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Physical and mathematical context

E. Franck

‘3/27



Models
Model for the center: Gyro-kinetic model

X dv
O(B)f)+ V- %f) + 0y, (Bud—!f> -0
=V 1 (pe(x)V L) = p(x) — 1+ S(¢)

d
B The guiding center motion %g and % depend of B|| and V¢ and p is the density of
the gyro-distribution f.

B Other models: Vlasov-Maxwell or Vlasov-Poisson.
B Kinetic models coupled with elliptic model.

| A\

Model for the edge: Resistive MHD

Otp+ V- (pu) =0,

pOtu+ pu-Vu+Vp=(VXxB)xB+vV- I

p+V (pu)+(y—1)pV -u=V-((kBRB+¢cly)VT)+n|V xB|*+vM:Vu
0tB —V x (ux B)=nV x (V x B)

V-B=0

B Scaling: v,n<<land k| B [?>>1>>¢.

B Other models: Reduced incompressible MHD model or Extended MHD.
B Hyperbolic model coupled with parabolic model. -\
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Geometries and times schemes

00y
B 3D geometry: Torus with a non circular “
section.

B Poloidal geometry: aligned with the
magnetic surfaces of the equilibrium.
B Non structured grids and singularities.

i

Time schemes for kinetic model

B Vilasov: large kinetic velocities.

B Gyrokinetic: large poloidal velocities due to the electric field variation.

B Characteristic time larger that time associated to fast velocities. We need CFL-free
schemes.

B Turbulence: We need high-order scheme and fine grids.
.

Time schemes for MHD model

B Anisotropic diffusion: We need CFL-free schemes.
B Perp magneto-acoustic waves: larger than characteristic velocity. We need CFL-free
schemes.

B Usual schemes: Implicit high-order schemes. Very hard to invert the nonlinear

problem. g -\
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Kinetic model and SL schemes

Semi Lagrangian scheme

B One of the main scheme to treat transport and kinetic equations.
B |dea: use the characteristic method.

B Example: Backward SL

Oif + adkf =0
U Aim: compute at the mesh point x;: .
f(t+ Atvxj) (n+1) At
0 Solution:
f(t+ At, x;) = f(t, x; — alt)
nAt _
U xp = x; — alt is not a mesh point. P T :
O Using f(t, x;) we interpolate the function at xp.

B BSL/FSL: follow the backward characteristic and interpolate/follow the forward
characteristic and distribute on the mesh.

Advantages/drawbacks

B Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
B Drawbacks: BC and Gibbs oscillations due to high-order methods.

B [Interesting works: Positive SL (B. Després), Artificial diffusion for SL, limiting.
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Aim

Construct High-Order Solver like SL-Solver (no matrix inversion,
no CFL) for the different type of PDE.

@
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Approximate BGK method
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BGK and approximate BGK theory

B Distribution f(t,x, v) with v € RA.
B BGK equation:

1 B Distribution f(t,x, v) with v € {vi..vpn}.
Of +v-Vf= V(MP,U,T(V) —f) B Vector Distribution f(t,x) of size m.
with the moment: " B Discrete BGK equation:

p(x) = /M(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).
B The equilibrium Maxwellian is:
—Ju—v|?
M(v) = 7p(x) 7] e ‘ZT l
(2wkT(x))2
B Limit: K, — 0
B Hilbert expansion: f = fy + K,f1 + O(K,%)
fo = Mo(v)

Otfo + v - Viy = (Mi(v) — f)

So

(-
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BGK and approximate BGK theory

B Distribution f(t,x, v) with v € RY.
B BGK equation:
Oif +v-VFf = i(Mp’uv-,—(v) —f) B Distribution f(t,x, v) with v € {vi..vpn}.
Kn B Vector Distribution f(t, x) of size m.
with the moment: B Discrete BGK equation:
p(x) = /M(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).
B The equilibrium Maxwellian is:
—Ju—v|?
p(x) e lu—v|
(2mkT(x))2
B Limit: K, — 0
B Hilbert expansion: f = fy + K,f1 + O(K,?)
fo = Mo(v)

M(v) =

So

OtMy +v-VMy = (Ml(v) — fl)
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BGK and approximate BGK theory

B Distribution f(t,x, v) with v € RY.
B BGK equation:

1
Of +v -Vf=—(Myu1(v)—"1) B Distribution f(t,x, v) with v € {vi..vn}.
Kn B Vector Distribution f(t, x) of size m.

with the moment: . .
B Discrete BGK equation:

p(x) = /M(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).
B The equilibrium Maxwellian is:
—Ju—v|?
p(x) e lu—v|
(2mkT(x))2
B Limit: K, — 0
B Hilbert expansion: f = fy + K,f1 + O(K,?)
fo = Mo(v)

M(v) =

So

/(atMo + v VM = (My(v) — 1))
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BGK and approximate BGK theory

B Distribution f(t,x, v) with v € R9,
B BGK equation:
1 B Distribution f(t,x, v) with v € {vi..vpn}.
Of +v-VFf= Z(MP'U'T(V) —f) B Vector Distribution f(t,x) of size m.

m Dj ion:
with the moment: Discrete BGK equation:

p(x):/l\/l(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).
B The equilibrium Maxwellian is:
—|u—v 2
p(x) I lu—v]
(2mkT(x))2
B Limit: K, — 0
B Hilbert expansion: f = fy + K,fi + O(K?)
fo = Mo(v)

M(v) =

So

(o000 + 9 - o) = [(wv) = ) =0)

B Same principle for the 2 other moments

conserved by BGK. Euler equation. r-\
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BGK and approximate BGK theory
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BGK and approximate BGK theory

Distribution f(t,x, v) with v € R,
BGK equation:
1
Of + v -VFf= Z(MP'U'T(V) —f)

with the moment:
p(x) = /M(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).
The equilibrium Maxwellian is:
p(x)
(2nkT(x))%
Limit: K, — 0
Hilbert expansion: f = fy + K,fi + O(K,%)
fo = Mo(v)

—Ju—v|?
2T

M(v) =

So

(&po + V- (otto) = /(Ml(v) —f)= o)

Same principle for the 2 other moments
conserved by BGK. Euler equation.

Distribution f(t,x, v) with v € {vi..vih}.
Vector Distribution f(t,x) of size m.

Discrete BGK equation:
1
Otf + NOxf = =(F%I(U) — f)
€
with the a moment matrix P such that

U = Pf macroscopic variables and A
advection matrix.

B The equilibrium f9(U) depend only of U.

Limit: ¢ — 0
Hilbert expansion: f = fgo 4 cf1 + O(<?)
fo = 37 = F9(Uo)

So 8tf0+/\6xf0:(f‘1*q—f1)
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BGK and approximate BGK theory

B Distribution f(t,x, v) with v € R,

B Distribution f(t,x, v) with v € {vi..vp}.
B BGK equation: - ( ) {vi..vm}

Vector Distribution f(t, x) of size m.

1 D Lo
Of +v. VFf= V(Mp,u,T(V) —f) Discrete BGK equation:

with the moment: O + Noxf = l(feQ(U) —f)
3
p(x) = /M(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).

B The equilibrium Maxwellian is:

with the a moment matrix P such that
U = Pf macroscopic variables and A
advection matrix.

B The equilibrium f9(U) depend only of U.

M(v) = _ ) =l B Limit: ¢ — 0
(27rkT(x))% B Hilbert expansion: f = fo +cf1 + O(£?)
B Limit: K, — 0 fo = 57 = f*9(Uo)
B Hilbert expansion: f = fy + Knfi + O(K?) So
fy = Mo(V) atfeq(Uo)-i-/\axfeq(Uo):(f;q—fl)

So

(o000 +9 - (o) = [(w0) = ) =0)

B Same principle for the 2 other moments

conserved by BGK. Euler equation. r\
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BGK and approximate BGK theory

B Distribution f(t,x, v) with v € R,

B Distribution f(t,x, v) with v € {vi..vp}.
B BGK equation: - ( ) {vi..vm}

Vector Distribution f(t, x) of size m.

1 D Lo
Of +v. VFf= V(Mp,u,T(V) —f) Discrete BGK equation:

with the moment: O + Noxf = l(feQ(U) —f)
3
p(x) = /M(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).

B The equilibrium Maxwellian is:

with the a moment matrix P such that
U = Pf macroscopic variables and A
advection matrix.

B The equilibrium f9(U) depend only of U.

M(v) = Lde_#ﬁ B Limit: ¢ — 0
(2mkT(x))2 B Hilbert expansion: f = fo +cf1 + O(£?)
B Limit: K, — 0 fo = 57 = f*9(Uo)
B Hilbert expansion: f = fy + Knfi + O(K?) So
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So

(o000 +9 - (o) = [(w0) = ) =0)
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conserved by BGK. Euler equation. r\
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BGK and approximate BGK theory

Distribution f(t, x, v) with v € RY.
BGK equation:

1
otf +v-VFf = V(Mp,u,T(V) —f)
with the moment:

p(x) = /I\/I(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).

The equilibrium Maxwellian is:
p(x)
(2rkT(x))?
Limit: K, — 0
Hilbert expansion: f = fy + K,fi + O(K?2)
fo = Mo(v)

_ —lu—v?
2T

M(v) =

So

(o000 + 9 - (o) = [(wv) = ) =0)

Same principle for the 2 other moments
conserved by BGK. Euler equation.

Distribution f(t,x, v) with v € {vi..vm}.
Vector Distribution f(t, x) of size m.

Discrete BGK equation:
1
Ocf + NOxf = = (F59(U) — )
€
with the a moment matrix P such that

U = Pf macroscopic variables and A
advection matrix.

B The equilibrium f9(U) depend only of U.

Limit: ¢ — 0
Hilbert expansion: f = fo+cf1 + O(c?)
Fo = £7 = F(U)
So
0:(PF3T)) + Ox(PAFY) = P(F7 — f1)
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BGK and approximate BGK theory

Distribution f(t, x, v) with v € RY.
BGK equation:

1
otf +v-VFf = V(Mp,u,T(V) —f)
with the moment:

p(x) = /I\/I(v)dv, pu(x) = M(v)vdv

and the T link to the third moment of M(v).

The equilibrium Maxwellian is:
p(x)
(2rkT(x))?
Limit: K, — 0
Hilbert expansion: f = fy + K,fi + O(K?2)
fo = Mo(v)

_ —lu—v?
2T

M(v) =

So

(o000 + 9 - (o) = [(wv) = ) =0)

Same principle for the 2 other moments
conserved by BGK. Euler equation.

Distribution f(t,x, v) with v € {vi..vm}.
Vector Distribution f(t, x) of size m.

Discrete BGK equation:
1
Ocf + NOxf = = (F59(U) — )
€
with the a moment matrix P such that

U = Pf macroscopic variables and A
advection matrix.

B The equilibrium f9(U) depend only of U.

Limit: ¢ — 0
Hilbert expansion: f = fo+cf1 + O(c?)
Fo = £7 = F(U)
So
0:(PF3T)) + Ox(PAFY) = P(F7 — f1)

Taking Pf®? = U and PAf®7 = F(U). We

8:U + 0xF(U) =0

E. Franck
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Generic kinetic relaxation scheme

Kinetic relaxation system

B Considered model:

8l + 8 F(U) =0
B |attice: W = {\1,...., A\p, } a set of velocities.
B Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".
B Kinetic relaxation system:

1

Otf + NOxf = =(f9(U) — f)

€

B Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

PFI(U) =U
C{ PAFEI(U)=F(U)

Chapman-Enskog stability
B Limit of the system:
B:U + 0 F(U) = €0« ((PN*9yfeI(U)— | OF(U) |?) dxU) + O(£?)

B This limit system is stable if the second order operator is dissipative for the entropy.
Partial stability result for the kinetic system.

B Strong-Stability: entropy theory equivalent to the H-theorem. Other criteria for
stability Bouchut [04].

| \
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Example of Approximate BGK model |

B We consider the classical Xin-Jin [95] relaxation for a scalar system O:u + OxF(u) = 0:

Otu+0xv =0
1

Bev + N20u = —(F(u) — v)
€

0 The limit scheme of the relaxation system is

et + By F(u) = dx (V2= | OF (u) |?)8xu) + O(e?)
O Stability: the limit system is dissipative if (\2— | 9F (u) |?) > 0.

B We diagonalize the hyperbolic matrix ( ;)2 é ) to obtain
1,
Of— — NOxf— = —(fg — =)

Oefy + NOxfy = g(f;7 —f)

B withu=f +f and fif = 4+ 20,

B This system is called the D1Q2 model. /\
\11/27
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Example of Approximate BGK model Il

Vectorial [D1Q2]" model

B The idea is simple: use one D1Q2 par macroscopic equation.
B Consider 9:U + 0xF(U) = 0. We consider two velocities £A. For each U; we have:

Pfl=(1 1)(%):U,~, PAFi = (1 1)(’\0‘ Ai)(££>=ﬁ(u)

B The unique solution is: fiq'i = % + F"2()\U). The limit:

AU + 8 F(U) = dx ((N2Ia— | OF(U) ?) 8xU) + O(?)

Vectorial [D1Q3]" model

B Use one D1Q3 par macroscopic equation (generalization to D1Qq).
B Consider 9:U + 0xF(U) = 0. We consider two velocities =X and Ao = 0. For each U;

we have: fi
PFl=(1 1 1) ( i ) = U, PAf=F(U), PNFf=G(U)
B We obtain fl

BeU + 0.F(U) = <0 ((9G(U)— | 9F(U) [2) V) + O(?)
B with G(U) ~| OF(U) |2. Difficulty: construct G(U).
B (Classic choice: G(U) = F(U) — F~(U) with F = F™ + F~ a flux vector splitting.

12
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Time schemes
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Time discretization: First order

Space scheme

B Semi-Lagrangian method for advection: high order/exact in space/time.

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.

B Main idea: splitting scheme between transport and implicit relaxation (Dellar [13]).
B Key point: the 9;:U = 0 during the relaxation step. Therefore F*I(U) is explicit.

First order scheme (exact transport )

B We define the two operators for each step :
TAt . eAt/\BX fn+1 — fn
n+1 At e n n+1 n
Ray : F"75 + —(F9(U") — ") = F
€
B Final scheme: Ta: o Ra; is consistent with
At
0:U + 0«F(U) = (7) 3% (D(U)d.U) + O(At?)
B with w = B and D(U) = (PA\20yfI(U) — OF (U)?). /'\
14
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Time scheme: second order

B Classical result: Strang Splitting 4 exact scheme for relaxation converge at first order
for £ =~ 0 [Jin96].
B Comparison between different scheme for relaxation (+ Strang splitting):

Exact SSP RK2 CN
Error Order Error Order Error Order
At =4.10"3 | 2.0E—? - 2.0E—2 - 4.8E~* -
At =210"3 | 1.1E~? 0.86 1.1E—? 0.86 1.2E—% 2.0
At=110"3 | 5.7E3 | 0.95 | 5563 1.0 2.9E-° 2.05
At=510"% | 29E3 | 097 | 28E 3| 098 | 74E° | 195

B Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

B Schemes for & ~ 0- B We solve the EDO 9;u = 1 (ueq — u).

B For Euler implicit, exact and
SSP-RK2 schemes.

£~ £ (UM + O(e)

B For Crank-Nicolson.

il = 2F9(UM) — £ 4 O(e) B |mplicit Euler scheme. At = 100e

B Order two only with CN scheme but large dispersive effect far to the equilibrium.

| 65
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Time scheme: second order

B Classical result: Strang Splitting + exact scheme for relaxation converge at first order
for € = 0 [Jin96].

B Comparison between different scheme for relaxation (+ Strang splitting):

Exact SSP RK2 CN
Error Order Error Order Error Order
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B For Euler implicit, exact and
SSP-RK2 schemes. .
£ & £E9(UM) + O(e) i
B For Crank-Nicolson. V-

il = 2F9(U™) — " 4 O(e) B Exact time scheme. At = 100e

B Order two only with CN scheme but large dispersive effect far to the equilibrium.
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Time scheme: second order
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Time scheme: second order
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Analysis of the second order scheme

Consistance analysis |

B Making Taylor expansion we can prove that W,, for the [D1Q2]" is consistant with

U + 8:F(U) = O(At?)
{ W — OF(U)d,W = O(At?)

with Uj = f + fl, Vi = A(fL — f1) and W = V — F(U).

v

Consistance analysis |l

B Particular case: W,p and D1Q2 for d¢u + Ox(cu) = 0:

(2)0( 50 )+ (S ity )am(4) -

A

with u = f + fI, v:/\(fi—fi)and W =u—cu.

B Chapman-Enskog stability: The previous third order approximation is stable since the
following energy is preserved:

E(t) = / (()\2 — )P+ w2)

B \We recover the sub-characteristic condition A > c.

&’L’; -------- E. Franck
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High-Order time schemes

High order scheme: composition method

B |f U second order time scheme satisfy W(At) = W—1(—At) and W(0) = Iy we can
construct high order extension with

Mp(At) = V(y1At) o W(y2At)o..... V(ysAt
m with oy € [1,1), MP(AD = V(180 0 V(1280 0 0 U500

B Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

| A

Second-order scheme

B For now we have
At At
V(At)=T (7) o R(At,0=05)0 T (7> .
B We have symmetry in time but not W(0) = /; for € =~ 0. Indeed

R(At=0,0 = 0.5)F" = 2f — " £ f"

B However R(0,0 = 0.5) o R(0,0 = 0.5) = I4 consequently we can propose a new second

order scheme:

Vop(At) = T (%) o R(AL,0=05)0 T <%) o R(At 0 =05)0 T (%)

éL’; »»»»»»»» E. Franck
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Numerical results
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R R R R RRRRRERERRERERRREEEE==S=————————
Burgers: convergence results

B Model: Burgers equation

B Spatial discretization: SL-scheme, 2000 cells, degree 11.

2
Oep + O (%) =0

B Test: p(t =0, x) = sin(2mx). Tf = 0.14 (before the shock) and no viscosity.

B Scheme: splitting schemes and Suzuki composition + splitting.

SPL1,6=1 SPL1,6=05 SPL2,6=05 Suzuki
At Error order Error order Error order Error order
0.005 2.6E—2 - 13E3 - 7.6E* - 40E—* -
0.0025 1.4E-7 0.91 3.4E—* 1.90 1.9E-* 2.0 33E~° 3.61
0.00125 | 7.1E—3 0.93 8.7E—® 1.96 47E® 2.0 2.4E~°® 3.77
0.000625| 3.7E—3 0.95 22E 1.99 1.2E—° 2.0 1.6E-7 3.89
B Scheme: second order =
splitting scheme.

B Same test after the shock:

//
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Convergence

B Equation: Euler isothermal
B Model [D1Q2]? High-order space scheme. Comparison of the time scheme.
B Test case: smooth solution. At = % with 8 = 50

0.l g——rrry . [P C
0.01 & 1
0.001 |- 001
o 'R
_0.0001 Eo
0001 =
§ le-05 5
< E
5 le-06 Q| b
oy Ei = le-06
1e-07 4 £
le-08 & v le-08 & E
le-09 &
le-100 v v v o1 " s le-10b— v v v i1 . "
10 10
A8 it

——— Suzuki/ Strang splitting
—s— Suzuki/ time-symmetric splitting
—s— Kahan-Li / Strang splitting

—&— Kahan-Li/ time-symmetric splitting

B With Strang splitting: only order 2 for f.
B | oss of convergence for macroscopic variables for Kahan-li 4+ Strang splitting. r-\
20/
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D1Q3 models and low Mach limit

O Drawback of [D1Q2]" model: diffusion/dispersion homogenous to the larger speed.
B:U + 0xF(U) = o Atd((Nlg— | OF(U) |2)8xU) + O(At2\3)

O Low-mach limit: contact wave admit an error homogeneous to acoustic speed.

Euler equation: Flux splitting for low-mach flow.
FEU) = -F(U)
eq _ _(FrU) | F(U)
W) = (- (58 + 50))
fE(U) = KF*(U)

B Test case: Acoustic wave. SL order 11, 4000 cells.

B D1Q2 At =0.005 (yellow), D1Q3 At = 0.005/0.01 (red, green). Contact captured./\
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D1Q3 models and low Mach limit

O Drawback of [D1Q2]" model: diffusion/dispersion homogenous to the larger speed.
B:U + 0xF(U) = 0 Atd((Mlg— | OF(U) |2)8xU) + O(At2N3)

0 Low-mach limit: contact wave admit an error homogeneous to acoustic speed.

B Euler equation: Flux splitting for low-mach flow.

p)u (puLatp)+p
F(U) = ( (pu)u+p > . FEU) = > (pu? £ atoq) + p(1£~4)
(E)u+ pu (Eut a%E) + (pu+ I(v? + X?)p)

B Test case: Acoustic wave. SL order 11, 4000 cells.

B D1Q2 At = 0.005 (yellow), D1Q3 At = 0.005/0.01 (red, green). Contact captured./\
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BC : preliminary results

B Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

O The second order symmetric scheme (W) for the following equation (equivalent to
[D1Q2]" kinetic model):

8:U + 0xF(U) = O(At?)
{ W — F(U)dxW = O(At?)

with Uy = £+ fi, V; = A(fl — f) and W = F(U) — V.

B Natural BC: entering condition for U and W =0 or 0,W = 0.
B Example |: F(u) = cu (transport):

o F
1 “\ —1=0.02
—1=0.09
Zost b . t=0.17
[ WV t=0.25
/ \\ / —1=0.33
0 - f— -
1 0 05 i
X
B Transport of the u (dashed lines) and w = v — f(u) (plain lines) quantities.
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BC : preliminary results

B Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

0 The second order symmetric scheme (W) for the following equation (equivalent to
[D1Q2]" kinetic model):

8:U + 0xF(U) = O(At?)
{ 8:W — OF (U)o, W = O(At?)

with Uy = f1 + £, Vi = M(f{ — f') and W = F(U) — V.

B Natural BC: entering condition for U and W =0 or 9, W = 0.
B Example I: F(u) = cu (transport):

15
—y(t=0,x) |
== v(t = tmax, x) |
14 " "
— "Exact” strategy
= -~ "Dirichlet” strategy N
S "N . &
05 eumann” strategy
0 9
T T T T T T

0 0.2 04 06 08 1 rm zn 2w e 2% 27
x ax

B |nitial state and comparison of the final states. Gaussian initial profile, Ax = 277, /\
2
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BC : preliminary results

B Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

O The second order symmetric scheme (W) for the following equation (equivalent to
[D1Q2]" kinetic model):

8:U + 0xF(U) = O(At?)
{ W — OF (U)o W = O(At?)

with U; = L + fl, Vi = X(f{ — f1) and W = F(U) — V.

.
B Natural BC: entering condition for U and W =0 or W = 0.
B Example Il: Barotropic Euler equation (supersonic):
1.2 T 6
" -
|
115 e 4 —t=0.0 10
s 4 — t=0.005 o
T L1 I £=0.010 El
s ' t=0.015 10
2 =0.020
1.05 10°°
107
1 - —| o{— 28 2 gt 2% g0 g g
ae
-1 -05 0 05 1 -1 05 0 05 1 I . i i el Comprion
z z e S i pcle. Compu
B Left: p and w,, Right: convergence result. /\
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Parabolic systems
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==
Relaxation scheme for diffusion

B We consider the classical Xin-Jin relaxation for a scalar system 0;u — vOxu = 0:

Otu+0Oxv =0
)\2

Orv + —ZBXU =——v
€ €

' The limit scheme of the relaxation system is

Oru — BX()\28X U) = 528)<xxxu + 0(54)

O Consistency: Choosing A2 = v we obtain the initial solution.

. ) to obtain

B We diagonalize the hyperbolic matrix ( ;)2 0

A 1
O — 20.F = S (fir(u) — £)
Ocfy + —Oxfy = ;Q(f;;(”) —f)

B with u=f_ +f and foq(u)* = 4.
B Many schemes for this limit. Hyperbolic case: Jin-Levermore [96], Gosse-Toscani [00]
etc. Kinetic case: Lemou-Cresetto and al [09-14-17], Pareschi-Dimarco [07-10-14] etr\
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Discretization

Consistency analysis

We consider 0tp — vOxxp = 0.

We define the two operators for each step:
A
TAt . eAtEBX fn+1 —fn

¥ Aant 9 L (Fea(U) — £ = £ — (1 - 0) E(Feaqu) —

Final scheme: Tp; o Rm is consistent with

o 2
Bep = Atdy ((17w + %) :\—28)4)) +0(Aa?)

w

We don't have convergence for all . The splitting scheme is not AP

Taking v = A2, = 0.5 and £ = \/At we obtain the diffusion equation.

Question: When you choose like this. Consistence or not ?

First results (for these choices of parameters):

L Second order at the numerical level.
0 At the minimum the first order theoretically.

f)

E. Franck
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Numerical results for diffusion equation

B Heat equation. Scheme with e = At"Y and very high order SL + fine grid.

=3 y=1 y=2
Error order | Error | order | Error | order
At =0.04 1.87E—7? - 1.43 - 1.43 -
At =0.02 6.57E3 1.50 0.2 0 0.23 0
At =0.01 1.85E—3 1.82 0.2 0 0.23 0
At = 0.005 3.6E* 2.36 0.2 0 0.23 0
At = 0.0025 73E7?® 2.30 0.2 0 0.23 0

B At =0.1. The scheme oscillate. We cannot
take very large time step.

t=01

12—
LOp e
08
0.6
04l
02} i

0.0 ; i i i i H
00 05 1.0 15 20 25 3.0 35 40

X

Generalization

B With the general model

OeF + NOF = @ (F9(p) — f)

B we can approximate the equation:
Orp — Ox(D(x, p)Oxp) = 0

B Convergence: CV can be at the

order 1.

E. Franck
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==
Conclusion

Time scheme for BGK

High order Method: Composition + Strang Splitting (or modified version) +
Crank-Nicolson scheme for relaxation.
Default: scheme not accurate far from the equilibrium and dispersive.

B Advantage: independent transport equation. Useful with an implicit transport solver.

Implicit Kinetic relaxation schemes

B We can approximate hyperbolic/parabolic PDE by small BGK models.

B This algorithm is very competitive against implicit schemes (no matrices, no solvers).

Using this, we propose high-order scheme with large time step algorithm (SL method).

| A

Future works

Improve and study stability of low-Mach scheme in 1D
Extension in 2D /3D for Low-Mach Euler/NS/MHD equations.
Different approach/similar idea: Semi implicit Relaxation for NS and MHD.

Study the scheme for elliptic problems and anisotropic diffusion.
Propose artificial viscosity method for the total scheme (relaxation and SL steps) to
avoid the oscillations.
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