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Iter Project and nuclear fusion

Applications

B Modeling and numerical simulation for the nuclear fusion.

B Fusion DT: At sufficiently high energies
deuterium and tritium (plasmas) can
fuse to Helium. Free energy is released. Deuterium Helium

* {
B Plasma: For very high temperature, the ‘\ G*-t‘
gas is ionized and give a plasma which @ "

can be controlled by magnetic and \
electric fields.
¢ / \ Energy
(W) ¢

B Tokamak: toroidal chamber where the
plasma (108 Kelvin), is confined using Tritium Neutron
magnetic fields. Larger Tokamak: Iter

B Plasma turbulence (center of the Tokamak).
B Plasma instabilities (edges of the Tokamak).

B Necessary to simulate these phenomena and test some controls in realistic geometries

of Tokamak.
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Models
Model for the center: Gyro-kinetic model

dv
O(B)f)+ V- %f + 0y, (Bud—!f> -0
=V 1 (pe(x)V L) = p(x) — 1+ S(¢)

d
B The guiding center motion d;f and % depend of B, and V¢) and p is the density of

the gyro-distribution f.

B Other models: Vlasov-Maxwell or Poisson.
B Kinetic models coupled with elliptic model.

Model for the edge: Resistive MHD

| A\

Otp+V - (pu) =0,
pOtu+ pu-Vu+Vp=(VXxB)xB+vV- I

p+V (pu)+(y—1)pV -u=V-((kBRB+¢cly)VT)+n|V xB|*+vM:Vu

0tB —V x (ux B)=nV x (V x B)
V-B=0

Scaling: v,p<<land k| B |?>>1>>¢.

Other models: Reduced incompressible MHD model or Extended MHD.
Hyperbolic model coupled with parabolic model.
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Geometries and times schemes

B 3D geometry: Torus with a non circular
section.

B Poloidal geometry: aligned with the
magnetic surfaces of the equilibrium.
B Non structured grids and singularities.

5

<

Time schemes for kinetic model

B Vlasov: large kinetic velocities.

B Vlasov: large poloidal velocities due to the electric field variation.

B Characteristic time larger that time associated to fast velocities. We need CFL-free
schemes.

B Turbulence: We need high-order scheme and fine grids.

y

Time schemes for MHD model

B Anisotropic diffusion: We need CFL-free schemes.
B Perp magneto-acoustic waves: larger than characteristic velocity. Needs CFL-free
schemes.

B Usual schemes: Implicit high-order schemes. Very hard to invert the nonlinear

problem. 6 -\
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Kinetic model and SL schemes

Semi Lagrangian scheme

B One of the main scheme to treat transport and kinetic equations.
B |dea: use the characteristic method.

B Example: Backward SL

8tf + anf =0
U Aim: compute at the mesh point x;: .
f(t+ At, x;) (n+1) At
O Solution:
f(t+ At,x;) = f(t, x; — alt)
At
U xp = xj — aAt is not a mesh point. ! =S :
O Using f(t, x;) we interpolate the function at xp.

B BSL/FSL: follow the backward characteristic and interpolate/follow the forward
characteristic and distribute on the mesh.

B Different type of SL: Classical SL (punctual values), Conservative SL (Average cell
values), DG/CG SL (weak form of SL scheme).

Advantages/drawbacks

B Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
B Drawbacks: BC and Gibbs oscillations due to high-order methods.

B |nteresting works: Positive SL ( B. Després), Artificial diffusion for SL, limiting.
- E. Franck
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Aim

Construct High-Order Solver like SL-Solver (no matrix inversion,
no CFL) for the different type of PDE.

( 8/28
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Approximate BGK model for hyperbolic systems
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==
Relaxation scheme

B We consider the classical Xin-Jin relaxation for a scalar system 0:u + 9xF(u) = 0:

Otu+ Oxv =0
v + N20u = 1(F(u) —v)
€

O The limit scheme of the relaxation system is

Bru + 5 F(u) = edx((N2— | OF (u) [?)dxu) + O(g?)
O Stability: the limit system is dissipative if (\2— | 9F (u) |?) > 0.

B We diagonalize the hyperbolic matrix ( )?2 é ) to obtain
1
Of— — NOxf— = —(foq — 1-)
Orfy + ANOxfy = g(f;g —fy)

B with u=f_+f and £ = 4 + FW.

First Generalization
O Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

0 Generalization: one Xin-Jin or D1Q2 model by macroscopic variable.
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Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:
o:U+ 0«F(U)=0
Lattice: W = {A1,...., A, } a set of velocities.
Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".
Kinetic relaxation system:

0F + Ao F = L(F9(U) — F)
&

We define the macroscopic variable by Pf = U.

Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

PFI(U) =U
C{ PAFI(U)=F(U)

In 1D : same property of stability that the classical relaxation method.
Limit of the system:

U + 8« F(U) = dx ((PN*0feq— | OF(U) |?) 8 U) + O(e?)

Natural extension in 2D/3D.

General scheme: [D1Q2]", one D1Q2 by macroscopic equation. r‘\
11
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.

B Main idea: splitting scheme between transport and the relaxation (Dellar [13]).

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £49(U) explicit.

B Scheme: Theta-scheme for the relaxation and SL (or implicit DG) scheme for the
transport.

First order scheme (first order transport )

B \We define the two operators for each step :

Tae : (lg + AtAO )" = £7
o Fri g Bt (fe"(U) £l =" — (1—9) L(Fea(uy - 1)
B Final scheme: Tp; o Rm is consistent with

o+ o F() = Sopron + (B25) o oW + oar)

B with w = AL and D(U) = (PA20yfei— | 9F(U) ). /'\
12
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High-Order time schemes

Second-order scheme

B QOrder of convergence: one for the kinetic variables. one or two (w = 2 and exact
transport) for the macroscopic variables.

B Second order scheme: Strang Splitting + SL scheme

V(A =T (%) oR(At,w=2)oT (%) .

High order scheme: composition method

Mp(At) = W(y1At) o W(pAt) o..... o U(ysAt)

B with +; € [-1, 1], we obtain a p-order schemes.
B Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

CV and new scheme
B All the schemes convergence only with the second order for the kinetic variables.
B | oose of order also for macroscopic variables (see numerical results).

B The 2th order scheme satisfies W(At) = W—1(—At) but not W(At = 0) # I4.
Correction:

| A

At

E. Franck
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Burgers: convergence results

B Model: Burgers equation

B Spatial discretization: SL-scheme, 2000 cells, degree 11.

2
Oep + O (%) =0

B Test: p(t =0, x) = sin(2mx). Tf = 0.14 (before the shock) and no viscosity.

B Scheme: splitting schemes and Suzuki composition + splitting.

SPL1,6=1 SPL1,6=05 SPL2,6=05 Suzuki
At Error order Error order Error order Error order
0.005 2.6E—2 - 13E3 - 7.6E* - 40E—* -
0.0025 1.4E-7 0.91 3.4E—* 1.90 1.9E-* 2.0 33E~° 3.61
0.00125 | 7.1E—3 0.93 8.7E—® 1.96 47E® 2.0 2.4E~°® 3.77
0.000625| 3.7E—3 0.95 22E 1.99 1.2E—° 2.0 1.6E-7 3.89
B Scheme: second order =
splitting scheme.

B Same test after the shock:

//

E. Franck
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Remark on the relaxation scheme

B (Classical result: Strang Splitting + second order/exact scheme for relaxation converge
at first order for € &~ 0. SL solver + Strang splitting.

CN Exact SSP RK
Error Order Error Order Error Order
At =4.10"3 | 48E~* - 2.0E~? 2.0E2

At=210"3 | 1.2E~* 20 | 1.1E7%2| 086 | 1.1E-? | 0.86
At =1.10"3 | 29E~° 2.05 | 5.7E3 0.95 | 5.5E3 1.0
At=510"* | 74E-% | 195 | 293 | 097 | 28E-3 | 0.98

Conclusion: we lose one order of cv with exact and SPP-RK solver.

B Scheme for & ~ 0: B We solve the EDO 0;u = é(ueqfu).

B For Euler implicit, exact and
SSP-RK2 schemes.

L~ F9(UM) + O(e)

B For Crank-Nicolson.

£l 2F(U") — " + O(e) B |mplicit Euler scheme. At = 100¢

B |f you begin far to f°7 the exact/SPP-RK solvers seems better.
However, for high-order splitting scheme the over-relaxation (CN) seems important .
At the limit € = 0 this scheme is revertible contrary the other.
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Convergence

B Equation: Euler isothermal
B Model [D1Q2]? High-order space scheme. Comparison of the time scheme.
B Test case: smooth solution. At = % with 5 =50

0.1 |y —
0.01 4 ¢ ]
0.001 &

:e ]

. 0.0001 | 3 =

= F El 500001

S le-05 1 = E !

5 £ 1 ¢ F
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¥ i

e Suzuki / Strang splitting
i Suzuki / time-symmetric splitting
= Kahan-Li / Strang splitting

=iz Kahan-Li / time-symmetric splitting

B With Strang splitting: only order 2 for f.
B | oss of convergence for macroscopic variables for Kahan-li 4+ Strang splitting. r-\
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Numerical results: 2D MHD drifting vortex

B Model : compressible ideal MHD.
B Kinetic model : (D2 — Q4)". Symmetric Lattice.

B Transport scheme : 2"? order Implicit DG scheme. 4th order ins space. CFL around
20.

B Test case : advection of the vortex (steady state without drift).
B Parameters : p=1.0, po = 1, up = bg = 0.5, ugir = [1,1]%, h(r) = exp[(1 — r?)/2]

Magnetic field Velocity
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
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Limit of the method

0 High-order extension allows to correct the main default of relaxation: large error.
U + 0xF(U) = o At (M2 ly— | OF(U) |?)0xU) + O(A?A3)

O In two situations the High-order extension is not sufficient:

B For discontinuous solutions like shocks.
B For strongly multi-scale problem like low-Mach problem.

B Euler equation: Sod problem.
B Second order time scheme + SL scheme:

t=0.2 t=0.2
! 1.0 ‘

i i i
-1.0 -0.5 0.0 0.5 1.0 D'l'l.lJ -0.5

X

B |eft: density At = 1.07*. Right: density At =4.0~*

B Conclusion: shock and high order time scheme needs limiting methods. r-\
19/
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Limit of the method

O

High-order extension allows to correct the main default of relaxation: large error.
B:U + 0xF(U) = o At (N lg— | BF(U) [2)8xU) + O(At223)

O In two situations the High-order extension is not sufficient:

B For discontinuous solutions like shocks.
B For strongly multi-scale problem like low-Mach problem.

B Euler equation: smooth contact (u =cts, p=cts).

B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
22— =20 22— 220
2.0 - - - . : : . 2.0 : : : 4
1.8 18 |
1.6

1.6 B

14

12 1.4

1.0

1.2

R Y S R O W e N
-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

X X
B Order 1 Left: M =0.1. Right: M =0.01
B Conclusion: First order method too much dissipative for low Mach flow (dissipation
with acoustic coefficient). ,19 \
/28
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Limit of the method

[m]

High-order extension allows to correct the main default of relaxation: large error.
B:U + 0xF(U) = o At (N lg— | BF(U) [2)8xU) + O(At223)

O In two situations the High-order extension is not sufficient:

B For discontinuous solutions like shocks.
B For strongly multi-scale problem like low-Mach problem.

B Euler equation: smooth contact (u =cts, p=cts).

B First/Second order time scheme + SL scheme. Ty = % and 100 time step.
- . =20 P 5200
20— 22f .
1.8 2.0 1
1.6 1.8 1
14 1.6 1

1.2
1.0

1.4
1.2

OI—82.0—1.5—1.U—D.5 0.0 0.5 1.0 15 2.0 1"—32.0—1.5—1.0—0.5 0.0 0.5 1.0 15 2.0
X X
B Order 1 Left: M =0.1. Right: M =0.01

B Conclusion: Second order method too much dispersive for low Mach flow (dispersion
with acoustic coefficient). ,19 \
/28
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D1Q3 models and low Mach limit |

B Default of [D1Q2]" model: diffusion/dispersion homogenous to larger speed.
B Aim: reduce this error for the slow part of the waves. Idea: introduce slow or null

velocity.

[D1Q3]" model
O Velocity set V = [A_,0, A{] and
FIU) = s F(U)

s - (u- (5. 50)

F9(U) = ﬁF*(U)

0 F(U) = FT(U) + F~(U) the "positive” and " negative” flux.

B Example: Burgers
Fo) =3 (For+ 5 [(orwp2) Fro =3 (Fo+ S ["erwy)

B fo= ﬁ we obtain

Otp + Ox (%2) =oAtd ((|p| X — p2) Oxp)
\‘ 20/28‘
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D1Q3 models and low Mach limit |

B Default of [D1Q2]" model: diffusion/dispersion homogenous to larger speed.

B Aim: reduce this error for the slow part of the waves. ldea: introduce slow or null
velocity.

[D1Q3]" model
O Velocity set V =[X_,0, A\{] and
FIU) = S F(U)

FEI(U) = (;1_ (@JFF%(U)))
FEU) = +— - —FT V) ’ )

0 F(U) = FT(U) + F~(U) the "positive” and "negative" flux.

B Example: Burgers

Fo=3 (For+ 5 [forw?) o =3 (Fo+5 [(erwr)

B |f o = 1 we obtain )
Bep + Oy (%) = o(ar)

‘ 20/
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D1Q3 models and low Mach limit Il

Rarefaction wave. First order scheme in time.

Left/right At = 0.002/0.01. D1Q2 (yellow), a = ﬁ, 1,2 (blue, green, violet).
Euler equation: Flux splitting for low-mach flow.
Idea: Splitting of the flux (Zha-Bilgen, Toro-Vasquez):

(p)u
F(U) = ( (pu)u+p )

(E)u+ pu

Test case: Acoustic wave. SL order 11, 4000 cells.

D1Q2 At = 0.005 (yellow), D1Q3 At = 0.005/0.01 (red, green). Contact captured.r\
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D1Q3 models and low Mach limit Il

Rarefaction wave. First order scheme in time.

Left/right At = 0.002/0.01. D1Q2 (yellow), o = ﬁ, 1,2 (blue, green, violet).
Euler equation: Flux splitting for low-mach flow.

Idea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.

2
(puxaftp)+p
FEU) =2 | (2 +a%a)+p1£7%)
(Eut o' E)+ (pu=+ %*,/(u2 +A2)p)

Test case: Acoustic wave. SL order 11, 4000 cells.

D1Q2 At = 0.005 (yellow), D1Q3 At = 0.005/0.01 (red, green). Contact captured.r'\

E. Franck \21/28
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BC : preliminary results

B Question: What BC for the kinetic variables. How keep the order ?

First result

O The second order symmetric scheme (W) for the equation

6tU + 8XV = 0
1
0:V + N0, U = =(F(U) — V)
&
is consistant with
8:U + 0xF(U) = O(At?)
8:W — OF (U)o, W = O(At?)
with W = F(U) — V.

B Natural BC: in condition for U and W =0 or OxW = 0.
B Example: F(u) = cu (transport):

i —t=0.02

' —t=0.09

Zosf [ b ~ =017

: g [ WV t=0.25

! \ /J/ —1=0.33

0,‘.,',11,,,," L . L —
0 05 1 0 05 1
X X

B Transport of the w (dashed lines) and y = z — f(w) (plain lines) quantities. ’22/ \
&’L‘"’F: — ‘‘ oy E. Franck \ 28‘



BC : preliminary results

B Question: What BC for the kinetic variables. How keep the order ?

First result

O The second order symmetric scheme (W) for the equation

is consistant with

with W = F(U) — V.

{

6tU+8XV = 0
1

0:V + N0, U = =(F(U) — V)
&

8:U + 0xF(U) = O(At?)
{ 8:W — OF (U)o, W = O(At?)

B Natural BC: in condition for U and W =0 or OxW = 0.
B Example: F(u) = cu (transport):

15

1
H
N

0.5

0

—v(t=0,x)

== V(t = tmax, X)

— "Exact” strategy

-~ "Dirichlet” strategy
"Neumann" strategy

B |nitial state and comparison of the final states.

08 1 P/
Ax

E. Franck

\

Gaussian initial profile, Ax =277, ’22/ \
28‘



Approximate BGK model for parabolic systems

E. Franck
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==
Relaxation scheme for diffusion

B We consider the classical Xin-Jin relaxation for a scalar system 0;u — vOxu = 0:

{ Otu+Oxv =0
2

A
8tv+ BXU———V
3

O The limit scheme of the relaxation system is
et — By (N20xu) = 2 Dexx i + O(e*)

0 Consistency: Choosing A2 = v we obtain the initial solution.

B We diagonalize the hyperbolic matrix ( >?2 (1) ) to obtain

Df — 2o = (f* f)

.—nm

6tf++gaxf+ - —f+)

B with u=f_ +f; and fif = 4.

First Generalization
O Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

| 2
\ /281
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Generalisation
B \We consider the equation
Oru — Ox(D(x, u)dxu) =0

B Lattice: W = {\1,...., An, } a set of velocities and u = Y7 w;f;
B Kinetic relaxation system:

Bef + gaxf_ R(u. X)(feq( ) —f)

Limit system

0 We assume > vif =0, 3; Vizfieq = au
0 > i(R(F9 —f)); =0,
o and X, w(R(FT — £)); =

aD(x, u)~1v. In this case we have an equivalence with

«

{ Oru+0Oxv =0
D(x, p)€2v

Btv+ %Bxu = —
e

0 which gives at the limit

Bru — Bx(D(x, u)dxu) = O(e?)

éL’; »»»»»»»» E. Franck




Discretization

Consistency analysis

We consider 0¢p — DOy p = 0.

We define the two operators for each step:
A
TAt . eAtEBX fn+1 —fn

¥ Aant 9 L (Fea(U) — £ = £ — (1 - 0) E(Feaqu) —

Final scheme: Tp; o Rm is consistent with

o 2
Bep = Atdy ((17w + %) :\—28)4)) +0(Aa?)

w

We don't have convergence for all . The splitting scheme is not AP

Taking D = X2, § = 0.5 and £ = V/At we obtain the diffusion equation.

Question: When you choose like this. Consistence or not ?

First results (for these choices of parameters):

L Second order at the numerical level.
0 At the minimum the first order theoretically.

f)

E. Franck
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Numerical results for diffusion equation

B Heat equation. Scheme with e = At and very high order SL + fine grid.

=3 v=1 =2
Error order | Error | order | Error | order
At =0.04 1.87E-2 | - 1.43 - 1.43 -
At =0.02 6.57E—3 | 1.50 0.2 0 0.23 0
At =0.01 1.85E-3 | 1.82 | 0.2 0 [ 023] 0
At = 0.005 3.6E-% | 2.36 0.2 0 0.23 0
At=0.0025 | 7.3E° | 230 | 0.2 0 (023 O
B \We want solve the equation:  9tp — Oxxp =0

B At =0.1. The scheme oscillate. We cannot take very large time step.

t=0.1
T T

12

10f-
o8l
04
0z}

0.0

0.

0 05 1.0 15 20 25 3.0 35 4.0

X

E. Franck
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R R R R R R RRERRERERERREEE—SS————————
Numerical results for diffusion equation

B Heat equation. Scheme with e = At and very high order SL + fine grid.

=3 v=1 =2
Error order | Error | order | Error | order
At = 0.04 1.87E~2 - 1.43 - 1.43 -
At =0.02 6.57E 3] 150 | 0.2 0 0.23 0
At =0.01 1.85E3| 182 | 0.2 0 0.23 0
At = 0.005 3.6E% | 236 | 0.2 0 0.23 0
At=0.0025 | 73E° | 230 | 0.2 0 | 0.23 0

B We want solve the equation:
B p =1 (green) p =2 (blue). Left At =0.001 . Right At = 0.005.

t=0.1
T T T

Op — 8X><D(P) =0

t=0.1
T T T

‘0.0 05 1.0 1.5 20 25 3.0 3.5 4.0
X

E. Franck
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R R R R R R RRERRERERERREEE—SS————————
Numerical results for diffusion equation

B Heat equation. Scheme with e = At and very high order SL + fine grid.

=3 v=1 =2
Error order | Error | order | Error | order
At = 0.04 1.87E~2 - 1.43 - 1.43 -
At =0.02 6.57E 3] 150 | 0.2 0 0.23 0
At =0.01 1.85E3| 182 | 0.2 0 0.23 0
At = 0.005 3.6E% | 236 | 0.2 0 0.23 0
At=0.0025 | 73E° | 230 | 0.2 0 | 0.23 0

B We want solve the equation:
B p =1 (green) p =3 (blue). Left At =0.001 . Right At = 0.005.

t=0.1
T T T

Op — 8X><D(P) =0

t=0.1
T T T

‘0.0 05 1.0 1.5 20 25 3.0 3.5 4.0
X

E. Franck
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R R R R R R RRERRERERERREEE—SS————————
Numerical results for diffusion equation

B Heat equation. Scheme with e = At and very high order SL + fine grid.

y=3 y=1 y=2
Error order | Error | order | Error | order
At = 0.04 1.87E2 B 1.43 2 1.43 5
At =0.02 6.57E~3 | 1.50 | 0.2 0 0.23 0
At =0.01 1.85E 3| 1.82 | 0.2 0 0.23 0
At = 0.005 36E~% | 236 | 0.2 0 0.23 0
At=0.0025 | 73E° | 230 | 0.2 0 |[023 0

B We want solve the equation:  9¢p = Ox(A(x)0xp).

AN Z7AN

B |eft: A(x) =1. Right: %(1 — erf(5(x — xp)). Black : initial data. Yellow: final datar-\

’ 27/28
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==
Conclusion

Time scheme for BGK

High order Method: Composition + Strang Splitting (or modified version) +
Crank-Nicolson scheme for relaxation.

Default: scheme not accurate (compare to Jin-Filbet/Pareschi-Gimarco schemes) far
to the equilibrium.

Advantage: independent transport equation. Useful with implicit transport solver.

Implicit Kinetic relaxation schemes

We can approximate hyperbolic/parabolic PdE by small BGK models ( Elliptic also).
Using this, we propose high-order scheme with large time step algorithm (SL method).
This algorithm is very competitive against implicit scheme (no matrices, no solvers).

| A

Future works

Validate nonlinear/anisotropic at the order 2 and try to reduce the constant error.
Study the scheme for elliptic problems.

1D scheme for low-mach. Extension in 2D /3D and improve stability.

Application to MHD and anisotropic diffusion for plasma.

Continue the study for the BC.

Propose artificial viscosity method for the total scheme ( relaxation and SL steps) to
avoid oscillations.

")
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