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Iter Project and nuclear fusion

Applications
� Modeling and numerical simulation for the nuclear fusion.

� Fusion DT: At sufficiently high energies
deuterium and tritium (plasmas) can
fuse to Helium. Free energy is released.

� Plasma: For very high temperature, the
gas is ionized and give a plasma which
can be controlled by magnetic and
electric fields.

� Tokamak: toröıdal chamber where the
plasma (108 Kelvin), is confined using
magnetic fields. Larger Tokamak: Iter

Difficulties:
� Plasma turbulence (center of the Tokamak).
� Plasma instabilities (edges of the Tokamak).
� Necessary to simulate these phenomena and test some controls in realistic geometries

of Tokamak.
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Models

Model for the center: Gyro-kinetic model ∂t(B‖f ) +∇ ·
(
dxg

dt
f

)
+ ∂v‖

(
B‖

dv‖

dt
f

)
= 0

−∇ ·⊥ (ρe(x)∇⊥φ) = ρ(x)− 1 + S(φ)

� The guiding center motion
dxg
dt

and
dv‖
dt

depend of B‖ and ∇φ) and ρ is the density of
the gyro-distribution f .

� Other models: Vlasov-Maxwell or Poisson.
� Kinetic models coupled with elliptic model.

Model for the edge: Resistive MHD
∂tρ+∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇× B)× B + ν∇ ·Π
∂tp +∇ · (pu) + (γ − 1)p∇ · u = ∇ · ((κB ⊗ B + εId )∇T ) + η | ∇ × B |2 +νΠ : ∇u
∂tB −∇× (u × B) = η∇× (∇× B)
∇ · B = 0

� Scaling: ν, η << 1 and κ | B |2>> 1 >> ε.

� Other models: Reduced incompressible MHD model or Extended MHD.
� Hyperbolic model coupled with parabolic model.
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Geometries and times schemes

Geometry
� 3D geometry: Torus with a non circular

section.
� Poloidal geometry: aligned with the

magnetic surfaces of the equilibrium.
� Non structured grids and singularities.

Time schemes for kinetic model
� Vlasov: large kinetic velocities.
� Vlasov: large polöıdal velocities due to the electric field variation.
� Characteristic time larger that time associated to fast velocities. We need CFL-free

schemes.
� Turbulence: We need high-order scheme and fine grids.

Time schemes for MHD model
� Anisotropic diffusion: We need CFL-free schemes.
� Perp magneto-acoustic waves: larger than characteristic velocity. Needs CFL-free

schemes.
� Usual schemes: Implicit high-order schemes. Very hard to invert the nonlinear

problem.

E. Franck 6/28

6/28



Kinetic model and SL schemes

Semi Lagrangian scheme
� One of the main scheme to treat transport and kinetic equations.
� Idea: use the characteristic method.

� Example: Backward SL
∂t f + a∂x f = 0

� Aim: compute at the mesh point xj :

f (t + ∆t, xj )
� Solution:

f (t + ∆t, xj ) = f (t, xj − a∆t)

� xn = xj − a∆t is not a mesh point.
� Using f (t, xi ) we interpolate the function at xn.

� BSL/FSL: follow the backward characteristic and interpolate/follow the forward
characteristic and distribute on the mesh.

� Different type of SL: Classical SL (punctual values), Conservative SL (Average cell
values), DG/CG SL (weak form of SL scheme).

Advantages/drawbacks
� Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
� Drawbacks: BC and Gibbs oscillations due to high-order methods.
� Interesting works: Positive SL ( B. Després), Artificial diffusion for SL, limiting.
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Aim

Aim:

Construct High-Order Solver like SL-Solver (no matrix inversion,
no CFL) for the different type of PDE.
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Approximate BGK model for hyperbolic systems
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Relaxation scheme
� We consider the classical Xin-Jin relaxation for a scalar system ∂tu + ∂xF (u) = 0:{

∂tu + ∂xv = 0

∂tv + λ2∂xu =
1

ε
(F (u)− v)

Limit

� The limit scheme of the relaxation system is

∂tu + ∂xF (u) = ε∂x ((λ2− | ∂F (u) |2)∂xu) + O(ε2)

� Stability: the limit system is dissipative if (λ2− | ∂F (u) |2) > 0.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain

∂t f− − λ∂x f− =
1

ε
(f −eq − f−)

∂t f+ + λ∂x f+ =
1

ε
(f +
eq − f+)

� with u = f− + f+ and f ±eq = u
2
± F (u)

2λ
.

First Generalization
� Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

� Generalization: one Xin-Jin or D1Q2 model by macroscopic variable.
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Generic kinetic relaxation scheme

Kinetic relaxation system
� Considered model:

∂tU + ∂xF (U) = 0
� Lattice: W = {λ1, ....,λnv } a set of velocities.

� Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .

� Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

� We define the macroscopic variable by Pf = U.

� Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

C
{

Pf eq(U) =U
PΛf eq(U)=F (U)

� In 1D : same property of stability that the classical relaxation method.
� Limit of the system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂f eq− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

� Natural extension in 2D/3D.
� General scheme: [D1Q2]n, one D1Q2 by macroscopic equation.

E. Franck 11/28

11/28



Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.

� Main idea: splitting scheme between transport and the relaxation (Dellar [13]).
� Key point: the macroscopic variables are conserved during the relaxation step.

Therefore f eq(U) explicit.

� Scheme: Theta-scheme for the relaxation and SL (or implicit DG) scheme for the
transport.

First order scheme (first order transport )
� We define the two operators for each step :

T∆t : (Id + ∆tΛ∂x Id )f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =
∆t

2
∂x (PΛ2∂x f ) +

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq− | ∂F (U) |2

)
.
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High-Order time schemes

Second-order scheme
� Order of convergence: one for the kinetic variables. one or two (ω = 2 and exact

transport) for the macroscopic variables.
� Second order scheme: Strang Splitting + SL scheme

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
.

High order scheme: composition method

Mp(∆t) = Ψ(γ1∆t) ◦Ψ(γ2∆t) ◦ ..... ◦Ψ(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.
� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

CV and new scheme
� All the schemes convergence only with the second order for the kinetic variables.
� Loose of order also for macroscopic variables (see numerical results).

� The 2th order scheme satisfies Ψ(∆t) = Ψ−1(−∆t) but not Ψ(∆t = 0) 6= Id .
Correction:

Ψap(∆t) = T

(
∆t

4

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

4

)
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Burgers: convergence results
� Model: Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Spatial discretization: SL-scheme, 2000 cells, degree 11.

� Test: ρ(t = 0, x) = sin(2πx). Tf = 0.14 (before the shock) and no viscosity.
� Scheme: splitting schemes and Suzuki composition + splitting.

SPL 1, θ = 1 SPL 1, θ = 0.5 SPL 2, θ = 0.5 Suzuki
∆t Error order Error order Error order Error order
0.005 2.6E−2 - 1.3E−3 - 7.6E−4 - 4.0E−4 -
0.0025 1.4E−2 0.91 3.4E−4 1.90 1.9E−4 2.0 3.3E−5 3.61
0.00125 7.1E−3 0.93 8.7E−5 1.96 4.7E−5 2.0 2.4E−6 3.77
0.000625 3.7E−3 0.95 2.2E−5 1.99 1.2E−5 2.0 1.6E−7 3.89

� Scheme: second order
splitting scheme.

� Same test after the shock:

� Comparison for different time step. Violet:
∆t = 0.001 (CFL 5-30), Green: ∆t = 0.005 (CFL
20-120), Blue ∆t = 0.01 (CFL 50-300), Black :
reference.
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Remark on the relaxation scheme
� Classical result: Strang Splitting + second order/exact scheme for relaxation converge

at first order for ε ≈ 0. SL solver + Strang splitting.

CN Exact SSP RK
Error Order Error Order Error Order

∆t = 4.10−3 4.8E−4 - 2.0E−2 - 2.0E−2 -
∆t = 2.10−3 1.2E−4 2.0 1.1E−2 0.86 1.1E−2 0.86
∆t = 1.10−3 2.9E−5 2.05 5.7E−3 0.95 5.5E−3 1.0
∆t = 5.10−4 7.4E−6 1.95 2.9E−3 0.97 2.8E−3 0.98

� Conclusion: we lose one order of cv with exact and SPP-RK solver.

� Scheme for ε ≈ 0:

� For Euler implicit, exact and
SSP-RK2 schemes.

f n+1 ≈ f eq(Un) + O(ε)

� For Crank-Nicolson.

f n+1 ≈ 2f eq(Un)− f n + O(ε)

� We solve the EDO ∂tu = 1
ε

(ueq − u).

� Implicit Euler scheme. ∆t = 100ε

Conclusion:
� If you begin far to f eq the exact/SPP-RK solvers seems better.
� However, for high-order splitting scheme the over-relaxation (CN) seems important .
� At the limit ε = 0 this scheme is revertible contrary the other.
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Convergence
� Equation: Euler isothermal
� Model [D1Q2]2 High-order space scheme. Comparison of the time scheme.

� Test case: smooth solution. ∆t = β∆x
λ

with β = 50

� With Strang splitting: only order 2 for f .
� Loss of convergence for macroscopic variables for Kahan-li + Strang splitting.
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Numerical results: 2D MHD drifting vortex
� Model : compressible ideal MHD.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around
20.

� Test case : advection of the vortex (steady state without drift).

� Parameters : ρ = 1.0, p0 = 1, u0 = b0 = 0.5, udrift = [1, 1]t , h(r) = exp[(1− r2)/2]

Magnetic field Velocity
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

3D case in cylinder

Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

2D cut of the 3D case

Figure: Plot of the mass fraction of gas
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Limit of the method

Limitation

� High-order extension allows to correct the main default of relaxation: large error.

∂tU + ∂xF (U) = σ∆t∂x ((λ2Id− | ∂F (U) |2)∂xU) + O(∆t2λ3)

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: Sod problem.
� Second order time scheme + SL scheme:

� Left: density ∆t = 1.0−4. Right: density ∆t = 4.0−4

� Conclusion: shock and high order time scheme needs limiting methods.
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Limit of the method

Limitation

� High-order extension allows to correct the main default of relaxation: large error.

∂tU + ∂xF (U) = σ∆t∂x ((λ2Id− | ∂F (U) |2)∂xU) + O(∆t2λ3)

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: First order method too much dissipative for low Mach flow (dissipation

with acoustic coefficient).
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Limit of the method

Limitation

� High-order extension allows to correct the main default of relaxation: large error.

∂tU + ∂xF (U) = σ∆t∂x ((λ2Id− | ∂F (U) |2)∂xU) + O(∆t2λ3)

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with acoustic coefficient).
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D1Q3 models and low Mach limit I
� Default of [D1Q2]n model: diffusion/dispersion homogenous to larger speed.
� Aim: reduce this error for the slow part of the waves. Idea: introduce slow or null

velocity.

[D1Q3]N model

� Velocity set V = [λ−, 0,λ+] and
f eq
− (U) =

1

λ−
F−(U)

f eq
0 (U) =

(
U −

(
F+(U)

λ+
+

F−(U)

λ−

))
f eq

+ (U) =
1

λ+
F+(U)

� F (U) = F+(U) + F−(U) the ”positive” and ”negative” flux.

� Example: Burgers

F−(ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
F+(ρ) =

1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
� f α = λ

|ρ| we obtain

∂tρ+ ∂x

(
ρ2

2

)
= σ∆t∂x

((
| ρ | λ− ρ2

)
∂xρ
)
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D1Q3 models and low Mach limit I
� Default of [D1Q2]n model: diffusion/dispersion homogenous to larger speed.
� Aim: reduce this error for the slow part of the waves. Idea: introduce slow or null

velocity.

[D1Q3]N model

� Velocity set V = [λ−, 0,λ+] and
f eq
− (U) =

1

λ−
F−(U)

f eq
0 (U) =

(
U −

(
F+(U)

λ+
+

F−(U)

λ−

))
f eq

+ (U) =
1

λ+
F+(U)

� F (U) = F+(U) + F−(U) the ”positive” and ”negative” flux.

� Example: Burgers

F−(ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
F+(ρ) =

1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
� If α = 1 we obtain

∂tρ+ ∂x

(
ρ2

2

)
= O(∆t2)
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D1Q3 models and low Mach limit II
� Rarefaction wave. First order scheme in time.

� Left/right ∆t = 0.002/0.01. D1Q2 (yellow), α = λ
|ρ| , 1, 2 (blue, green, violet).

� Euler equation: Flux splitting for low-mach flow.
� Idea: Splitting of the flux (Zha-Bilgen, Toro-Vasquez):

F (U) =

 (ρ)u
(ρu)u + p
(E)u + pu


� Test case: Acoustic wave. SL order 11, 4000 cells.

� D1Q2 ∆t = 0.005 (yellow), D1Q3 ∆t = 0.005/0.01 (red, green). Contact captured.
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D1Q3 models and low Mach limit II
� Rarefaction wave. First order scheme in time.

� Left/right ∆t = 0.002/0.01. D1Q2 (yellow), α = λ
|ρ| , 1, 2 (blue, green, violet).

� Euler equation: Flux splitting for low-mach flow.
� Idea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.

F±(U) =
1

2

 (ρu ± α u2

λ
ρ) + p

(ρu2 ± α u2

λ
q) + p(1± γ u

λ
)

(Eu ± α u2

λ
E) +

(
pu ± 1

λ
γ(u2 + λ2)p

)


� Test case: Acoustic wave. SL order 11, 4000 cells.

� D1Q2 ∆t = 0.005 (yellow), D1Q3 ∆t = 0.005/0.01 (red, green). Contact captured.
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BC : preliminary results
� Question: What BC for the kinetic variables. How keep the order ?

First result

� The second order symmetric scheme (Ψap) for the equation{
∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

is consistant with {
∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with W = F (U)− V .

� Natural BC: in condition for U and W = 0 or ∂xW = 0.
� Example: F (u) = cu (transport):

0 0.5 1
0

0.5

1

x

w
,y

0 0.5 1
x

t=0.02
t=0.09
t=0.17
t=0.25
t=0.33

� Transport of the w (dashed lines) and y = z − f (w) (plain lines) quantities.
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BC : preliminary results
� Question: What BC for the kinetic variables. How keep the order ?

First result

� The second order symmetric scheme (Ψap) for the equation{
∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

is consistant with {
∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with W = F (U)− V .

� Natural BC: in condition for U and W = 0 or ∂xW = 0.
� Example: F (u) = cu (transport):

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

x

v
,w

v(t = 0, x)

v(t = tmax, x)
”Exact” strategy
”Dirichlet” strategy
”Neumann” strategy

2−72−82−92−102−112−12

10−5

10−4

10−3

10−2

10−1

∆x

e
n ∆
x

1st order

2nd order
Exact
Dirichlet
Neumann

� Initial state and comparison of the final states. Gaussian initial profile, ∆x = 2−7.
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Approximate BGK model for parabolic systems
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Relaxation scheme for diffusion
� We consider the classical Xin-Jin relaxation for a scalar system ∂tu − ν∂xxu = 0: ∂tu + ∂xv = 0

∂tv +
λ2

ε2
∂xu = −

1

ε2
v

Limit

� The limit scheme of the relaxation system is

∂tu − ∂x (λ2∂xu) = ε2∂xxxxu + O(ε4)

� Consistency: Choosing λ2 = ν we obtain the initial solution.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain

∂t f− −
λ

ε
∂x f− =

1

ε2
(f −eq − f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq − f+)

� with u = f− + f+ and f ±eq = u
2

.

First Generalization
� Main property: the transport is diagonal (D1Q2 model) which can be easily solved.
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Generalisation
� We consider the equation

∂tu − ∂x (D(x , u)∂xu) = 0

� Lattice: W = {λ1, ....,λnv } a set of velocities and u =
∑nv

i wi fi
� Kinetic relaxation system:

∂t f +
Λ

ε
∂x f =

R(u, x)

ε2
(f eq(u)− f )

Limit system

� We assume
∑

i vi f
eq
i = 0,

∑
i v

2
i f

eq
i = αu

�
∑

i (R(f eq − f ))i = 0,

� and
∑

i vi (R(f eq − f ))i = −αD(x , u)−1v . In this case we have an equivalence with

{
∂tu + ∂xv = 0

∂tv +
α

ε2
∂xu = −

α

D(x , ρ)ε2
v

� which gives at the limit

∂tu − ∂x (D(x , u)∂xu) = O(ε2)
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Discretization

Consistency analysis
� We consider ∂tρ− D∂xxρ = 0.

� We define the two operators for each step:

T∆t : e∆t Λ
ε
∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε2
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε2
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tρ = ∆t∂x

((
1− ω
ω

+
1

2

)
λ2

ε2
∂xρ

)
+ O(∆t2)

� We don’t have convergence for all ε. The splitting scheme is not AP

� Taking D = λ2, θ = 0.5 and ε =
√

∆t we obtain the diffusion equation.
� Question: When you choose like this. Consistence or not ?

� First results (for these choices of parameters):

� Second order at the numerical level.
� At the minimum the first order theoretically.

E. Franck 26/28

26/28



Numerical results for diffusion equation
� Heat equation. Scheme with ε = ∆tγ and very high order SL + fine grid.

γ = 1
2 γ = 1 γ = 2

Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -

∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0

� We want solve the equation: ∂tρ− ∂xxρ = 0
� ∆t = 0.1. The scheme oscillate. We cannot take very large time step.
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Numerical results for diffusion equation
� Heat equation. Scheme with ε = ∆tγ and very high order SL + fine grid.

γ = 1
2 γ = 1 γ = 2

Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -

∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0

� We want solve the equation: ∂tρ− ∂xxD(ρ) = 0
� p = 1 (green) p = 2 (blue). Left ∆t = 0.001 . Right ∆t = 0.005.
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Numerical results for diffusion equation
� Heat equation. Scheme with ε = ∆tγ and very high order SL + fine grid.

γ = 1
2 γ = 1 γ = 2

Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -

∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0

� We want solve the equation: ∂tρ− ∂xxD(ρ) = 0
� p = 1 (green) p = 3 (blue). Left ∆t = 0.001 . Right ∆t = 0.005.
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Numerical results for diffusion equation
� Heat equation. Scheme with ε = ∆tγ and very high order SL + fine grid.

γ = 1
2 γ = 1 γ = 2

Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -

∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0

� We want solve the equation: ∂tρ = ∂x (A(x)∂xρ).

� Left: A(x) = 1. Right: 1
2

(1− erf (5(x − x0)). Black : initial data. Yellow: final data.
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Conclusion

Time scheme for BGK
� High order Method: Composition + Strang Splitting (or modified version) +

Crank-Nicolson scheme for relaxation.
� Default: scheme not accurate (compare to Jin-Filbet/Pareschi-Gimarco schemes) far

to the equilibrium.
� Advantage: independent transport equation. Useful with implicit transport solver.

Implicit Kinetic relaxation schemes
� We can approximate hyperbolic/parabolic PdE by small BGK models ( Elliptic also).
� Using this, we propose high-order scheme with large time step algorithm (SL method).

� This algorithm is very competitive against implicit scheme (no matrices, no solvers).

Future works
� Validate nonlinear/anisotropic at the order 2 and try to reduce the constant error.
� Study the scheme for elliptic problems.
� 1D scheme for low-mach. Extension in 2D/3D and improve stability.
� Application to MHD and anisotropic diffusion for plasma.
� Continue the study for the BC.
� Propose artificial viscosity method for the total scheme ( relaxation and SL steps) to

avoid oscillations.
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