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Application

Applications considered
� Steady or quasi-steady flows (long time limit).
� Multi-scale problem: capture the slow scale and filter the fast one (ex: low mach).

� Fusion DT: At sufficiently high
energies, deuterium and tritium
(plasmas) can fuse to Helium. Free
energy is released.

� Tokamak: toröıdal chamber where
the plasma is confined using
magnetic fields.

� Difficulty: plasma instabilities.
Important topic for ITER.

Simulation of MHD instabilities
� Simulation: slow flow around plasmas equilibrium (in green):

∂tρ+∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇× B)× B + ν∇ ·Π
∂tp +∇ · (pu) + (γ − 1)p∇ · u = ∇ · q + η | ∇ × B |2 +νΠ : ∇u
∂tB −∇× (u × B) = η∇× (∇× B)
∇ · B = 0
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Implicit method and general grids

Classical solution
� Explicit scheme: CFL given by the high frequency discretized of the waves.
� Solution: implicit scheme to filter the frequencies not considered.

� Solution for implicit schemes:
� Direct solver. CPU cost and consumption memory too large in 3D.
� Iterative solver. Problem of conditioning.

Problem of conditioning
� Multi-scale PDE (low Mach regime) ==> huge ratio between discrete eigenvalues.
� High order scheme for transport: small/high frequencies and anisotropy ==> huge

ratio between discrete eigenvalues.
� Storage the matrix and perhaps the preconditioning: large memory consumption.

Mesh and geometry
� Geometry: toroidal geometry. Poloidal section: circle or D-shape.
� Meshes: curved meshes, unstructured meshes, Multi-Patch + mapping.

Current work
� LBM-type algorithm: CFL free and matrix-free on complex geometries.
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LBM as implicit relaxation method
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LBM

� We consider the following system ∂tU + ∂xF (U) = 0.
� We consider the new variable Mf = U and the velocities set V = [v1, ..., vn].

Time loop
� At the time tn, we have f n.

� We apply the transport step:

f ∗i (x) = f ni (x − vi∆t) ∀i ≤ N

� Relaxation step:
f n+1 = f ∗ + Ω(f eq(U)− f ∗)

with Ω = M−1SM with S a diagonal matrix with sk ∈ {0, 2}

� To write the first substep we choose vi = kλ∆t
∆x

with k an integer (in general: 0, 1, 2).
� Consistency :

∂tU + ∂xF (U) = ∆t∂x (A(U,λ, S)∂xU) + ∆t2∂xB(U, ∂xU, ∂xxU,λ, S)

� We can increase the order with the good parameters.
� Advantages: very very simple algorithm.
� Drawbacks: complicate to manage with large ∆t and complex grids.
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Rewritting: transport step
� Transport step:

f ∗i (x) = f ni (x − vi∆t) ∀i ≤ N

� We solve ∂t fi + vi∂x fi = 0 with the characteristic method.
� Possible since we choose the velocity vi = kλ∆t

∆x
.

� Avoiding this constrains, x − vi∆t in not a mesh node but inside a cell. Natural
solution: Backward or Forward Semi-Lagrangian method.

SL methods
� BSL: we compute the origin of the characteristic curve and interpolate (high-order)

the value obtained.

� FSL: we follow of the characteristic curve and project (high-order) the value obtained.

� B-splines, Lagrange interpolation. Nodal or average projection. etc

� The transport step can be rewrite as advection equation:

∂t fi + vi∂x fi = 0, ∀i ≤ N

solved with BSL (or FSL) with exact interpolation (projection).

Natural extension
� Relax assumption on the velocities and use full BSL solver for advection (or other

solver like FV or DG).
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Rewritting: relaxation step
� Relaxation step:

f n+1 = f ∗ + Ω(f eq(U)− f ∗)
� We recognize an operator closed to BGK operator.
� BGK operator:

∂t f =
R

ε
(f eq(U)− f )

� Dicretizating the previous scheme with a θ scheme you obtain:

f n+1 − f n

∆t
=
θR

ε
(f eq(Un+1)− f n+1) +

(1− θ)R

ε
(f eq(Un)− f n)

� The equilibrium is construct such that Un+1 = Un.
� Consequently

f n+1 − f n

∆t
=
θR

ε
(f eq(Un)− f n+1) +

(1− θ)R

ε
(f eq(Un)− f n)

Conclusion
� The relaxation can be write as a θ-scheme for a generalized BGK operator.

� Remark: Ω = ID is equivalent to ε = 0, R = Id and θ = 1 (first order scheme).
Ω = 2ID is equivalent to ε = 0, R = Id and θ = 0.5 (second order scheme).
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Rewritting: algorithm
� On one time step, the first step (T) is a discretization of

∂t f + Λ∂x f = 0

� The second step (C) is a discretization of

∂t f =
R

ε
(f eq(U)− f )

� The algorithm can be view as a first order Lie splitting scheme in time:

f n = [T (∆t) ◦ (∆t)]nf 0

� Natural extension: Second order strang splitting scheme in time:

f n =

[
T

(
1

2
∆t

)
◦ (∆t) ◦ T

(
1

2
∆t

)]n
f 0.

� However T
(

1
2

∆t
)
◦ T

(
1
2

∆t
)

= T (∆t).
� So the second order splitting is given by

f n = T

(
1

2
∆t

)
◦ [T (∆t) ◦ (∆t)]n ◦ T

(
1

2
∆t

)
f 0

Conclusion
� The algorithm can be view as a first order splitting or a second order splitting if we

add a beginning and final transport step.
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Rewritting: advantages and drawbacks

Conclusion
� A LBM method can be view the discretization of the model

∂t f + Λ∂x f =
R

ε
(f eq(U)− f )

which gives at the limit ∂tU + ∂xF (U) = O(ε)

� obtained with

� A time Lie splitting scheme,
� A θ-scheme for the relaxation step (unconditionnaly stable)==> AP scheme.
� A BSL scheme for the transport with exact interpolation (choice of velocities).

� Idea: use this other formulation to use different schemes in space and time.

� To treat complex geometries and large time steps. We propose
� Use a high order BSL scheme (without exact interpolation) or implicit DG schemes.
� Use another time scheme for relaxation (not studied).
� Increase the time order of the full algorithm.

� General model: [D1Q2]n. One D1Q2 by equation (B. Graille, S. Jin):{
∂t f + + λ∂x f + = 1

ε
(f eq

+ − f +)

∂t f − − λ∂x f − = 1
ε

(f eq
− − f −)

with f eq
± = 1

2
U ± F (U)

2λ
.
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High-order CFL free schemes and unstructured meshes
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Consistency

Consistency space
� Exact transport: the choice of the velocities link time and space discretization.

� Semi- Lagrangian: Interpolation 2q + 1 gives a consistency error O( h2d+2

∆t
).

Consistency in time
� We define the two operators for each step :

T∆t : e∆tΛ∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq − A(U)2

)
.

Drawback
� For [D1Q2]2 scheme we have a large error: D(U) =

(
λ2Id − A(U)2

)
E. Franck 13/39
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High-Order time schemes

Second-order scheme
� Scheme for transport step T (∆t): Crank Nicolson or exact time scheme.
� Classical full second order scheme:

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t) ◦ T

(
∆t

2

)
.

� Numerical test: first and second order splitting: converge at second order.
� Second order: probably only for the macroscopic variables.

� AP full second order scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R

(
∆t

2

)
◦ T

(
∆t

2

)
◦ R

(
∆t

2

)
◦ T

(
∆t

4

)
.

� Ψ and Ψap symmetric in time. Ψap(0) = Id .

High order scheme

� Using composition method

Mp(∆t) = Ψap(γ1∆t) ◦Ψap(γ2∆t)..... ◦Ψap(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.

� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

� Splitting non AP for ε = 0 converge with high-order for macroscopic variables.
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Space discretization

Semi Lagrangian methods
� Forward or Backward methods. Mass or nodes interpolation/projection.
� Advantages:

� Possible on unstructured meshes. High order in space.
� Exact in time and Matrix-free.

� Drawbacks:
� No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods
� Implicit Crank Nicolson scheme + FV DG scheme
� Advantages:

� Very general meshes. High order in space. Dissipation to stabilize.
� Upwind fluxes ==> triangular block matrices.

� Drawbacks:
� Second order in time: numerical time dispersion.

� Current choice 1D: SL-scheme.
� Current choice in 2D-3D: DG schemes.

� Block - triangular matrix solved
avoiding storage.

� Solve the problem in the topological
order given by connectivity graph.

20 21

0
1

2
3

4
56

7

8
9 10

11

12

1314

15

16

17 18

19
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Burgers: convergence results
� Model: Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Spatial discretization: SL-scheme, 2000 cells, degree 11.

� Test: ρ(t = 0, x) = sin(2πx). Tf = 0.14 (before the shock) and no viscosity.
� Scheme: splitting schemes and Suzuki composition + splitting.

SPL 1, θ = 1 SPL 1, θ = 0.5 SPL 2, θ = 0.5 Suzuki
∆t Error order Error order Error order Error order
0.005 2.6E−2 - 1.3E−3 - 7.6E−4 - 4.0E−4 -
0.0025 1.4E−2 0.91 3.4E−4 1.90 1.9E−4 2.0 3.3E−5 3.61
0.00125 7.1E−3 0.93 8.7E−5 1.96 4.7E−5 2.0 2.4E−6 3.77
0.000625 3.7E−3 0.95 2.2E−5 1.99 1.2E−5 2.0 1.6E−7 3.89

� Scheme: second order
splitting scheme.

� Same test after the shock:

� Comparison for different time step. Violet:
∆t = 0.001 (CFL 5-30), Green: ∆t = 0.005 (CFL
20-120), Blue ∆t = 0.01 (CFL 50-300), Black :
reference.
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1D isothermal Euler : Convergence
� Model: isothermal Euler equation{

∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = 0

� Lattice: (D1− Q2)n Lattice scheme.
� For the transport (and relaxations step) we use 6-order DG scheme in space.
� Time step: ∆t = β ∆x

λ
with λ the lattice velocity. β = 1 explicit time step.

� First test: acoustic wave with β = 50 and Tf = 0.4, Second test: smooth contact
wave with β = 100 and Tf = 20.

Figure: convergence rates for the first test (left) and for the second test (right).

E. Franck 17/39

17/39



Numerical results: 2D MHD drifting vortex
� Model : compressible ideal MHD.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around
20.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r) = exp[(1− r2)/2]

Magnetic field Velocity
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

3D case in cylinder

Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

2D cut of the 3D case

Figure: Plot of the mass fraction of gas
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: Sod problem.

� Second order time scheme + SL scheme:

� Left: density ∆t = 1.0−4. Right: density ∆t = 4.0−4

� Conclusion: shock and high order time scheme needs limiting methods.
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� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: First order method too much dissipative for low Mach flow (dissipation

with acoustic coefficient).
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with acoustic coefficient).
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Kinetic representation for multi-scale problems

E. Franck 21/39

21/39



Classical kinetic representation

”Physic” kinetic representations
� Kinetic model mimics the moment model of Boltzmann equation. Euler isothermal{

∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = 0

� D1Q3 model: three velocities {−λ, 0,λ}. Equilibrium: quadrature of Maxwellian.

ρ = f−+ f0 + f+, q = ρu = −λ∗ f−+0∗ f0 +λ∗ f+, f eq =

 1
2

(ρu(u − λ) + c2ρ)
ρ(λ2 − u2 − c2)
1
2

(ρu(u + λ) + c2ρ)


� Limit model :

{
∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + c2ρ) = ε

(
∂xxu + u3∂xxρ

)
� Good point: no diffusion on ρ equation. Bad point: stable only for low mach. No

natural extension for more complex pde.

Vectorial kinetic representations
� Vectorial kinetic model (B. Graille 14): [D1Q2]2 one relaxation model {−λ,λ}.
� Good point: stable on sub-characteristic condition λ > λmax .

� Bad point: Wave structure approximated by transport at maximal velocity. The idea
of D1Q2 equivalent to Rusanov scheme idea. Very bad accuracy for equilibrium or
multi-scale problems (low mach).
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Generic vectorial D1Q3

Idea
� Keep the vectorial structure: more stable since we can diffuse on all the variables.

� Add a central velocity (equal or close to zero) to capture the slow dynamics.

� Consistency condition:{
f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
λ−f k− + λ0f k0 + λ+f k+ =F k (U), ∀k ∈ {1..Nc}{

f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
(λ− − λ0)f k− + (λ+ − λ0)f k+ =F k (U)− λ0f k0 , ∀k ∈ {1..Nc}

� We assume a decomposition of the flux (Bouchut 03)

F k (U) = F k,−
0 (U) + F k,+

0 (U) + λ0Id

� We obtain the following equation for the equilibrium{
f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
(λ− − λ0)f k− + (λ+ − λ0)f k+ =F k,−

0 (U) + F k,+
0 (U), ∀k ∈ {1..Nc}

� By analogy of the kinetic theory and kinetic flux splitting scheme we propose the
following decomposition

∑
v>0 vf

k = F k,+
0 (U) and

∑
v<0 vf

k = F k,−
0 (U) .
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Generic vectorial D1Q3

Idea
� Keep the vectorial structure: more stable since we can diffuse on all the variables.

� Add a central velocity (equal or close to zero) to capture the slow dynamics.

� The lattice [D1Q3]N is defined by the velocity set V = [λ−,λ0,λ+] and



f eq
− (U) = −

1

(λ0 − λ−)
F−0 (U)

f eq
0 (U) =

(
U −

(
F+

0 (U)

(λ+ − λ0)
−

F−0 (U)

(λ0 − λ−)

))
f eq

+ (U) =
1

(λ+ − λ0)
F+

0 (U)

Stability
� Entropy stability: F+

0 and F−0 is an entropy decomposition of the flux + ∂F+
0 , −∂F−0

and 1− ∂F+
0 −∂F−

0
λ

are positive.

� Optimal condition for L2 stability in linear case not clear.
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D1Q3 for scalar case
� First choice: D1Q3 Rusanov (λ0 = 0)

F−0 (ρ) = −λ−
(F (ρ)− λ+ρ)

λ+ − λ−
, F+

0 (ρ) = λ+
(F (ρ)− λ−ρ)

λ+ − λ−

� Consistency (for λ− = −λ+): ∂tρ+∂xF (ρ) = σ∆t∂x
(
λ2− | ∂F (ρ) |2

)
∂xρ+ O(∆t2)

� Second choice: D1Q3 Upwind

F−0 (ρ) = χ{∂F (ρ)<λ0} (F (ρ)− λ0ρ) F+
0 (ρ) = χ{∂F (ρ)>λ0} (F (ρ)− λ0ρ)

� with χ the indicatrice function.
� Consistency: ∂tρ+ ∂xF (ρ) = σ∆t∂x

(
λ | ∂F (ρ) | − | ∂F (ρ) |2

)
∂xρ+ O(∆t2)

� Third choice: D1Q3 Lax-Wendroff (λ0 = 0)

F−0 (ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
F+

0 (ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
� with λ0 = 0 and λ− = −λ+ and α ≥ 1.
� Consistency: ∂tρ+ ∂xF (ρ) = σ∆t∂x

(
(α− 1) | ∂F (ρ) |2

)
∂xρ+ O(∆t2).

� The last one is not entropy stable and does not satisfy the sufficient L2 stability
condition.
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D1Q3 for Euler equation I
� Euler equation. Two regimes where the classical method is not optimal.

� High-Mach regime: we use a negative and positive transport for purely positive or
negative flows.

� Low-Mach regime: λ is closed to the sound speed so we have viscosity too large
for density equation for example.

� First possibility: use classical flux vector splitting for Euler equation.
� Stegel-Warming: F± = A±(U)U with A± positive/negative part of the Jacobian.
� Van-Leer:

F±(U) = ±
1

4
ρc(M ± 1)2

 1
(γ−1)u±2c

γ
((γ−1)u±2c)2

2(γ+1)(γ−1)


� AUSM method: convection of ρ, q and H as Van-Leer and separated

reconstruction of the pressure.
� Approximate Osher-Solomon: F±(U) = F (U)± | F (U) |

| F (U) |≈
∫ U

U0

| A(U) |=
∫ 1

0
| A(U0 + t(U −U0)) | (U −U0)dt

� Integral is approximated by a quadrature formula along the path (E. Toro , M
Dumbser)

� Approximate of | A | using Halley approximation (M. J . Castro) and U0 is the
average flow.
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D1Q3 for Euler equation II
� Low Mach case: 

∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x
(
ρu2 +

p

M

)
= 0

∂tE + ∂x (Eu + pu) = 0

� We want to preserve as possible the limit:

p = cts, u = cts, ∂tρ+ u∂xρ = 0

� Idea: Splitting of the flux (Zha-Bilgen, Toro-Vasquez):

F (U) =

 (ρ)u
(ρu)u + p
(E)u + pu


� Idea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.
� Use only u, p and λ (≈ c) to reconstruct pressure. Important to preserve the low

mach limit.
� We obtain

F±(U) =
1

2

 (ρu ± α u2

λ
ρ) + p

(ρu2 ± α u2

λ
q) + p(1± γ u

λ
)

(Eu ± u2

λ
E) +

(
pu ± α 1

λ
γ(u2 + λ2)p

)


� Preserve contact.
� The scheme is construct to have diffusion error on rho homogeneous ((α− 1)u2) (lax

wendroff scheme).
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Advection equation
� Equation

∂tρ+ ∂x (a(x)ρ) = 0

� with a(x) > 0 and ∂xa(x) > 0. Dissipative equation.

� Test case 1: a(x) = x . 10000 cells. Order 17. θ = 1 (first order).

Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order

∆t = 0.05 6.4E−2 - 2.7E−2 - 2.7E−2 -
∆t = 0.025 3.8E−2 0.75 1.2E−2 1.17 5.7E−3 2.24
∆t = 0.0125 1.9E−2 1.0 4.2E−3 1.5 5.5E−4 3.37
∆t = 0.00625 7.9E−3 1.25 1.3E−3 1.7 5.3E−5 3.38

� Test case 2: a(x) = 1 + 0.01(x − x0)2. 10000 cells. Order 17. Second order time
scheme.

� Left ∆t = 0.01. Right ∆t = 0.1. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 1 (blue), Lax-Wendroff α = 2 (Yellow).
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Advection equation
� Equation

∂tρ+ ∂x (a(x)ρ) = 0

� with a(x) > 0 and ∂xa(x) > 0. Dissipative equation.

� Test case 1: a(x) = x . 10000 cells. Order 17. θ = 0.5 (second order).

Rusanov Upwind Lax Wendroff
Error Order Error Order Error Order

∆t = 0.05 3.8E−2 - 1.2E−4 - 1.2E−0 -
∆t = 0.025 5.3E−3 2.84 8.1E−6 3.8 4.1E−1 1.55
∆t = 0.0125 3.7E−4 3.84 5.3E−7 3.84 1.1E−4 11.5
∆t = 0.00625 2.3E−5 3.88 3.3E−8 4 6.2E−6 4.15

� Test case 2: a(x) = 1 + 0.01(x − x0)2. 10000 cells. Order 17. Second order time
scheme.

� Left ∆t = 0.01. Right ∆t = 0.1. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 2 (Yellow) = 1 unstable.
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Burgers
� Model: Viscous Burgers equations

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Test case 1: ρ(t = 0, x) = sin(2πx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff α = 1
Error Order Error Order Error Order

∆t = 0.01 3.9E−2 - 1.1E−2 - 2.3E−3 -
∆t = 0.005 2.1E−2 0.89 6.4E−3 0.78 6.0E−4 1.94

∆t = 0.0025 1.1E−2 0.93 3.5E−3 0.87 1.5E−4 2.00
∆t = 0.00125 5.4E−3 1.03 1.8E−3 0.96 3.9E−5 1.95

� Shock wave. First order scheme in time.

� Left ∆t = 0.002. Right ∆t = 0.01. Reference (black), Rusanov (yellow), Upwind
(violet), Lax-Wendroff (green), Lax-Wendroff α = 1.5 (blue).
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Burgers
� Model: Viscous Burgers equations

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Test case 1: ρ(t = 0, x) = sin(2πx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff α = 1
Error Order Error Order Error Order

∆t = 0.01 3.9E−2 - 1.1E−2 - 2.3E−3 -
∆t = 0.005 2.1E−2 0.89 6.4E−3 0.78 6.0E−4 1.94

∆t = 0.0025 1.1E−2 0.93 3.5E−3 0.87 1.5E−4 2.00
∆t = 0.00125 5.4E−3 1.03 1.8E−3 0.96 3.9E−5 1.95

� Rarefaction wave. First order scheme in time.

� Left ∆t = 0.002. Right ∆t = 0.01. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 1 (blue), Lax-Wendroff α = 2 (Yellow).

E. Franck 28/39

28/39



1D Euler equations
� Model: Euler equation  ∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) = 0

� Test case: acoustic wave. ρ = 1 + 0.1e−
x2

σ , u = 0 and p = ρ .
� The domain is Ω = [−2, 2]. 4000 cells and 11-order SL. θ = 1 (relaxation).

� Left ∆t = 0.002. Right ∆t = 0.005. Reference (black), Rusanov (yellow), Van-Leer
(green), Osher (violet), AUSM (red).

� Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other, but very accurate on the material wave.

E. Franck 29/39

29/39



1D Euler equations
� Model: Euler equation  ∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) = 0

� Test case: acoustic wave. ρ = 1 + 0.1e−
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1D Euler equations
� Model: Euler equation  ∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) = 0

� Test case: acoustic wave. ρ = 1 + 0.1e−
x2

σ , u = 0 and p = ρ .
� The domain is Ω = [−2, 2]. 4000 cells and 11-order SL. θ = 0.666 (relaxation).

� Same test case for the low-mach scheme with ω = 1. ∆t = 0.002 (yellow),
∆t = 0.005 (green), ∆t = 0.01 (violet).

� Conclusion: Osher and Van-Leer more accurate that Rusanov. Low-Mach less
accurate for acoustic that the two other, but very accurate on the material wave.
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1D Euler equations II
� Test case: Smooth contact. We take p = 1 and u is also constant.
� Final aim: Where Tf = O( 1

u
) we want take ∆t = O( 1

u
) and preserve the same error

when u decrease.

� We choose ∆t = 0.02 and Tf = 2. 4000 cells. We choose ω = 1:

Schemes Rusanov VL Osher LM

u = 10−2
ρ(t, x) 0.26 1.0E−1 8.4E−2 1.0E−3

u(t, x) 0 3.4E−3 6.0E−7 0
p(t, x) 0 5.0E−4 4.3E−8 0

u = 10−4
ρ(t, x) 0.26 1.0E−1 8.4E−2 1.0E−5

u(t, x) 0 3.4E−3 6.0E−7 0
p(t, x) 0 5.0E−4 4.3E−8 0

u = 0
ρ(t, x) 0.26 1.0E−1 4.8E−2 0.0
u(t, x) 0 3.4E−3 6.0E−7 0
p(t, x) 0 5.0E−4 4.3E−8 0

� Drawback: When the time step is too large we have dispersive effect.
� Possible explanation: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O((α− 1)∆tu2) + O(∆t2uλq)

]
Tf .

� with λ closed to the sound speed.
� Problem: At the second order, we recover partially the problem since λ is closed to

the sound speed.
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1D Euler equations III
� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
slow scale

� The convective part associated at the slow scale. The acoustic part associated at the
fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u

:

Error u = 10−1 u = 10−2 u = 10−3 u = 10−4

α = 1 2.5E−3 2.5E−3 2.5E−3 2.5E−3
λs 2 0.2 0.02 0.002
λf 2 20 200 2000

Conclusion
� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O((α− 1)∆tu2) + O(∆t2uλqs )

]
Tf .

� with λs which can be taken as O(u).
� Drawback: For the stability it seems necessary to have

λsλf ≥ C max
x

(u + c)
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1D Euler equations III
� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
fast scale

� The convective part associated at the slow scale. The acoustic part associated at the
fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u

:

Error u = 10−1 u = 10−2 u = 10−3 u = 10−4

α = 1 2.5E−3 2.5E−3 2.5E−3 2.5E−3
λs 2 0.2 0.02 0.002
λf 2 20 200 2000

Conclusion
� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O((α− 1)∆tu2) + O(∆t2uλqs )

]
Tf .

� with λs which can be taken as O(u).
� Drawback: For the stability it seems necessary to have

λsλf ≥ C max
x

(u + c)
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� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
coupling

� The convective part associated at the slow scale. The acoustic part associated at the
fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u
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Error u = 10−1 u = 10−2 u = 10−3 u = 10−4
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λs 2 0.2 0.02 0.002
λf 2 20 200 2000
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� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O((α− 1)∆tu2) + O(∆t2uλqs )

]
Tf .

� with λs which can be taken as O(u).
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x
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1D Euler equations IV
� Test case: Sod problem. 4000 cells, First order is space and time.
� Comparison of schemes:

� Reference (black), Rusanov (orange), Van-Leer (green), Osher (violet), Low-Mach
with α = 1 (red).

� Comparison of low-mach scheme for different values of α:

� Results for ω = 1.0, ∆t = 0.001. Reference (black), α = 1 (orange), α = 1.2 (green),
α = 1.5 (violet), α = 2 (red), α = 1 + u (blue).
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Kinetic relaxation method for Diffusion problem
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Applications

Main parabolic problem
� Coupling anisotropic diffusion + resistivity.

∂tT −∇ · ((B ⊗ B)∇T + ε∇T ) = 0

∂tB − η∇× (T−
5
2∇× B) = 0

∇ · B = 0

� The temperature T for the case η = 0 and B given by magnetic equilibrium.

E. Franck 34/39

34/39



Kinetic model and scheme for diffusion I
� We solve the equation: ∂tρ+ ∂x (uρ) = D∂xxρ
� D1Q2 Kinetic system proposed (S. Jin, F. Bouchut):

∂t f− −
λ

ε
∂x f− =

1

ε2
(f −eq − f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq − f+)

� with f ±eq = ρ
2
± ε(uρ)

2λ
. The limit is given by:

∂tρ+ ∂x (uρ) = ∂x ((λ2 − ε2 | u |2)∂xρ) + λ2ε2∂x (∂xx (uρ) + u∂xxρ)− λ2ε2∂xxxxρ

� We introduce α >| u |. Choosing D = λ2 − ε2α2 we obtain

∂tρ+ ∂x (uρ) = ∂x (D∂xρ) + O(ε2)

� We can choose ε = ∆tγ and ω = 2.

γ = 1
2

γ = 1 γ = 2
Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -
∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0

� The splitting scheme is not AP.

E. Franck 35/39

35/39



Kinetic model and scheme for diffusion II

Consistency analysis
� We consider ∂tρ− D∂xxρ = 0.

� We define the two operators for each step:

T∆t : e∆t Λ
ε
∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε2
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε2
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tρ = ∆t∂x

((
1− ω
ω

+
1

2

)
λ2

ε2
∂xρ

)
+ O(∆t2)

� Taking D = λ2, θ = 0.5 and ε =
√

∆t we obtain the diffusion equation.

� Question: what is the error term is this case ?

� First results (for these choices of parameters):

� Second order at the numerical level.
� At the minimum the first order theoretically.

� Problem: For a large time step, the scheme oscillate. How reduce this ?
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Kinetic scheme for anisotropic/nonlinear diffusion
� We consider the diffusion equation with ∂tρ− ∂x (A(ρ, x)∂xρ) = 0 with D(ρ, x) > 0.
� We consider a kinetic system

∂t f +
Λ

ε
∂x f =

R(x , ρ)

ε2
(f eq − f )

� We define Pf =
∑N

i fi = ρ and Qf = 1
ε

∑N
i vi fi = u.

� If

Pf eq = ρ, Qf eq = 0,
N∑
i

v2
i f

eq
i = αρ

and P [R(x , ρ)(f eq − f )] = 0, Q [R(x , ρ)(f eq − f )] = −αD−1Qf
� We obtain the equivalence with the following model (which gives at the limit the

diffusion model) {
∂tρ+ ∂xv = 0

∂tv +
α

ε2
∂xρ = −

α

D(x , ρ)ε2
v

� Example: D1Q2 
∂t f+ +

1

ε
∂x f+ =

1

D(x , ρ)ε2
(f eq+ − f+)

∂t f− −
1

ε
∂x f− =

1

D(x , ρ)ε2
(f eq− − f−)

� with f eq± = 1
2
ρ.
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Results for anisotropic/nonlinear diffusion
� We want solve the equation: ∂tρ− ∂xxD(ρ) = 0
� p = 1 (green) p = 2 (blue). Left ∆t = 0.001 . Right ∆t = 0.005.

� The second kinetic scheme allows to treat also nonlinear diffusion.

� We want solve the equation: ∂tρ = ∂x (A(x)∂xρ).

� Left: A(x) = 1. Right: 1
2

(1− erf (5(x − x0)). Black : initial data. Yellow: final data.
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Results for anisotropic/nonlinear diffusion
� We want solve the equation: ∂tρ− ∂xxD(ρ) = 0
� p = 1 (green) p = 3 (blue). Left ∆t = 0.001 . Right ∆t = 0.005.

� The second kinetic scheme allows to treat also nonlinear diffusion.

� We want solve the equation: ∂tρ = ∂x (A(x)∂xρ).

� Left: A(x) = 1. Right: 1
2

(1− erf (5(x − x0)). Black : initial data. Yellow: final data.
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Conclusion

LBM as relaxation scheme
� LBM method can be rewritten as a specific scheme for BGK model.
� Using this, we propose high-order scheme with large time step algorithm (SL method).
� This algorithm is very competitive against implicit scheme (no matrices, no solvers).

D1Q3/5 schemes
� The [D1Q3]n schemes allows to reduce the error compared to [D1Q2]n.
� Using the flux-vector splitting FV method we obtain new [D1Q3]n.
� The [D1Q3]n Osher scheme is generic for hyperbolic systems.

� We propose a new [D1Q3]n scheme for low-Mach. Problem: stability for ω ≈ 1.
Modification ?

Kinetic scheme and LBM for diffusion
� These methods allows to treat also the diffusion equations using the splitting error.
� Poor/correct accuracy for anisotropic diffusion/heat equation. Need to be increased.

Future works
� 2D/3D diffusion and low-Mach, MHD, BC, Dispersive waves, Limiting methods,

Machine Learning.
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