells, degree 11.

2
Oep + O (%) =0

B Test: p(t =0, x) = sin(2mx). Tf = 0.14 (before the shock) and no viscosity.

B Scheme: splitting schemes and Suzuki composition + splitting.

SPL1,6=1 SPL1,6=05 SPL2,6=05 Suzuki
At Error order Error order Error order Error order
0.005 2.6E—2 - 13E3 - 7.6E* - 40E—* -
0.0025 1.4E-7 0.91 3.4E—* 1.90 1.9E-* 2.0 33E~° 3.61
0.00125 | 7.1E—3 0.93 8.7E—® 1.96 47E® 2.0 2.4E~°® 3.77
0.000625| 3.7E—3 0.95 22E 1.99 1.2E—° 2.0 1.6E-7 3.89
B Scheme: second order =
splitting scheme.

B Same test after the shock:

//

E. Franck
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1D isothermal Euler : Convergence

Model: isothermal Euler equation

Orp + Ox(pu) =0
Bepu + Ox(pu? + c2p) =0

Lattice: (D1 — Q2)" Lattice scheme.

For the transport (and relaxations step) we use 6-order DG scheme in space.

Time step: At = 5% with X\ the lattice velocity. 8 = 1 explicit time step.

First test: acoustic wave with 8 =50 and Tf = 0.4, Second test: smooth contact
wave with 8 = 100 and Ty = 20.

log10(delta_x) .
-26 -24 -22 -2 -18 -16 -22-21 -2 -19-18-17-16-15"
-2 loglo@elta x) -

log10(error)

rrrrr slope =4 slope = 6 -~ slope=4 slope = 6
order 4 (suzuki_5) order 6 (kahan_li_9) order 4 (suzuki_5) order 6 (kahan_li_9)

Figure: convergence rates for the first test (left) and for the second test (right). h
1
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).

]

Parameters : p = 1.0, pp = 1, up = by = 0.5, ug,ir = [1, 1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
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Classical kinetic representation

B High-order extension allows to correct the main default of relaxation: large error.

B |n two situations the High-order extension is not sufficient:

L For discontinuous solutions like shocks.
0 For strongly multi-scale problem like low-Mach problem.

B Euler equation: Sod problem.
B Second order time scheme + SL scheme:

t=0.2
! , 1.0

i i
-1.0 -0.5 0.0 0.5 1.0 DEl.D

X
B |eft: density At = 1.0~*. Right: density At =4.0~*
B Conclusion: shock and high order time scheme needs limiting methods. /\
20/
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Classical kinetic representation

B High-order extension allows to correct the main default of relaxation: large error.
B |n two situations the High-order extension is not sufficient:
L For discontinuous solutions like shocks.
U For strongly multi-scale problem like low-Mach problem.
B Euler equation: smooth contact (u =cts, p=cts).
B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22 ! t:!2.0 ! 22 ! t= !20.0 .
2.0 — 20 N S SO S S |
1.8 S S 18 |
16
. . 16 |
12 1.4 T N |
1.0 1.2 1
08 L 1 L 1 L 1 L 10 L 1 L 1 L 1
-2.0-1.5-1.0-0500 05 1.0 15 2.0 -2.0-1.5-1.0-0500 05 1.0 15 20
X

X

B Order 1 Left: M =0.1. Right: M =0.01

B Conclusion: First order method too much dissipative for low Mach flow (dissipation
with acoustic coefficient).
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kinetic representation

Classical

B High-order extension allows to correct the main default of relaxation: large error.
B |n two situations the High-order extension is not sufficient:
L For discontinuous solutions like shocks.
U For strongly multi-scale problem like low-Mach problem.
B Euler equation: smooth contact (u =cts, p=cts).
B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22 ! t:!2.0 ! 24 ! t= !20.0 .
20— 220N 1
) I S 20 ]
16 1.8 1
LAb- b 1.6 i
1.2 14 : : : 1
0'82.0—1.5—1.0—0.5 0.0 05 1.0 15 2.0 10

X
B Order 1 Left: M =0.1. Right: M =0.01
B Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with ac

oustic coefficient).

-2.0-1.5-1.0-0500 05 1.0 1.5 2.0
X
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Kinetic representation for multi-scale problems
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Classical kinetic representation

"Physic” kinetic representations

B Kinetic model mimics the moment model of Boltzmann equation. Euler isothermal

Op + Ox(pu) =0
O¢pu + Ox(pu? + c?p) =0

B D1Q3 model: three velocities {—X, 0, A}. Equilibrium: quadrature of Maxwellian.

3 (pu(u =) + ¢?p)
p="Ff_+fo+fr, q=pu=—XAxf_4+0xfo+Axfy, Ffeq= p(N2 — u? — c?)

3 (pu(u+ ) + ¢%p)

i . Oep+ Dx(pu) = 0
B Limit model : tf? P
it mode { Otpu + Ox(pu? + c2p) = € (Ot + U3 Osxp)

B Good point: no diffusion on p equation. Bad point: stable only for low mach. No
natural extension for more complex pde.

Vectorial kinetic representations

B Vectorial kinetic model (B. Graille 14): [D1Q2]? one relaxation model {—X, A}.
B Good point: stable on sub-characteristic condition A > Apax-

Bad point: Wave structure approximated by transport at maximal velocity. The idea
of D1Q2 equivalent to Rusanov scheme idea. Very bad accuracy for equilibrium or
multi-scale problems (low mach).

¥ 22
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Generic vectorial D1Q3

B Keep the vectorial structure: more stable since we can diffuse on all the variables.

B Add a central velocity (equal or close to zero) to capture the slow dynamics.

B Consistency condition:

Fk+ ffo+ £k =Uk, Vke{1.N}
A_FE f Noff + A\ FE=FK(U), Vk € {1.Nc}

{ A A =Uk, Vke{1.N}
(A= = X0)FE + (A — Xo)fF=FK(U) — Xoff, Vk € {1.Nc}
B We assume a decomposition of the flux (Bouchut 03)
FX(U) = Ff~(U) + F§(U) + Xoly
B We obtain the following equation for the equilibrium

£k + £+ £k =Uk, Vke{l.N}
(A= = 20)fK + (As — Xo)FE=FE(U) + FET(U), VK e {1.N}

B By analogy of the kinetic theory and kinetic flux splitting scheme we propose the
following decomposition 3° o vfk = Fé"*’(U) and 3, vk = Fé"f(U) . /\
2

3
/39‘
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Generic vectorial D1Q3

B Keep the vectorial structure: more stable since we can diffuse on all the variables.

B Add a central velocity (equal or close to zero) to capture the slow dynamics.

B The lattice [D1Q3]" is defined by the velocity set V = [A_, Ag, A+] and

1

f?(U):'—(i;:}jSFE(U)

eqrpn Fg (V) Fy (U)
s (o (B0 mw.)
) = m’:g(u)

B Entropy stability: Fa' and F is an entropy decomposition of the flux + OFF, —0F,

OF —0F;
and 1 — %

are positive.

B Optimal condition for L2 stability in linear case not clear.

0’&;; ........ E. Franck 39‘



D1Q3 for scalar case

B First choice: D1Q3 Rusanov (Ag = 0)

. (F(p) — A+p) + (F(p) —A-p)
F, = A\ — F = A A s
o () A A — A 0 (P) = Ay A — A
Consistency (for A_ = —Xy): Orp+ OxF(p) = o Atdx (N2~ | OF (p) ) Oup + O(AL?)

Second choice: D1Q3 Upwind

Fo (p) = XoF(o)<ret (F(P) = X0p)  Fo (p) = X{oF(p)>2r0} (F(P) — Aop)

with x the indicatrice function.
Consistency: 0¢p + OxF(p) = o Atdx (A | OF (p) | — | OF (p) |?) Oxp + O(At?)

Third choice: D1Q3 Lax-Wendroff (Ag = 0)
o= (Fo+ 5 [[erw?) rw =3 (Fo+5 [(orwy)

with A\o =0and A\- = —Ay and a > 1.
Consistency: 0¢p + OxF(p) = o Atdx ((w — 1) | OF (p) [2) Oxp + O(AL?).

The last one is not entropy stable and does not satisfy the sufficient L? stability
condition.

E. Franck \24/39
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D1Q3 for Euler equation |

B Euler equation. Two regimes where the classical method is not optimal.
U High-Mach regime: we use a negative and positive transport for purely positive or
negative flows.
U Low-Mach regime: X is closed to the sound speed so we have viscosity too large
for density equation for example.

B First possibility: use classical flux vector splitting for Euler equation.
O Stegel-Warming: F¥ = AL (U)U with AT positive/negative part of the Jacobian.
0 Van-Leer:

1
FE(U) = 4+ 2pe(m £ 1)2 | Gt
4 (y=1)u2c)?
2(v+1)(v—1)
0 AUSM method: convection of p, g and H as Van-Leer and separated
reconstruction of the pressure.
O Approximate Osher-Solomon: FE(U) = F(U)* | F(U) |

U 1
| F(U) ‘“/u | A(U) |=/0 | A(Up + (U — Ug)) | (U — Ug)dt

O Integral is approximated by a quadrature formula along the path (E. Toro , M
Dumbser)

O Approximate of | A | using Halley approximation (M. J . Castro) and Uy is the

average flow. r\
25/39
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D1Q3 for Euler equation |l

B | ow Mach case:

D1p+ Ox(pu) = 0

2, P _

Otpu + Ox (pu + I\/I) =0

OtE + Ox(Eu+ pu) =0
B We want to preserve as possible the limit:

p=cts, u=cts, Op+ udp=20

B |dea: Splitting of the flux (Zha-Bilgen, Toro-Vasquez):

(p)u
FWy = (ouu+p
(E)u+ pu

B |dea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.

B Use only u, p and X (= c) to reconstruct pressure. Important to preserve the low
mach limit.

B We obtain

2
i (puia“yzp)er
FEU) =2 | (p?+aka)+pl+7%)
Eu+ ©CE +aly(u? + 22
(Eu b )+(pu u,A,(u + )p)

B Preserve contact.
B The scheme is construct to have diffusion error on rho homogeneous ((o — 1)u?) (lax
wendroff scheme).
26/
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R R R R RRRRRERERRERERRREEEE==S=————————
Advection equation

B Equation
Bep -+ Ox(a(x)p) = 0
B with a(x) > 0 and dxa(x) > 0. Dissipative equation.
B Test case 1: a(x) = x. 10000 cells. Order 17. 6 =1 (first order).
Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order
At =0.05 6.4E2 - 2.7E? - 27E2 -
At = 0.025 38E2 ] 075 | 12E2 | 117 [ 57E 3| 224
At=00125 [19E-2 ]| 1.0 |42E %] 15 [55E %] 337
At=0.00625 | 79E-3 | 125 [ 13E 3| 17 [53E° | 338
B Test case 2: a(x) = 1+ 0.01(x — xg)2. 10000 cells. Order 17. Second order time
scheme.
n
N
|\ )r/ \
J /AN
B |eft At =0.01. Right At = 0.1. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff & = 1 (blue), Lax-Wendroff a = 2 (Yellow). h
27/
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R R R R RRRRRERERRERERRREEEE==S=————————
Advection equation

Equation
dtp + 9x(a(x)p) =0

with a(x) > 0 and dxa(x) > 0. Dissipative equation.
Test case 1: a(x) = x. 10000 cells. Order 17. § = 0.5 (second order).

Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order
At =0.05 3.8E2 1.2E—* - 1.2E70

At = 0.025 53E-3 | 284 | 81E°© 3.8 41E1T 1.55
At =0.0125 37E~* | 384 | 53E7 | 384 | 1.1E-* 11.5
At =0.00625 | 23E-° | 388 | 3.3E°% 4 6.2E-°% | 4.15

Test case 2: a(x) = 14 0.01(x — x)2. 10000 cells. Order 17. Second order time
scheme.

AR

Left At = 0.01. Right At = 0.1. Reference (black), Rusanov (violet), Upwind

(green), Lax-Wendroff o = 2 (Yellow) = 1 unstable. h
27/
39
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R R R R RRRRRERERRERERRREEEE==S=————————
Burgers

B Model: Viscous Burgers equations
2
Bep + x (%) =0

B Test case 1: p(t =0, x) = sin(2rx). 10000 cells. Order 17. First order time scheme.
Rusanov Upwind Lax Wendroff a =1
Error Order Error Order Error Order
At =0.01 3.9E? = 1.1E2 = 2.3E3 =
At = 0.005 21E-2 | 089 | 6.4E-3 | 078 | 6.0E* 1.94
At=0.0025 | 1.1E-2 | 093 | 35E3 | 087 | 1.5E* 2.00
At =0.00125 | 54E-3 | 1.03 | 1.8E-3 | 0.96 | 3.9E—° 1.95

B Shock wave. First order scheme in time.

|

B | eft At =0.002. Right At = 0.01. Reference (black), Rusanov (yellow), Upwind
(violet), Lax-Wendroff (green), Lax-Wendroff o = 1.5 (blue).

E. Franck \28/39
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Burgers

B Model: Viscous Burgers equations

2
Bep + s (%) =0

B Test case 1: p(t =0, x) = sin(2rx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff a =1

Error Order Error Order Error Order

At =0.01 3.9E2 - 1.1E2 - 23E3 -
At=0.005 |21E-2| 089 | 64E3| 078 | 6.0E~* 1.94
At=10.0025 | 1.1E~2 | 093 | 35E3 | 087 | 15E* 2.00
At=0.00125 | 54E-3 | 1.03 | 1.8E-3 | 096 | 3.9E° 1.95

B Rarefaction wave. First order scheme in time.
’ =
;f

B |eft At =0.002. Right At = 0.01. Reference (black), Rusanov (violet), Upwind

(green), Lax-Wendroff e =1 (blue), Lax-Wendroff a = 2 (Yellow).

E. Franck
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R R R R RRRRRERERRERERRREEEE==S=————————
1D Euler equations

B Model: Euler equation
Otp + Ox(pu) =0

depu + Ox(pu® +p) =0
OtE + Ox(Eu+ pu) =0

x2
B Test case: acoustic wave. p=1+0.1e" o, u=0and p=p.
B The domain is Q = [—2,2]. 4000 cells and 11-order SL. § = 1 (relaxation).

B | eft At =0.002. Right At = 0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), AUSM (red).

B Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other, but very accurate on the material wave.
29
/39

E. Franck \ 4



R R R R RRRRRERERRERERRREEEE==S=————————
1D Euler equations

B Model: Euler equation
Otp + Ox(pu) =0

Oepu + Ox(pu® + p) =0
OtE + Ox(Eu+ pu) =0

x2
B Test case: acoustic wave. p=1+0.1e”" o, u=0and p=p.
B The domain is Q = [—2,2]. 4000 cells and 11-order SL. § = 0.666 (relaxation).

oL L

B |eft At =0.002. Right At =0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), AUSM (red).

B Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other, but very accurate on the material wave. r‘\
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R R R R RRRRRERERRERERRREEEE==S=————————
1D Euler equations

B Model: Euler equation
Otp + Ox(pu) =0

depu+ dx(pu® +p) =0
OtE 4+ Ox(Eu+ pu) =0

x2
B Test case: acoustic wave. p=1+0.1e" o, u=0and p=p.
B The domain is Q = [—2,2]. 4000 cells and 11-order SL. § = 0.666 (relaxation).

B Same test case for the low-mach scheme with w = 1. At = 0.002 (yellow),
At = 0.005 (green), At = 0.01 (violet).

B Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other, but very accurate on the material wave. r‘\
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1D Euler equations Il

B Test case: Smooth contact. We take p = 1 and u is also constant.

B Final aim: Where T = O(%) we want take At = O(%) and preserve the same error
when u decrease.

B We choose At = 0.02 and Tr = 2. 4000 cells. We choose w = 1:

Schemes | Rusanov VL Osher LM
o(t, x) 0.26 1.0E-T [ 84E-7 | 1.0E3
u=10"2 u(t, x) 0 3.4E73 | 6.0E77 0
p(t, x) 0 50E~% | 43E8 0
o(t, x) 0.26 10E-T [ 84EZ [ 10E °
u=10"* u(t, x) 0 3.4E73 | 6.0E77 0
p(t, x) 0 5.0E* | 43E~8 0
o(t, x) 0.26 1.0E- T | 48E2 0.0
u=0 u(t, x) 0 3.4E73 | 6.0E77 0
p(t, x) 0 5.0E* | 43E8 0

B Drawback: When the time step is too large we have dispersive effect.
B Possible explanation: the error would be homogeneous to

| p"(x) — p(t, x) |= [O((a — 1)Atu?) + O(AL?uNT)] Ty.
B with X closed to the sound speed.
B Problem: At the second order, we recover partially the problem since X is closed to

the sound speed. h
30/39
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P ———
1D Euler equations Il
B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.
B We consider the following [D1Q5]% based on the following velocities:

V = [—)\f, —)\5, 0. )\s, )\f]

slow scale

B The convective part associated at the slow scale. The acoustic part associated at the
fast scale.

B Smooth contact: We take 200 time step and At = 2901.

u
Error [ u=10"1 [ u=10"? [ u=10"3 ] u=10"%
a=1] 25E3 2.5E3 2.5E3 25E-3
As 2 0.2 0.02 0.002
Af 2 20 200 2000

B Conclusion: the error would be homogeneous to

| p"(x) — p(t, x) |= [O((a — 1)Atu?) + O(At?uNT)] T7.

B with As which can be taken as O(u).
B Drawback: For the stability it seems necessary to have
AsAr > Cmax(u + c) 31
X
E. Franck \ /39‘
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1D Euler equations Il
B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.
B We consider the following [D1Q5]% based on the following velocities:

V= [_)\fv _)\sy 0. >\s, )\F]

fast scale

B The convective part associated at the slow scale. The acoustic part associated at the
fast scale.

B Smooth contact: We take 200 time step and At = 290L.

u
Error [ u=10"1 [ u=10"? [ u=10"3 ] u=10"%
a=1] 25E3 2.5E3 2.5E3 25E-3
As 2 0.2 0.02 0.002
Af 2 20 200 2000

B Conclusion: the error would be homogeneous to

| p"(x) — p(t, x) |= [O((a — 1)Atu?) + O(At?uNT)] T7.

B with As which can be taken as O(u).
B Drawback: For the stability it seems necessary to have
AsAr > Cmax(u + c) 31
X
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P ———
1D Euler equations Il
B Possible solution: decrease \ for the density equation.
B We propose two-scale kinetic model.
B We consider the following [D1Q5]% based on the following velocities:

V= [_)‘fv —Xs, 0, As, )\f]

coupling

B The convective part associated at the slow scale. The acoustic part associated at the
fast scale.

B Smooth contact: We take 200 time step and At =

Error [ u=10"1 [ u=10"% [ u=10"3 [ u=10""

a=1 25E3 25E3 25E3 25E-3
As 2 0.2 0.02 0.002
Af 2 20 200 2000

0.001 .
v -

B Conclusion: the error would be homogeneous to

| p"(x) = p(t, x) |~ [O((a — 1)Atu?) + O(At2u)\‘57)] Tr.

B with As which can be taken as O(u).
B Drawback: For the stability it seems necessary to have

AsAr > Cmax(u + ¢) 31
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1D Euler equations IV

B Test case: Sod problem. 4000 cells, First order is space and time.
B Comparison of schemes:

B Reference (black), Rusanov (orange), Van-Leer (green), Osher (violet), Low-Mach
with a =1 (red).

B Comparison of low-mach scheme for different values of «:

B Results for w = 1.0, At = 0.001. Reference (black), o =1 (orange), o = 1.2 (green),

a = 1.5 (violet), a = 2 (red), & = 1 + u (blue). @
39
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Kinetic relaxation method for Diffusion problem
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Applications

Main parabolic problem

B Coupling anisotropic diffusion + resistivity.
{ T —V-(BRB)VT +eVT)=0

B -1V x (T"3V x B)=0
V.B=0

Psaudocolor

var phi
)

l 0001948

0001173

o00%s

00003749
Max: 0002720
Min: -0.000374%

B The temperature T for the case n = 0 and B given by magnetic equilibrium.

&’L”,. E. Franck
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Kinetic model and scheme for diffusion |

B We solve the equation:  9:p + Ox(up) = DOxxp
B D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):

A 1
Of — Z0f = S (fg — )

Oy + S0cf = S (fh — 1)
g &

B with fif = £ + =) The limit is given by:
Otp + Ox(up) = HX((/\z - | u ‘Z)axp) + )\2528X(8XX(“P) + udp) — >\2528XXXXP
B We introduce a >| u |. Choosing D = A2 — £2a? we obtain

dtp + Ox(up) = 0x(Dxp) + O(<)

B We can choose ¢ = At” and w = 2.

V=3 =1 V=
Error order | Error | order | Error | order
At =0.04 1.87E—7? - 1.43 - 1.43 -
At =0.02 6.57E3 1.50 0.2 0 0.23 0
At =0.01 1.85E—3 1.82 0.2 0 0.23 0
At = 0.005 3.6E—* 2.36 0.2 0 0.23 0
At = 0.0025 73E 2.30 0.2 0 0.23 0

B The splitting scheme is not AP. r\
- \35/39

E. Franck y




Kinetic model and scheme for diffusion Il

Consistency analysis

B We consider 9:p — DOxxp = 0.

B \We define the two operators for each step:
A
Ta: : eAtEBXf'hLl = f"

f"+1+e L (FI(U) — £ = (179) Efea(uy —

B Final scheme: Tp; o RAt is consistent with
1—w 1)\ A2
dep = Atdy ((T 4 5) E—zaxp) + 0(At?)

B Taking D = A2, 0 =0.5 and ¢ = /At we obtain the diffusion equation.

B Question: what is the error term is this case ?

B First results (for these choices of parameters):

0 Second order at the numerical level.
0 At the minimum the first order theoretically.

B Problem: For a large time step, the scheme oscillate. How reduce this ?

f")
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Kinetic scheme for anisotropic/nonlinear diffusion

B We consider the diffusion equation with d:p — 9x(A(p, x)dxp) = 0 with D(p, x) > 0.
B We consider a kinetic system

A R
Oef + “ 0 f = @(ffq —f)
g &
B We define Pf =" fi=pand QF = 1 ) vifi = u.
mf
Pfeg=p, QFf°9=0, Zv £ =ap
and PR(x,p)(F9 = )] =0, QI[R(x,p)(f = f)] = —aD ' Qf

B We obtain the equivalence with the following model (which gives at the limit the
diffusion model)

Otp+ 0xv =0
a a
Orv + gaxp = 77D(X, )22 v
B Example: D1Q2 ) )
O f. O =————(F9—F
ey 4 : + D(X’f)€2 =)
Otf- — —Ocf- = ————(f9 — f_)
€ D(x, p)e?

B with £§7 = 1p. r-\
7
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Results for anisotropic/nonlinear diffusion

B We want solve the equation:  9:p — 0xD(p) =0
B p =1 (green) p=2 (blue). Left At =0.001 . Right At = 0.005.

D%O 05 1.0 15 20 25 3.0 35 40 D'%.O 05 1.0 1.5 20 25 3.0 35 40
X

B The second kinetic scheme allows to treat also nonlinear diffusion.

B We want solve the equation:  9:p = Ox(A(x)xp).

/AN N/ A\

B Left: A(x) = 1. Right: 3(1— erf(5(x — x0)). Black : initial data. Yellow: final datar'\
38
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Results for anisotropic/nonlinear diffusion

B We want solve the equation:  9:p — 0xD(p) =0
B p =1 (green) p =3 (blue). Left At =0.001 . Right At = 0.005.

D%O 05 1.0 15 20 25 3.0 35 40 D'%.O 05 1.0 1.5 20 25 3.0 35 40
X

B The second kinetic scheme allows to treat also nonlinear diffusion.

B We want solve the equation:  9:p = Ox(A(x)xp).

/AN N/ A\

B Left: A(x) = 1. Right: 3(1— erf(5(x — x0)). Black : initial data. Yellow: final datar'\
38
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Conclusion

LBM as relaxation scheme

B LBM method can be rewritten as a specific scheme for BGK model.
B Using this, we propose high-order scheme with large time step algorithm (SL method).
B This algorithm is very competitive against implicit scheme (no matrices, no solvers).

D1Q3/5 schemes

The [D1Q3]" schemes allows to reduce the error compared to [D1Q2]".
Using the flux-vector splitting FV method we obtain new [D1Q3]".
The [D1Q3]" Osher scheme is generic for hyperbolic systems.

We propose a new [D1Q3]" scheme for low-Mach. Problem: stability for w = 1.
Modification 7

Kinetic scheme and LBM for diffusion

B These methods allows to treat also the diffusion equations using the splitting error.
B Poor/correct accuracy for anisotropic diffusion/heat equation. Need to be increased.

v

B 2D/3D diffusion and low-Mach, MHD, BC, Dispersive waves, Limiting methods,
Machine Learning.

130
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