
Implicit kinetic relaxation schemes
Application to the fluid and plasma physics

D. Coulette3, C. Courtes2, F. Drui2, E. Franck12,
P. Helluy12, M. Mendoza2, L. Navoret2, M. Mehrenberger4

NumKin2018 , Garching bei Munchen, Germany

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France
3ENS Lyon, France
4Marseille university, France

E. Franck 1/27

1/27



Outline

Physical and mathematical context

Approximate BGK method

Time schemes

Numerical results

Parabolic systems

E. Franck 2/27

2/27



Physical and mathematical context

E. Franck 3/27

3/27



Models

Model for the center: Gyro-kinetic model ∂t(B‖f ) +∇ ·
(
dxg

dt
f

)
+ ∂v‖

(
B‖

dv‖

dt
f

)
= 0

−∇ ·⊥ (ρe(x)∇⊥φ) = ρ(x)− 1 + S(φ)

� The guiding center motion
dxg
dt

and
dv‖
dt

depend of B‖ and ∇φ and ρ is the density of
the gyro-distribution f .

� Other models: Vlasov-Maxwell or Vlasov-Poisson.
� Kinetic models coupled with elliptic model.

Model for the edge: Resistive MHD
∂tρ+∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇× B)× B + ν∇ ·Π
∂tp +∇ · (pu) + (γ − 1)p∇ · u = ∇ · ((κB ⊗ B + εId )∇T ) + η | ∇ × B |2 +νΠ : ∇u
∂tB −∇× (u × B) = η∇× (∇× B)
∇ · B = 0

� Scaling: ν, η << 1 and κ | B |2>> 1 >> ε.

� Other models: Reduced incompressible MHD model or Extended MHD.
� Hyperbolic model coupled with parabolic model.
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Geometries and times schemes

Geometry
� 3D geometry: Torus with a non circular

section.
� Poloidal geometry: aligned with the

magnetic surfaces of the equilibrium.
� Non structured grids and singularities.

Time schemes for kinetic model
� Vlasov: large kinetic velocities.
� Gyrokinetic: large polöıdal velocities due to the electric field variation.
� Characteristic time larger that time associated to fast velocities. We need CFL-free

schemes.
� Turbulence: We need high-order scheme and fine grids.

Time schemes for MHD model
� Anisotropic diffusion: We need CFL-free schemes.
� Perp magneto-acoustic waves: larger than characteristic velocity. We need CFL-free

schemes.
� Usual schemes: Implicit high-order schemes. Very hard to invert the nonlinear

problem.
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Kinetic model and SL schemes

Semi Lagrangian scheme
� One of the main scheme to treat transport and kinetic equations.
� Idea: use the characteristic method.

� Example: Backward SL
∂t f + a∂x f = 0

� Aim: compute at the mesh point xj :

f (t + ∆t, xj )
� Solution:

f (t + ∆t, xj ) = f (t, xj − a∆t)

� xn = xj − a∆t is not a mesh point.
� Using f (t, xi ) we interpolate the function at xn.

� BSL/FSL: follow the backward characteristic and interpolate/follow the forward
characteristic and distribute on the mesh.

Advantages/drawbacks
� Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
� Drawbacks: BC and Gibbs oscillations due to high-order methods.
� Interesting works: Positive SL (B. Després), Artificial diffusion for SL, limiting.
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Aim

Aim:

Construct High-Order Solver like SL-Solver (no matrix inversion,
no CFL) for the different type of PDE.
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Approximate BGK method
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BGK and approximate BGK theory
� Distribution f (t, x, v) with v ∈ Rd .
� BGK equation:

∂t f + v · ∇f =
1

Kn
(Mρ,u,T (v)− f )

with the moment:

ρ(x) =

∫
M(v)dv , ρu(x) = M(v)vdv

and the T link to the third moment of M(v).

� The equilibrium Maxwellian is:

M(v) =
ρ(x)

(2πkT (x))
d
2

e−
−|u−v|2

2T

� Limit: Kn −→ 0
� Hilbert expansion: f = f0 + Knf1 + O(K2

n )

f0 = M0(v)
So

∂t f0 + v · ∇f0 = (M1(v)− f1)

(
∂tρ0 +∇ · (ρ0u0) =

∫
(M1(v)− f1) = 0

)
� Same principle for the 2 other moments

conserved by BGK. Euler equation.

� Distribution f (t, x, v) with v ∈ {v1..vm}.
� Vector Distribution f (t, x) of size m.

� Discrete BGK equation:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

with the a moment matrix P such that
U = Pf macroscopic variables and Λ
advection matrix.

� The equilibrium f eq(U) depend only of U.

� Limit: ε −→ 0
� Hilbert expansion: f = f 0 + εf 1 + O(ε2)

f 0 = f eq
0 = f eq(U0)

So� Taking Pf eq = U and PΛf eq = F (U). We
obtain the limit

∂tU + ∂xF (U) = 0
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Generic kinetic relaxation scheme

Kinetic relaxation system
� Considered model:

∂tU + ∂xF (U) = 0
� Lattice: W = {λ1, ....,λnv } a set of velocities.
� Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .
� Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

� Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

C
{

Pf eq(U) =U
PΛf eq(U)=F (U)

Chapman-Enskog stability
� Limit of the system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂U f eq(U)− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

� This limit system is stable if the second order operator is dissipative for the entropy.
Partial stability result for the kinetic system.

� Strong-Stability: entropy theory equivalent to the H-theorem. Other criteria for
stability Bouchut [04].
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Example of Approximate BGK model I

� We consider the classical Xin-Jin [95] relaxation for a scalar system ∂tu + ∂xF (u) = 0:{
∂tu + ∂xv = 0

∂tv + λ2∂xu =
1

ε
(F (u)− v)

Limit

� The limit scheme of the relaxation system is

∂tu + ∂xF (u) = ε∂x ((λ2− | ∂F (u) |2)∂xu) + O(ε2)

� Stability: the limit system is dissipative if (λ2− | ∂F (u) |2) > 0.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain


∂t f− − λ∂x f− =

1

ε
(f −eq − f−)

∂t f+ + λ∂x f+ =
1

ε
(f +
eq − f+)

� with u = f− + f+ and f ±eq = u
2
± F (u)

2λ
.

� This system is called the D1Q2 model.

E. Franck 11/27

11/27



Example of Approximate BGK model II

Vectorial [D1Q2]n model
� The idea is simple: use one D1Q2 par macroscopic equation.
� Consider ∂tU + ∂xF (U) = 0. We consider two velocities ±λ. For each Ui we have:

Pf i =
(

1 1
)( f i−

f i+

)
= Ui , PΛf i =

(
1 1

)( λ− 0
0 λ+

)(
f i−
f i+

)
= Fi (U)

� The unique solution is: f eq,i
± = Ui

2
± Fi (U)

2λ
. The limit:

∂tU + ∂xF (U) = ε∂x
((
λ2In− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

Vectorial [D1Q3]n model
� Use one D1Q3 par macroscopic equation (generalization to D1Qq).
� Consider ∂tU + ∂xF (U) = 0. We consider two velocities ±λ and λ0 = 0. For each Ui

we have:

Pf i =
(

1 1 1
) f i−

f i0
f i+

 = Ui , PΛf = Fi (U), PΛ2f = Gi (U)

� We obtain

∂tU + ∂xF (U) = ε∂x
((
∂G(U)− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

� with ∂G(U) ≈| ∂F (U) |2. Difficulty: construct G(U).

� Classic choice: G(U) = F+(U)− F−(U) with F = F+ + F− a flux vector splitting.
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Time schemes
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Time discretization: First order

Space scheme
� Semi-Lagrangian method for advection: high order/exact in space/time.

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.

� Main idea: splitting scheme between transport and implicit relaxation (Dellar [13]).
� Key point: the ∂tU = 0 during the relaxation step. Therefore f eq(U) is explicit.

First order scheme (exact transport )
� We define the two operators for each step :

T∆t : e∆tΛ∂x f n+1 = f n

R∆t : f n+1 +
∆t

ε
(f eq(Un)− f n+1) = f n

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =

(
∆t

2

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq(U)− ∂F (U)2

)
.
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Time scheme: second order
� Classical result: Strang Splitting + exact scheme for relaxation converge at first order

for ε ≈ 0 [Jin96].
� Comparison between different scheme for relaxation (+ Strang splitting):

Exact SSP RK2 CN
Error Order Error Order Error Order

∆t = 4.10−3 2.0E−2 - 2.0E−2 - 4.8E−4 -
∆t = 2.10−3 1.1E−2 0.86 1.1E−2 0.86 1.2E−4 2.0
∆t = 1.10−3 5.7E−3 0.95 5.5E−3 1.0 2.9E−5 2.05
∆t = 5.10−4 2.9E−3 0.97 2.8E−3 0.98 7.4E−6 1.95

� Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

� Schemes for ε ≈ 0:

� For Euler implicit, exact and
SSP-RK2 schemes.

f n+1 ≈ f eq(Un) + O(ε)

� For Crank-Nicolson.

f n+1 ≈ 2f eq(Un)− f n + O(ε)

� We solve the EDO ∂tu = 1
ε

(ueq − u).

� Implicit Euler scheme. ∆t = 100ε

Conclusion:
� Order two only with CN scheme but large dispersive effect far to the equilibrium.
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Time scheme: second order
� Classical result: Strang Splitting + exact scheme for relaxation converge at first order

for ε ≈ 0 [Jin96].
� Comparison between different scheme for relaxation (+ Strang splitting):

Exact SSP RK2 CN
Error Order Error Order Error Order

∆t = 4.10−3 2.0E−2 - 2.0E−2 - 4.8E−4 -
∆t = 2.10−3 1.1E−2 0.86 1.1E−2 0.86 1.2E−4 2.0
∆t = 1.10−3 5.7E−3 0.95 5.5E−3 1.0 2.9E−5 2.05
∆t = 5.10−4 2.9E−3 0.97 2.8E−3 0.98 7.4E−6 1.95

� Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

� Schemes for ε ≈ 0:

� For Euler implicit, exact and
SSP-RK2 schemes.

f n+1 ≈ f eq(Un) + O(ε)

� For Crank-Nicolson.

f n+1 ≈ 2f eq(Un)− f n + O(ε)

� We solve the EDO ∂tu = 1
ε

(ueq−u).

� Exact time scheme. ∆t = 100ε

Conclusion:
� Order two only with CN scheme but large dispersive effect far to the equilibrium.
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for ε ≈ 0 [Jin96].
� Comparison between different scheme for relaxation (+ Strang splitting):

Exact SSP RK2 CN
Error Order Error Order Error Order

∆t = 4.10−3 2.0E−2 - 2.0E−2 - 4.8E−4 -
∆t = 2.10−3 1.1E−2 0.86 1.1E−2 0.86 1.2E−4 2.0
∆t = 1.10−3 5.7E−3 0.95 5.5E−3 1.0 2.9E−5 2.05
∆t = 5.10−4 2.9E−3 0.97 2.8E−3 0.98 7.4E−6 1.95

� Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

� Schemes for ε ≈ 0:

� For Euler implicit, exact and
SSP-RK2 schemes.

f n+1 ≈ f eq(Un) + O(ε)

� For Crank-Nicolson.

f n+1 ≈ 2f eq(Un)− f n + O(ε)

� We solve the EDO ∂tu = 1
ε

(ueq − u).

� SSP RK2 scheme. ∆t = 100ε
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� Order two only with CN scheme but large dispersive effect far to the equilibrium.
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Time scheme: second order
� Classical result: Strang Splitting + exact scheme for relaxation converge at first order

for ε ≈ 0 [Jin96].
� Comparison between different scheme for relaxation (+ Strang splitting):

Exact SSP RK2 CN
Error Order Error Order Error Order

∆t = 4.10−3 2.0E−2 - 2.0E−2 - 4.8E−4 -
∆t = 2.10−3 1.1E−2 0.86 1.1E−2 0.86 1.2E−4 2.0
∆t = 1.10−3 5.7E−3 0.95 5.5E−3 1.0 2.9E−5 2.05
∆t = 5.10−4 2.9E−3 0.97 2.8E−3 0.98 7.4E−6 1.95

� Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

� Schemes for ε ≈ 0:

� For Euler implicit, exact and
SSP-RK2 schemes.

f n+1 ≈ f eq(Un) + O(ε)

� For Crank-Nicolson.

f n+1 ≈ 2f eq(Un)− f n + O(ε)

� We solve the EDO ∂tu = 1
ε

(ueq − u).

� Crank-Nicolson scheme. ∆t = 100ε

Conclusion:
� Order two only with CN scheme but large dispersive effect far to the equilibrium.
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Analysis of the second order scheme

Consistance analysis I
� Making Taylor expansion we can prove that Ψap for the [D1Q2]n is consistant with{

∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with Ui = f i− + f i+, Vi = λ(f i+ − f i−) and W = V − F (U).

Consistance analysis II
� Particular case: Ψap and D1Q2 for ∂tu + ∂x (cu) = 0:

∂t

(
u
w

)
+

(
c∂xu
−c∂xw

)
+

(
(λ2 − c2) 3c

3c(λ2 − c2) −(λ2 − c2)

)
∂xxx

(
u
w

)
︸ ︷︷ ︸

A

= O(∆t3)

with u = f i− + f i+, v = λ(f i+ − f i−) and w = u − cu.

� Chapman-Enskog stability: The previous third order approximation is stable since the
following energy is preserved:

E(t) =

∫ (
(λ2 − c2)u2 + w2

)
� We recover the sub-characteristic condition λ > c.
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High-Order time schemes

High order scheme: composition method
� If Ψ second order time scheme satisfy Ψ(∆t) = Ψ−1(−∆t) and Ψ(0) = Id we can

construct high order extension with

Mp(∆t) = Ψ(γ1∆t) ◦Ψ(γ2∆t) ◦ ..... ◦Ψ(γs∆t)
� with γi ∈ [−1, 1].
� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

Second-order scheme
� For now we have

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t, θ = 0.5) ◦ T

(
∆t

2

)
.

� We have symmetry in time but not Ψ(0) = Id for ε ≈ 0. Indeed

R(∆t = 0, θ = 0.5)f n = 2f eq − f n 6= f n

� However R(0, θ = 0.5) ◦R(0, θ = 0.5) = Id consequently we can propose a new second
order scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R(∆t, θ = 0.5) ◦ T

(
∆t

2

)
◦ R(∆t, θ = 0.5) ◦ T

(
∆t

4

)
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Numerical results
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Burgers: convergence results
� Model: Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Spatial discretization: SL-scheme, 2000 cells, degree 11.

� Test: ρ(t = 0, x) = sin(2πx). Tf = 0.14 (before the shock) and no viscosity.
� Scheme: splitting schemes and Suzuki composition + splitting.

SPL 1, θ = 1 SPL 1, θ = 0.5 SPL 2, θ = 0.5 Suzuki
∆t Error order Error order Error order Error order
0.005 2.6E−2 - 1.3E−3 - 7.6E−4 - 4.0E−4 -
0.0025 1.4E−2 0.91 3.4E−4 1.90 1.9E−4 2.0 3.3E−5 3.61
0.00125 7.1E−3 0.93 8.7E−5 1.96 4.7E−5 2.0 2.4E−6 3.77
0.000625 3.7E−3 0.95 2.2E−5 1.99 1.2E−5 2.0 1.6E−7 3.89

� Scheme: second order
splitting scheme.

� Same test after the shock:

� Comparison for different time step. Violet:
∆t = 0.001 (CFL 5-30), Green: ∆t = 0.005 (CFL
20-120), Blue ∆t = 0.01 (CFL 50-300), Black :
reference.
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Convergence
� Equation: Euler isothermal

� Model [D1Q2]2 High-order space scheme. Comparison of the time scheme.

� Test case: smooth solution. ∆t = β∆x
λ

with β = 50

� With Strang splitting: only order 2 for f .

� Loss of convergence for macroscopic variables for Kahan-li + Strang splitting.
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D1Q3 models and low Mach limit

Limitation

� Drawback of [D1Q2]n model: diffusion/dispersion homogenous to the larger speed.

∂tU + ∂xF (U) = σ∆t∂x ((λ2Id− | ∂F (U) |2)∂xU) + O(∆t2λ3)
� Low-mach limit: contact wave admit an error homogeneous to acoustic speed.

� Euler equation: Flux splitting for low-mach flow.
f eq
− (U) = 1

λ−
F−(U)

f eq
0 (U) =

(
U −

(
F+(U)
λ+

+ F−(U)
λ−

))
f eq

+ (U) = 1
λ+

F+(U)

� Test case: Acoustic wave. SL order 11, 4000 cells.

� D1Q2 ∆t = 0.005 (yellow), D1Q3 ∆t = 0.005/0.01 (red, green). Contact captured.
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D1Q3 models and low Mach limit

Limitation

� Drawback of [D1Q2]n model: diffusion/dispersion homogenous to the larger speed.

∂tU + ∂xF (U) = σ∆t∂x ((λ2Id− | ∂F (U) |2)∂xU) + O(∆t2λ3)
� Low-mach limit: contact wave admit an error homogeneous to acoustic speed.

� Euler equation: Flux splitting for low-mach flow.

F (U) =

 (ρ)u
(ρu)u + p
(E)u + pu

 , F±(U) =
1

2

 (ρu ± α u2

λ
ρ) + p

(ρu2 ± α u2

λ
q) + p(1± γ u

λ
)

(Eu ± α u2

λ
E) +

(
pu ± γ

λ
(u2 + λ2)p

)


� Test case: Acoustic wave. SL order 11, 4000 cells.

� D1Q2 ∆t = 0.005 (yellow), D1Q3 ∆t = 0.005/0.01 (red, green). Contact captured.
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BC : preliminary results
� Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

� The second order symmetric scheme (Ψap) for the following equation (equivalent to
[D1Q2]n kinetic model): {

∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with Ui = f i− + f i+, Vi = λ(f i+ − f i−) and W = F (U)− V .

� Natural BC: entering condition for U and W = 0 or ∂xW = 0.

� Example I: F (u) = cu (transport):

0 0.5 1
0

0.5

1

x

w
,y

0 0.5 1
x

t=0.02
t=0.09
t=0.17
t=0.25
t=0.33

� Transport of the u (dashed lines) and w = v − f (u) (plain lines) quantities.

E. Franck 22/27

22/27



BC : preliminary results
� Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

� The second order symmetric scheme (Ψap) for the following equation (equivalent to
[D1Q2]n kinetic model): {

∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with Ui = f i− + f i+, Vi = λ(f i+ − f i−) and W = F (U)− V .

� Natural BC: entering condition for U and W = 0 or ∂xW = 0.

� Example I: F (u) = cu (transport):

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

x

v
,w

v(t = 0, x)

v(t = tmax, x)
”Exact” strategy
”Dirichlet” strategy
”Neumann” strategy

2−72−82−92−102−112−12

10−5

10−4

10−3

10−2

10−1

∆x

e
n ∆
x

1st order

2nd order
Exact
Dirichlet
Neumann

� Initial state and comparison of the final states. Gaussian initial profile, ∆x = 2−7.

E. Franck 22/27

22/27



BC : preliminary results
� Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

� The second order symmetric scheme (Ψap) for the following equation (equivalent to
[D1Q2]n kinetic model): {

∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with Ui = f i− + f i+, Vi = λ(f i+ − f i−) and W = F (U)− V .

� Natural BC: entering condition for U and W = 0 or ∂xW = 0.
� Example II: Barotropic Euler equation (supersonic):

� Left: ρ and wρ, Right: convergence result.
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Parabolic systems
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Relaxation scheme for diffusion
� We consider the classical Xin-Jin relaxation for a scalar system ∂tu − ν∂xxu = 0: ∂tu + ∂xv = 0

∂tv +
λ2

ε2
∂xu = −

1

ε2
v

Limit

� The limit scheme of the relaxation system is

∂tu − ∂x (λ2∂xu) = ε2∂xxxxu + O(ε4)

� Consistency: Choosing λ2 = ν we obtain the initial solution.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain


∂t f− −

λ

ε
∂x f− =

1

ε2
(f −eq (u)− f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq (u)− f+)

� with u = f− + f+ and feq(u)± = u
2

.

� Many schemes for this limit. Hyperbolic case: Jin-Levermore [96], Gosse-Toscani [00]
etc. Kinetic case: Lemou-Cresetto and al [09-14-17], Pareschi-Dimarco [07-10-14] etc.
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Discretization

Consistency analysis
� We consider ∂tρ− ν∂xxρ = 0.

� We define the two operators for each step:

T∆t : e∆t Λ
ε
∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε2
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε2
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tρ = ∆t∂x

((
1− ω
ω

+
1

2

)
λ2

ε2
∂xρ

)
+ O(∆t2)

� We don’t have convergence for all ε. The splitting scheme is not AP

� Taking ν = λ2, θ = 0.5 and ε =
√

∆t we obtain the diffusion equation.
� Question: When you choose like this. Consistence or not ?

� First results (for these choices of parameters):

� Second order at the numerical level.
� At the minimum the first order theoretically.
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Numerical results for diffusion equation
� Heat equation. Scheme with ε = ∆tγ and very high order SL + fine grid.

γ = 1
2

γ = 1 γ = 2
Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -
∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0

� ∆t = 0.1. The scheme oscillate. We cannot
take very large time step. Generalization

� With the general model

∂t f + Λ∂x f =
R(x , ρ)

ε
(f eq(ρ)− f )

� we can approximate the equation:

∂tρ− ∂x (D(x , ρ)∂xρ) = 0

� Convergence: CV can be at the
order 1.
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Conclusion

Time scheme for BGK
� High order Method: Composition + Strang Splitting (or modified version) +

Crank-Nicolson scheme for relaxation.
� Default: scheme not accurate far from the equilibrium and dispersive.
� Advantage: independent transport equation. Useful with an implicit transport solver.

Implicit Kinetic relaxation schemes
� We can approximate hyperbolic/parabolic PDE by small BGK models.
� Using this, we propose high-order scheme with large time step algorithm (SL method).

� This algorithm is very competitive against implicit schemes (no matrices, no solvers).

Future works
� Improve and study stability of low-Mach scheme in 1D
� Extension in 2D/3D for Low-Mach Euler/NS/MHD equations.
� Different approach/similar idea: Semi implicit Relaxation for NS and MHD.
� Study the scheme for elliptic problems and anisotropic diffusion.
� Propose artificial viscosity method for the total scheme (relaxation and SL steps) to

avoid the oscillations.
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