Implicit kinetic relaxation schemes. Application to the plasma physic

D. Coulette⁵, <u>E. Franck</u>¹², P. Helluy¹², C. Courtes², L. Navoret², L. Mendoza², F. Drui²

ABPDE II, Lille, August 2018

¹Inria Nancy Grand Est, France ²IRMA, Strasbourg university, France ³Wurzburg university, Germany ⁵ENS Lyon, France

Outline

Physical and mathematical context

Approximate BGK model for hyperbolic systems

Approximate BGK models for parabolic systems

Physical and mathematical context

28

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

Deuterium Helium

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

- Plasma turbulence (center of the Tokamak).
- Plasma instabilities (edges of the Tokamak).
- Necessary to simulate these phenomena and test some controls in realistic geometries of Tokamak.

Models

Model for the center: Gyro-kinetic model

$$\partial_t (B_{\parallel} f) + \nabla \cdot \left(\frac{d\mathbf{x}_g}{dt} f\right) + \partial_{v_{\parallel}} \left(B_{\parallel} \frac{dv_{\parallel}}{dt} f\right) = 0$$
$$-\nabla \cdot_{\perp} \left(\rho_e(\mathbf{x}) \nabla_{\perp} \phi\right) = \rho(\mathbf{x}) - 1 + S(\phi)$$

- The guiding center motion $\frac{d\mathbf{x}_g}{dt}$ and $\frac{d\mathbf{v}_{\parallel}}{dt}$ depend of \mathbf{B}_{\parallel} and $\nabla \phi$) and ρ is the density of the gyro-distribution f.
- Other models: Vlasov-Maxwell or Poisson.
- Kinetic models coupled with elliptic model.

Model for the edge: Resistive MHD

$$\begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0, \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \rho = (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nu \nabla \cdot \boldsymbol{\Pi} \\ \partial_t p + \nabla \cdot (\boldsymbol{p} \boldsymbol{u}) + (\gamma - 1) p \nabla \cdot \boldsymbol{u} = \nabla \cdot ((\kappa \boldsymbol{B} \otimes \boldsymbol{B} + \varepsilon \boldsymbol{l}_d) \nabla T) + \eta \mid \nabla \times \boldsymbol{B} \mid^2 + \nu \boldsymbol{\Pi} : \nabla \boldsymbol{u} \\ \partial_t \boldsymbol{B} - \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) = \eta \nabla \times (\nabla \times \boldsymbol{B}) \\ \cdot \nabla \cdot \boldsymbol{B} = 0 \end{array}$$

- Scaling: $\nu, \eta \ll 1$ and $\kappa \mid \boldsymbol{B} \mid^2 \gg 1 \gg \varepsilon$.
- Other models: Reduced incompressible MHD model or Extended MHD.
- Hyperbolic model coupled with parabolic model.

Geometries and times schemes

Geometry

- 3D geometry: Torus with a non circular section.
- Poloidal geometry: aligned with the magnetic surfaces of the equilibrium.
- Non structured grids and singularities.

Time schemes for kinetic model

- Vlasov: large kinetic velocities.
- **Vlasov**: large poloïdal velocities due to the electric field variation.
- Characteristic time larger that time associated to fast velocities. We need CFL-free schemes.
- **Turbulence**: We need high-order scheme and fine grids.

Time schemes for MHD model

- Anisotropic diffusion: We need CFL-free schemes.
- Perp magneto-acoustic waves: larger than characteristic velocity. Needs CFL-free schemes.
- Usual schemes: Implicit high-order schemes. Very hard to invert the nonlinear problem.

Kinetic model and SL schemes

Semi Lagrangian scheme

- One of the main scheme to treat transport and kinetic equations.
- Idea: use the characteristic method.
- Example: Backward SL

$$\partial_t f + a \partial_x f = 0$$

Aim: compute at the mesh point x_i :

$$f(t + \Delta t, x_j)$$

□ Solution:

$$f(t + \Delta t, x_j) = f(t, x_j - a\Delta t)$$

- $\Box x_n = x_j a\Delta t$ is not a mesh point.
- □ Using $f(t, x_i)$ we interpolate the function at x_n .

Different type of SL: Classical SL (punctual values), Conservative SL (Average cell values), DG/CG SL (weak form of SL scheme).

Advantages/drawbacks

- Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
- Drawbacks: BC and Gibbs oscillations due to high-order methods.
- Interesting works: Positive SL (B. Després), Artificial diffusion for SL, limiting.

28

Aim:

Inia

Construct High-Order Solver like SL-Solver (no matrix inversion, no CFL) for the different type of PDE.

Approximate BGK model for hyperbolic systems

Relaxation scheme

We consider the classical Xin-Jin relaxation for a scalar system $\partial_t u + \partial_x F(u) = 0$:

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \lambda^2 \partial_x u = \frac{1}{\varepsilon} (F(u) - v) \end{cases}$$

Limit

 $\hfill\square$ The limit scheme of the relaxation system is

$$\partial_t u + \partial_x F(u) = \varepsilon \partial_x ((\lambda^2 - |\partial F(u)|^2) \partial_x u) + O(\varepsilon^2)$$

□ Stability: the limit system is dissipative if $(\lambda^2 - | \partial F(u) |^2) > 0$.

• We diagonalize the hyperbolic matrix
$$\begin{pmatrix} 0 & 1 \\ \lambda^2 & 0 \end{pmatrix}$$
 to obtain

$$\begin{cases} \partial_t f_- - \lambda \partial_x f_- = \frac{1}{\varepsilon} (f_{eq}^- - f_-) \\ \partial_t f_+ + \lambda \partial_x f_+ = \frac{1}{\varepsilon} (f_{eq}^+ - f_+) \end{cases}$$
• with $u = f_- + f_+$ and $f_{eq}^{\pm} = \frac{u}{2} \pm \frac{F(u)}{2\lambda}$.

First Generalization

- □ Main property: the transport is diagonal (D1Q2 model) which can be easily solved.
- Generalization: one Xin-Jin or D1Q2 model by macroscopic variable.

Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0$$

- Lattice: $W = \{\lambda_1, ..., \lambda_{n_v}\}$ a set of velocities.
- **Mapping matrix**: P a matrix $n_c \times n_v$ $(n_c < n_v)$ such that U = Pf, with $U \in \mathbb{R}^{n_c}$.
- Kinetic relaxation system:

$$\partial_t \boldsymbol{f} + \Lambda \partial_x \boldsymbol{f} = \frac{1}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f})$$

- We define the macroscopic variable by Pf = U.
- Consistence condition (Natalini Aregba [96-98-20], Bouchut [99-03]) :

$$\mathcal{C} \left\{ egin{array}{l} \mathsf{P} \boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{U} \ \mathsf{P} \Lambda \boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{F}(\boldsymbol{U}) \end{array}
ight.$$

In 1D : same property of stability that the classical relaxation method.

Limit of the system:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \varepsilon \partial_x \left(\left(P \Lambda^2 \partial \boldsymbol{f} \boldsymbol{e} \boldsymbol{q} - | \partial \boldsymbol{F}(\boldsymbol{U}) |^2 \right) \partial_x \boldsymbol{U} \right) + O(\varepsilon^2)$$

- Natural extension in 2D/3D.
- General scheme: $[D1Q2]^n$, one D1Q2 by macroscopic equation.

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.
- Main idea: splitting scheme between transport and the relaxation (Dellar [13]).
- Key point: the macroscopic variables are conserved during the relaxation step. Therefore f^{eq}(U) explicit.
- **Scheme**: Theta-scheme for the relaxation and SL (or implicit DG) scheme for the transport.

First order scheme (first order transport)

We define the two operators for each step :

$$T_{\Delta t}: (I_d + \Delta t \Lambda \partial_x I_d) f^{n+1} = f^n$$

$$R_{\Delta t}: \boldsymbol{f}^{n+1} + \theta \frac{\Delta t}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^{n+1}) = \boldsymbol{f}^n - (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^n)$$

Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \frac{\Delta t}{2} \partial_x (P \Lambda^2 \partial_x \boldsymbol{f}) + \left(\frac{(2-\omega)\Delta t}{2\omega}\right) \partial_x (D(\boldsymbol{U})\partial_x \boldsymbol{U}) + O(\Delta t^2)$$

• with
$$\omega = \frac{\Delta t}{\varepsilon + \theta \Delta t}$$
 and $D(\boldsymbol{U}) = (P \Lambda^2 \partial_{\boldsymbol{U}} \boldsymbol{f}^{eq} - |\partial \boldsymbol{F}(\boldsymbol{U})|^2).$

²/28

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.
- Main idea: splitting scheme between transport and the relaxation (Dellar [13]).
- Key point: the macroscopic variables are conserved during the relaxation step. Therefore f^{eq}(U) explicit.
- **Scheme**: Theta-scheme for the relaxation and SL (or implicit DG) scheme for the transport.

First order scheme (exact transport)

We define the two operators for each step :

$$T_{\Delta t}: e^{\Delta t \wedge \partial_x} \boldsymbol{f}^{n+1} = \boldsymbol{f}^n$$

$$\mathsf{R}_{\Delta t}: \boldsymbol{f}^{n+1} + \theta \frac{\Delta t}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}^n) - \boldsymbol{f}^{n+1}) = \boldsymbol{f}^n - (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}^n) - \boldsymbol{f}^n)$$

Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \left(\frac{(2-\omega)\Delta t}{2\omega}\right) \partial_x \left(D(\boldsymbol{U})\partial_x \boldsymbol{U}\right) + O(\Delta t^2)$$

• with $\omega = \frac{\Delta t}{\varepsilon + \theta \Delta t}$ and $D(\boldsymbol{U}) = (P \Lambda^2 \partial_{\boldsymbol{U}} \boldsymbol{f}^{eq} - \partial \boldsymbol{F}(\boldsymbol{U})^2).$

High-Order time schemes

Second-order scheme

- Order of convergence: one for the kinetic variables. one or two ($\omega = 2$ and exact transport) for the macroscopic variables.
- Second order scheme: Strang Splitting + SL scheme

$$\Psi(\Delta t) = T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t, \omega = 2) \circ T\left(\frac{\Delta t}{2}\right).$$

High order scheme: composition method

$$M_p(\Delta t) = \Psi(\gamma_1 \Delta t) \circ \Psi(\gamma_2 \Delta t) \circ \dots \circ \Psi(\gamma_s \Delta t)$$

• with $\gamma_i \in [-1, 1]$, we obtain a *p*-order schemes.

Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

CV and new scheme

- All the schemes convergence only with the second order for the kinetic variables.
- Loose of order also for macroscopic variables (see numerical results).
- The 2th order scheme satisfies $\Psi(\Delta t) = \Psi^{-1}(-\Delta t)$ but not $\Psi(\Delta t = 0) \neq I_d$. Correction:

$$\Psi_{ap}(\Delta t) = T\left(\frac{\Delta t}{4}\right) \circ R(\Delta t, \omega = 2) \circ T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t, \omega = 2) \circ T\left(\frac{\Delta t}{4}\right)$$

28

Burgers: convergence results

Model: Burgers equation

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = 0$$

- Spatial discretization: SL-scheme, 2000 cells, degree 11.
- **Test**: $\rho(t = 0, x) = sin(2\pi x)$. $T_f = 0.14$ (before the shock) and no viscosity.
- Scheme: splitting schemes and Suzuki composition + splitting.

	SPL 1,	heta = 1	SPL 1, $\theta = 0.5$		SPL 2, $\theta = 0.5$		Suzuki	
Δt	Error	order	Error	order	Error	order	Error	order
0.005	$2.6E^{-2}$	-	$1.3E^{-3}$	-	$7.6E^{-4}$	-	$4.0E^{-4}$	-
0.0025	$1.4E^{-2}$	0.91	$3.4E^{-4}$	1.90	$1.9E^{-4}$	2.0	$3.3E^{-5}$	3.61
0.00125	$7.1E^{-3}$	0.93	$8.7E^{-5}$	1.96	$4.7E^{-5}$	2.0	$2.4E^{-6}$	3.77
0.000625	$3.7E^{-3}$	0.95	$2.2E^{-5}$	1.99	$1.2E^{-5}$	2.0	$1.6E^{-7}$	3.89

- Scheme: second order splitting scheme.
- Same test after the shock:

Classical result: Strang Splitting + second order/exact scheme for relaxation converge at first order for $\varepsilon \approx 0$. SL solver + Strang splitting.

	CN		Exa	ct	SSP RK	
	Error	Order	Error	Order	Error	Order
$\Delta t = 4.10^{-3}$	$4.8E^{-4}$	-	$2.0E^{-2}$	-	$2.0E^{-2}$	-
$\Delta t = 2.10^{-3}$	$1.2E^{-4}$	2.0	$1.1E^{-2}$	0.86	$1.1E^{-2}$	0.86
$\Delta t = 1.10^{-3}$	$2.9E^{-5}$	2.05	$5.7E^{-3}$	0.95	$5.5E^{-3}$	1.0
$\Delta t = 5.10^{-4}$	$7.4E^{-6}$	1.95	$2.9E^{-3}$	0.97	$2.8E^{-3}$	0.98

- **Conclusion**: we lose one order of cy with exact and SPP-RK solver.
- **Scheme** for $\varepsilon \approx 0^{\circ}$
- For Euler implicit, exact and SSP-RK2 schemes

$$\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{eq}(\boldsymbol{U}^n) + O(\varepsilon)$$

For Crank-Nicolson.

$$f^{n+1} \approx 2f^{eq}(U^n) - f^n + O(\varepsilon)$$

Implicit Euler scheme.
$$\Delta t = 100$$

Conclusion:

- If you begin far to f^{eq} the exact/SPP-RK solvers seems better.
- However, for high-order splitting scheme the over-relaxation (CN) seems important.
- At the limit $\varepsilon = 0$ this scheme is revertible contrary the other.

• We solve the EDO $\partial_t u = \frac{1}{\epsilon} (u_{eq} - u)$.

E

Classical result: Strang Splitting + second order/exact scheme for relaxation converge at first order for $\varepsilon \approx 0$. SL solver + Strang splitting.

	CN		Exa	ct	SSP RK	
	Error	Order	Error	Order	Error	Order
$\Delta t = 4.10^{-3}$	$4.8E^{-4}$	-	$2.0E^{-2}$	-	$2.0E^{-2}$	-
$\Delta t = 2.10^{-3}$	$1.2E^{-4}$	2.0	$1.1E^{-2}$	0.86	$1.1E^{-2}$	0.86
$\Delta t = 1.10^{-3}$	$2.9E^{-5}$	2.05	$5.7E^{-3}$	0.95	$5.5E^{-3}$	1.0
$\Delta t = 5.10^{-4}$	$7.4E^{-6}$	1.95	$2.9E^{-3}$	0.97	$2.8E^{-3}$	0.98

- **Conclusion**: we lose one order of cv with exact and SPP-RK solver.
- Scheme for ε ≈ 0:
- For Euler implicit, exact and SSP-RK2 schemes.

 $\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{eq}(\boldsymbol{U}^n) + O(\varepsilon)$

For Crank-Nicolson.

$$f^{n+1} \approx 2f^{eq}(U^n) - f^n + O(\varepsilon)$$

• We solve the EDO $\partial_t u = \frac{1}{\epsilon}(u_{eq} - u)$.

Exact time scheme. $\Delta t = 100\varepsilon$

Conclusion:

- If you begin far to *f*^{eq} the exact/SPP-RK solvers seems better.
- However, for high-order splitting scheme the over-relaxation (CN) seems important.
- At the limit $\varepsilon = 0$ this scheme is revertible contrary the other.

/ 28

Classical result: Strang Splitting + second order/exact scheme for relaxation converge at first order for $\varepsilon \approx 0$. SL solver + Strang splitting.

	CN		Exa	ct	SSP RK	
	Error	Order	Error	Order	Error	Order
$\Delta t = 4.10^{-3}$	$4.8E^{-4}$	-	$2.0E^{-2}$	-	$2.0E^{-2}$	-
$\Delta t = 2.10^{-3}$	$1.2E^{-4}$	2.0	$1.1E^{-2}$	0.86	$1.1E^{-2}$	0.86
$\Delta t = 1.10^{-3}$	$2.9E^{-5}$	2.05	$5.7E^{-3}$	0.95	$5.5E^{-3}$	1.0
$\Delta t = 5.10^{-4}$	$7.4E^{-6}$	1.95	$2.9E^{-3}$	0.97	$2.8E^{-3}$	0.98

- **Conclusion**: we lose one order of cv with exact and SPP-RK solver.
- **Scheme** for $\varepsilon \approx 0$:
- For Euler implicit, exact and SSP-RK2 schemes.

 $\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{eq}(\boldsymbol{U}^n) + O(\varepsilon)$

For Crank-Nicolson.

 $\boldsymbol{f}^{n+1} \approx 2\boldsymbol{f}^{eq}(\boldsymbol{U}^n) - \boldsymbol{f}^n + O(\varepsilon)$

SSP RK2 scheme. $\Delta t = 100\varepsilon$

Conclusion:

- If you begin far to f^{eq} the exact/SPP-RK solvers seems better.
- However, for high-order splitting scheme the over-relaxation (CN) seems important.
- At the limit $\varepsilon = 0$ this scheme is revertible contrary the other.

/ 28

Classical result: Strang Splitting + second order/exact scheme for relaxation converge at first order for $\varepsilon \approx 0$. SL solver + Strang splitting.

	CN		Exa	ct	SSP RK	
	Error	Order	Error	Order	Error	Order
$\Delta t = 4.10^{-3}$	$4.8E^{-4}$	-	$2.0E^{-2}$	-	$2.0E^{-2}$	-
$\Delta t = 2.10^{-3}$	$1.2E^{-4}$	2.0	$1.1E^{-2}$	0.86	$1.1E^{-2}$	0.86
$\Delta t = 1.10^{-3}$	$2.9E^{-5}$	2.05	$5.7E^{-3}$	0.95	$5.5E^{-3}$	1.0
$\Delta t = 5.10^{-4}$	$7.4E^{-6}$	1.95	$2.9E^{-3}$	0.97	$2.8E^{-3}$	0.98

- **Conclusion**: we lose one order of cv with exact and SPP-RK solver.
- **Scheme** for $\varepsilon \approx 0$:
- For Euler implicit, exact and SSP-RK2 schemes.

 $\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{eq}(\boldsymbol{U}^n) + O(\varepsilon)$

For Crank-Nicolson.

 $\boldsymbol{f}^{n+1} \approx 2\boldsymbol{f}^{eq}(\boldsymbol{U}^n) - \boldsymbol{f}^n + O(\varepsilon)$

Crank-Nicolson scheme. $\Delta t = 100\varepsilon$

Conclusion:

- If you begin far to f^{eq} the exact/SPP-RK solvers seems better.
- However, for high-order splitting scheme the over-relaxation (CN) seems important.
- At the limit $\varepsilon = 0$ this scheme is revertible contrary the other.

Convergence

- Equation: Euler isothermal
- Model [D1Q2]² High-order space scheme. Comparison of the time scheme.

Test case: smooth solution. $\Delta t = \frac{\beta \Delta x}{\lambda}$ with $\beta = 50$

With Strang splitting: only order 2 for f.

Loss of convergence for macroscopic variables for Kahan-li + Strang splitting.

28

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Inría

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

Velocity

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D2 Q4)^n$. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- **Test case** : Rayleigh-Taylor instability.

2D case in annulus

3D case in cylinder

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- Test case : Rayleigh-Taylor instability.

2D case in annulus

2D cut of the 3D case

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Limit of the method

Limitation

□ High-order extension allows to correct the main default of relaxation: large error.

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \sigma \Delta t \partial_x ((\lambda^2 \boldsymbol{I}_d - |\partial \boldsymbol{F}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + O(\Delta t^2 \lambda^3)$$

- □ In two situations the High-order extension is not sufficient:
 - For discontinuous solutions like shocks.
 - For strongly multi-scale problem like low-Mach problem.
- Euler equation: Sod problem.
- Second order time scheme + SL scheme:

28

Limit of the method

Limitation

□ High-order extension allows to correct the main default of relaxation: large error.

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \sigma \Delta t \partial_x ((\lambda^2 \boldsymbol{I}_d - |\partial \boldsymbol{F}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + O(\Delta t^2 \lambda^3)$$

□ In two situations the High-order extension is not sufficient:

For discontinuous solutions like shocks.

For strongly multi-scale problem like low-Mach problem.

Euler equation: smooth contact (u =cts, p=cts).

First/Second order time scheme + SL scheme. $T_f = \frac{2}{M}$ and 100 time step.

Conclusion: First order method too much dissipative for low Mach flow (dissipation with acoustic coefficient).

Limit of the method

Limitation

□ High-order extension allows to correct the main default of relaxation: large error.

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \sigma \Delta t \partial_x ((\lambda^2 \boldsymbol{I}_d - |\partial \boldsymbol{F}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + O(\Delta t^2 \lambda^3)$$

In two situations the High-order extension is not sufficient:

For discontinuous solutions like shocks.

For strongly multi-scale problem like low-Mach problem.

Euler equation: smooth contact (u =cts, p=cts).

First/Second order time scheme + SL scheme. $T_f = \frac{2}{M}$ and 100 time step.

 Conclusion: Second order method too much dispersive for low Mach flow (dispersion with acoustic coefficient).

28

D1Q3 models and low Mach limit I

- Default of $[D1Q2]^n$ model: diffusion/dispersion homogenous to larger speed.
- Aim: reduce this error for the slow part of the waves. Idea: introduce slow or null velocity.

$[D1Q3]^N$ model

□ Velocity set
$$V = [\lambda_{-}, 0, \lambda_{+}]$$
 and

$$\begin{cases}
\mathbf{f}_{-}^{eq}(\mathbf{U}) = \frac{1}{\lambda_{-}}\mathbf{F}^{-}(\mathbf{U}) \\
\mathbf{f}_{0}^{eq}(\mathbf{U}) = \left(\mathbf{U} - \left(\frac{\mathbf{F}^{+}(\mathbf{U})}{\lambda_{+}} + \frac{\mathbf{F}^{-}(\mathbf{U})}{\lambda_{-}}\right)\right) \\
\mathbf{f}_{+}^{eq}(\mathbf{U}) = \frac{1}{\lambda_{+}}\mathbf{F}^{+}(\mathbf{U})
\end{cases}$$

 $\Box \ \mathbf{F}(\mathbf{U}) = \mathbf{F}^+(\mathbf{U}) + \mathbf{F}^-(\mathbf{U}) \text{ the "positive" and "negative" flux.}$

Example: Burgers

$$\begin{split} F^{-}(\rho) &= \frac{1}{2} \left(F(\rho) + \frac{\alpha}{\lambda} \int^{\rho} (\partial F(u))^{2} \right) \quad F^{+}(\rho) = \frac{1}{2} \left(F(\rho) + \frac{\alpha}{\lambda} \int^{\rho} (\partial F(u))^{2} \right) \\ \text{f } \alpha &= \frac{\lambda}{|\rho|} \text{ we obtain} \\ \partial_{t}\rho + \partial_{x} \left(\frac{\rho^{2}}{2} \right) = \sigma \Delta t \partial_{x} \left(\left(\mid \rho \mid \lambda - \rho^{2} \right) \partial_{x} \rho \right) \end{split}$$

D1Q3 models and low Mach limit I

- Default of [D1Q2]ⁿ model: diffusion/dispersion homogenous to larger speed.
- Aim: reduce this error for the slow part of the waves. Idea: introduce slow or null velocity.

$[D1Q3]^N$ model

□ Velocity set
$$V = [\lambda_-, 0, \lambda_+]$$
 and

$$\begin{cases}
f_-^{eq}(U) = \frac{1}{\lambda_-}F^-(U) \\
f_0^{eq}(U) = \left(U - \left(\frac{F^+(U)}{\lambda_+} + \frac{F^-(U)}{\lambda_-}\right)\right) \\
f_+^{eq}(U) = \frac{1}{\lambda_+}F^+(U)
\end{cases}$$
□ $F(U) = F^+(U) + F^-(U)$ the "positive" and "negative" flux.

Example: Burgers

$$F^{-}(\rho) = \frac{1}{2} \left(F(\rho) + \frac{\alpha}{\lambda} \int^{\rho} (\partial F(u))^{2} \right) \quad F^{+}(\rho) = \frac{1}{2} \left(F(\rho) + \frac{\alpha}{\lambda} \int^{\rho} (\partial F(u))^{2} \right)$$

If $\alpha = 1$ we obtain

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = O(\Delta t^2)$$

D1Q3 models and low Mach limit II

Rarefaction wave. First order scheme in time.

- Left/right $\Delta t = 0.002/0.01$. D1Q2 (yellow), $\alpha = \frac{\lambda}{|\rho|}$, 1, 2 (blue, green, violet).
- Euler equation: Flux splitting for low-mach flow.
- Idea: Splitting of the flux (Zha-Bilgen, Toro-Vasquez):

$$\boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} (\rho)u\\ (\rho u)u + p\\ (E)u + pu \end{pmatrix}$$

Test case: Acoustic wave. SL order 11, 4000 cells.

D1Q2 $\Delta t = 0.005$ (yellow), D1Q3 $\Delta t = 0.005/0.01$ (red, green). Contact captured.

28

D1Q3 models and low Mach limit II

Rarefaction wave. First order scheme in time.

- Left/right $\Delta t = 0.002/0.01$. D1Q2 (yellow), $\alpha = \frac{\lambda}{|\rho|}$, 1, 2 (blue, green, violet).
- Euler equation: Flux splitting for low-mach flow.
- Idea: Lax-Wendroff Flux splitting for convection and AUSM-type for the pressure term.

$$\mathbf{F}^{\pm}(\boldsymbol{U}) = \frac{1}{2} \begin{pmatrix} (\rho u \pm \alpha \frac{u^2}{\lambda} \rho) + p \\ (\rho u^2 \pm \alpha \frac{u^2}{\lambda} q) + p(1 \pm \gamma \frac{u}{\lambda}) \\ (E u \pm \alpha \frac{u^2}{\lambda} E) + (p u \pm \frac{1}{\lambda} \gamma (u^2 + \lambda^2) p) \end{pmatrix}$$

Test case: Acoustic wave. SL order 11, 4000 cells.

D1Q2 $\Delta t = 0.005$ (yellow), D1Q3 $\Delta t = 0.005/0.01$ (red, green). Contact captured

28

BC : preliminary results

Question: What BC for the kinetic variables. How keep the order ?

First result

□ The second order symmetric scheme (Ψ_{ap}) for the equation

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{0} \\ \partial_t \boldsymbol{V} + \lambda^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

is consistant with

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = O(\Delta t^2) \\ \partial_t \boldsymbol{W} - \partial \boldsymbol{F}(\boldsymbol{U}) \partial_x \boldsymbol{W} = O(\Delta t^2) \end{cases}$$

with $\boldsymbol{W} = \boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}$.

Natural BC: in condition for U and W = 0 or ∂_x W = 0.
 Example: F(u) = cu (transport):

Transport of the w (dashed lines) and y = z - f(w) (plain lines) quantities.

E. Franck

BC : preliminary results

Question: What BC for the kinetic variables. How keep the order ?

First result

□ The second order symmetric scheme (Ψ_{ap}) for the equation

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{0} \\ \partial_t \boldsymbol{V} + \lambda^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

is consistant with

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = O(\Delta t^2) \\ \partial_t \boldsymbol{W} - \partial \boldsymbol{F}(\boldsymbol{U}) \partial_x \boldsymbol{W} = O(\Delta t^2) \end{cases}$$

with $\boldsymbol{W} = \boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}$.

Natural BC: in condition for U and W = 0 or ∂_xW = 0.
 Example: F(u) = cu (transport):

28

Initial state and comparison of the final states. Gaussian initial profile, $\Delta x=2^{-7}$

E. Franck

Approximate BGK model for parabolic systems

(nría-

Relaxation scheme for diffusion

• We consider the classical Xin-Jin relaxation for a scalar system $\partial_t u - \nu \partial_{xx} u = 0$:

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \frac{\lambda^2}{\varepsilon^2} \partial_x u = -\frac{1}{\varepsilon^2} v \end{cases}$$

Limit

The limit scheme of the relaxation system is

$$\partial_t u - \partial_x (\lambda^2 \partial_x u) = \varepsilon^2 \partial_{xxxx} u + O(\varepsilon^4)$$

□ **Consistency**: Choosing $\lambda^2 = \nu$ we obtain the initial solution.

• We diagonalize the hyperbolic matrix
$$\begin{pmatrix} 0 & 1 \\ \lambda^2 & 0 \end{pmatrix}$$
 to obtain

$$\begin{cases} \partial_t f_- - \frac{\lambda}{\varepsilon} \partial_x f_- = \frac{1}{\varepsilon^2} (f_{eq}^- - f_-) \\ \partial_t f_+ + \frac{\lambda}{\varepsilon} \partial_x f_+ = \frac{1}{\varepsilon^2} (f_{eq}^+ - f_+) \end{cases}$$
• with $u = f_- + f_+$ and $f_{eq}^{\pm} = \frac{u}{2}$.

First Generalization

□ Main property: the transport is diagonal (D1Q2 model) which can be easily solved.

/28

Generalisation

We consider the equation

$$\partial_t u - \partial_x (D(x, u)\partial_x u) = 0$$

Lattice: $W = \{\lambda_1, ..., \lambda_{n_v}\}$ a set of velocities and $u = \sum_i^{n_v} w_i f_i$

Kinetic relaxation system:

$$\partial_t \mathbf{f} + \frac{\Lambda}{\varepsilon} \partial_x \mathbf{f} = \frac{R(u, x)}{\varepsilon^2} (\mathbf{f}^{eq}(u) - \mathbf{f})$$

Limit system

$$\Box \text{ We assume } \sum_{i} v_i f_i^{eq} = 0, \ \sum_{i} v_i^2 f_i^{eq} = \alpha u$$

$$\Box \sum_{i} (R(\boldsymbol{f}^{eq} - \boldsymbol{f}))_{i} = 0,$$

 \Box and $\sum_{i} v_i (R(f^{eq} - f))_i = -\alpha D(x, u)^{-1} v$. In this case we have an equivalence with

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \frac{\alpha}{\varepsilon^2} \partial_x u = -\frac{\alpha}{D(x, \rho)\varepsilon^2} v\end{cases}$$

which gives at the limit

$$\partial_t u - \partial_x (D(x, u)\partial_x u) = O(\varepsilon^2)$$

Discretization

Consistency analysis

- We consider $\partial_t \rho D \partial_{xx} \rho = 0$.
- We define the two operators for each step:

$$T_{\Delta t}: e^{\Delta t \frac{\Lambda}{\varepsilon} \partial_x} \boldsymbol{f}^{n+1} = \boldsymbol{f}^n$$

$$R_{\Delta t}: \boldsymbol{f}^{n+1} + \theta \frac{\Delta t}{\varepsilon^2} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^{n+1}) = \boldsymbol{f}^n - (1-\theta) \frac{\Delta t}{\varepsilon^2} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^n)$$

Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$\partial_t
ho = \Delta t \partial_x \left(\left(rac{1-\omega}{\omega} + rac{1}{2}
ight) rac{\lambda^2}{arepsilon^2} \partial_x
ho
ight) + O(\Delta t^2)$$

- We don't have convergence for all ε. The splitting scheme is not AP
- Taking $D = \lambda^2$, $\theta = 0.5$ and $\varepsilon = \sqrt{\Delta t}$ we obtain the diffusion equation.
- Question: When you choose like this. Consistence or not ?
- First results (for these choices of parameters):
 - $\hfill\square$ Second order at the numerical level.
 - $\hfill\square$ At the minimum the first order theoretically.

Heat equation. Scheme with $\varepsilon = \Delta t^{\gamma}$ and very high order SL + fine grid.

	$\gamma = \frac{1}{2}$		$\gamma =$	= 1	$\gamma = 2$	
	Error	order	Error	order	Error	order
$\Delta t = 0.04$	$1.87E^{-2}$	-	1.43	-	1.43	-
$\Delta t = 0.02$	$6.57E^{-3}$	1.50	0.2	0	0.23	0
$\Delta t = 0.01$	$1.85E^{-3}$	1.82	0.2	0	0.23	0
$\Delta t = 0.005$	$3.6E^{-4}$	2.36	0.2	0	0.23	0
$\Delta t = 0.0025$	$7.3E^{-5}$	2.30	0.2	0	0.23	0

• We want solve the equation: $\partial_t \rho - \partial_{xx} \rho = 0$

• $\Delta t = 0.1$. The scheme oscillate. We cannot take very large time step.

Heat equation. Scheme with $\varepsilon = \Delta t^{\gamma}$ and very high order SL + fine grid.

	$\gamma = \frac{1}{2}$		$\gamma =$	= 1	$\gamma = 2$	
	Error	order	Error	order	Error	order
$\Delta t = 0.04$	$1.87E^{-2}$	-	1.43	-	1.43	-
$\Delta t = 0.02$	$6.57E^{-3}$	1.50	0.2	0	0.23	0
$\Delta t = 0.01$	$1.85E^{-3}$	1.82	0.2	0	0.23	0
$\Delta t = 0.005$	$3.6E^{-4}$	2.36	0.2	0	0.23	0
$\Delta t = 0.0025$	$7.3E^{-5}$	2.30	0.2	0	0.23	0

We want solve the equation: $\partial_t \rho - \partial_{xx} D(\rho) = 0$

p=1 (green) p=2 (blue). Left $\Delta t=0.001$. Right $\Delta t=0.005$.

28

Heat equation. Scheme with $\varepsilon = \Delta t^{\gamma}$ and very high order SL + fine grid.

	$\gamma = \frac{1}{2}$		$\gamma =$	= 1	$\gamma = 2$	
	Error	order	Error	order	Error	order
$\Delta t = 0.04$	$1.87E^{-2}$	-	1.43	-	1.43	-
$\Delta t = 0.02$	$6.57E^{-3}$	1.50	0.2	0	0.23	0
$\Delta t = 0.01$	$1.85E^{-3}$	1.82	0.2	0	0.23	0
$\Delta t = 0.005$	$3.6E^{-4}$	2.36	0.2	0	0.23	0
$\Delta t = 0.0025$	$7.3E^{-5}$	2.30	0.2	0	0.23	0

We want solve the equation: $\partial_t \rho - \partial_{xx} D(\rho) = 0$

p=1 (green) p=3 (blue). Left $\Delta t=0.001$. Right $\Delta t=0.005$.

28

• Heat equation. Scheme with $\varepsilon = \Delta t^{\gamma}$ and very high order SL + fine grid.

	$\gamma = \frac{1}{2}$		$\gamma =$	$\gamma = 1$		= 2
	Error	order	Error	order	Error	order
$\Delta t = 0.04$	$1.87E^{-2}$	-	1.43	-	1.43	-
$\Delta t = 0.02$	$6.57E^{-3}$	1.50	0.2	0	0.23	0
$\Delta t = 0.01$	$1.85E^{-3}$	1.82	0.2	0	0.23	0
$\Delta t = 0.005$	$3.6E^{-4}$	2.36	0.2	0	0.23	0
$\Delta t = 0.0025$	$7.3E^{-5}$	2.30	0.2	0	0.23	0

We want solve the equation: $\partial_t
ho$

 $\partial_t \rho = \partial_x (A(x)\partial_x \rho).$

Left: A(x) = 1. Right: $\frac{1}{2}(1 - erf(5(x - x_0)))$. Black : initial data. Yellow: final data.

/ 28

Conclusion

Time scheme for BGK

- **High order Method**: Composition + Strang Splitting (or modified version) + Crank-Nicolson scheme for relaxation.
- Default: scheme not accurate (compare to Jin-Filbet/Pareschi-Gimarco schemes) far to the equilibrium.
- Advantage: independent transport equation. Useful with implicit transport solver.

Implicit Kinetic relaxation schemes

- We can approximate hyperbolic/parabolic PdE by small BGK models (Elliptic also).
- Using this, we propose high-order scheme with large time step algorithm (SL method).
- This algorithm is very competitive against implicit scheme (no matrices, no solvers).

Future works

- Validate nonlinear/anisotropic at the order 2 and try to reduce the constant error.
- Study the scheme for elliptic problems.
- ID scheme for low-mach. Extension in 2D/3D and improve stability.
- Application to MHD and anisotropic diffusion for plasma.
- Continue the study for the BC.
- Propose artificial viscosity method for the total scheme (relaxation and SL steps) to avoid oscillations.

