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Splitting and nonlinear solver: Full MHD
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Fusion and Tokamak Instabilities

Time scheme in JOREK
� Crank-Nicolson or BD2 scheme time scheme.
� Solver: GMRES + Specific Block-Jacobi

preconditioning.

Advantages/ drawbacks
� Advantages: very efficient in the linear phase.

Accurate time scheme.
� Drawbacks: less accurate in the nonlinear phase.

Huge memory consumption for Jacobian and PC.

Physic-Based preconditioning
� Idea: splitting + parabolization + Jacobian-free

method.
� Drawbacks: Not easy to understand, to modify.

� Aim: time splitting scheme for MHD.
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Model
� Resistive MHD model for Tokamak:

∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇×B)×B + ν∇ ·Π
∂tp +∇ · (pu) + γp∇ · u = ∇ · ((k‖(B ⊗B) + k⊥Id )∇T ) + η(T ) | ∇ ×B |2 +νΠ : ∇u
∂tB −∇× (u ×B) = η(T )∇× (∇×B)
∇ ·B = 0

� with ρ the density, u the velocity , p and T the pressure and temperature, B the
magnetic field, Π = Π(∇u, B) the stress tensor.

� with ν the viscosity, k‖, k⊥ the thermal conductivities and η the resistivity.

Important Properties

� Conservation in time: ∇ ·B = 0 and

d

dt

∫ (
ρ
| u |2

2
+
| B |2

2
+

p

γ− 1

)
= 0

Possible simplification

� ∇ ·Π ≈ ∆u.

� Ohmic (η | ∇ ×B |2) and viscous heating νΠ : ∇u neglected.

E.Franck 5/24

5/24



Two stage Energy conserving Splitting

Idea
Separate the convection diffusion and magneto-acoustic part. Parabolize the
magneto-acoustic part.

� Convection - diffusion step:


∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u = ν∆u
∂tp = ∇ · q + η(T ) | ∇ ×B |2 +νΠ : ∇u
∂tB = η(T )∇× (∇×B)

� Energy balance

∂t

∫ ( | B |2
2

+ ρ
| u |2

2
+

p

γ− 1

)
= 0

� Magneto-Acoustic step:


∂tρ = 0,
ρ∂tu +∇p = (∇×B)×B
∂tp +∇ · (pu) + (γ− 1)p∇ · u = 0
∂tB −∇× (u ×B) = 0
∇ ·B = 0

� Energy balance

∂t

∫ ( | B |2
2

+ ρ
| u |2

2
+

p

γ− 1

)
= 0

� Splitting and Equilibrium: the balance between pressure gradient and Lorentz force is
preserved.
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Three stage Energy conserving Splitting
� Convection - diffusion step:


∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u = ν∆u
∂tp = ∇ · q + η(T ) | ∇ ×B |2 +νΠ : ∇u
∂tB = η(T )∇× (∇×B)

� Energy balance

∂t

∫ ( | B |2
2

+ ρ
| u |2

2
+

p

γ− 1

)
= 0

� Acoustic step:


∂tρ = 0,
ρ∂tu +∇p = 0
∂tp +∇ · (pu) + (γ− 1)p∇ · u = 0
∂tB = 0
∇ ·B = 0

� Energy balance

∂t

∫ ( | B |2
2

+ ρ
| u |2

2
+

p

γ− 1

)
= 0

� Magnetic step:
∂tρ = 0,
ρ∂tu = (∇×B)×B
∂tp = 0
∂tB −∇× (u ×B) = 0
∇ ·B = 0

� Energy balance

∂t

∫ ( | B |2
2

+ ρ
| u |2

2
+

p

γ− 1

)
= 0

� Splitting and Equilibrium: the balance is not preserved.
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Nonlinear solver for convection-diffusion step

� First possibility: classical Newton method.

� Other possibility: less accurate method but simpler to solve.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We consider a Crank- Nicolson scheme to obtain:


ρn+1 + ∆tθ∇ · (ρn+1un+1) = Rρ,
ρnun+1 + ∆tθρn+1un+1 · ∇un+1 − ∆tθν∆un+1 = Ru

pn+1 − ∆tθ∇ · qn+1 − ∆tθη(T n+1) | ∇ ×Bn+1 |2 −∆tθν∇un+1 : ∇un+1 = Rp

Bn+1 − ∆tθη(T n+1)∇× (∇×Bn+1) = RB

� with qn+1 = (k‖(B
n+1 ⊗Bn+1) + k⊥Id )∇T n+1
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Nonlinear solver for convection-diffusion step

� First possibility: classical Newton method.

� Other possibility: less accurate method but simpler to solve.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We write the following picard algorithm:


ρk+1 + ∆tθ∇ · (ρk+1uk+1) = Rρ,

ρnuk+1 + ∆tθρkuk · ∇uk+1 − ∆tθν∆uk+1 = Ru

pk+1 − ∆tθ∇ · qk+1 − ∆tθ∂η(T k )T k+1 | ∇ ×Bk+1 |2 −∆tθν∇uk+1 : ∇uk+1 = Rp

Bk+1 − ∆tθη(T k )∇× (∇×Bk+1) = RB

� with qk+1 = (k‖(B
k+1 ⊗Bk+1) + k⊥Id )∇T k+1

� Algorithm (at each linear step):

� we solve two independent equations on the magnetic and velocity fields.
� Using Bk+1 and uk+1 we compute the two last equations on density and after

pressure.
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Nonlinear solver for magneto acoustic step

� First possibility: classical Newton method. Problem: complicate to couple with
parabolization.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We consider a Crank- Nicolson scheme to obtain:
ρn+1 = 0,
ρnun+1 + ∆tθ∇pn+1 − ∆tθ

(
∇×Bn+1

)
×Bn+1 = Ru

pn+1 + ∆tθ∇ · (pn+1un+1) + ∆tθ(γ− 1)pn+1∇ · un+1 = Rp

Bn+1 − ∆tθ∇×
(
un+1 ×Bn+1

)
= RB
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Nonlinear solver for magneto acoustic step
� First possibility: classical Newton method. Problem: complicate to couple with

parabolization.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We write the following picard algorithm:

ρk+1 = 0,

ρnuk+1 + ∆tθ∇pk+1 − ∆tθ
(
∇×Bk+1

)
×Bk = Ru

pk+1 + ∆tθ∇ · (pkuk+1) + ∆tθ(γ− 1)pk∇ · uk+1 = Rp

Bk+1 − ∆tθ∇×
(
uk+1 ×Bk

)
= RB

� Algorithm (at each linear step):
� We plug the pressure and magnetic field in the velocity equation. We obtain

ρnuk+1− (∆t2θ2) ∇
(
∇ · (pkuk+1) + (γ− 1)pk∇ · uk+1

)
+
(
∇×∇×

(
uk+1 ×Bk

))
×Bk

]
� We solve this equation and after we compute pk+1 and Bk+1 using uk+1 (matrix

vector product).
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Compatible isogeometric analysis
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Compatible space I

� Isogeometric analysis: use the same basis functions to represent the geometry and
physical unknowns.

� B-Splines: functions of arbitrary degree p and regularity between C0 and Cp−1.

� B-Splines: by 1D tensor product. Complex geometries obtained by global mapping.

� Compatible space: DeRham sequence

grad curl div
H1(Ω) −→ H(curl, Ω) −→ H(div , Ω) −→ L2(Ω)

g̃rad ∗ c̃url ∗ d̃iv ∗

H1(P) ←− H(curl,P) ←− H(div ,P) ←− L2(P)

3D Vector fields
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gradh curlh divh
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Sp−1,p,p
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Compatible space I
� Isogeometric analysis: use the same basis functions to represent the geometry and

physical unknowns.

� B-Splines: functions of arbitrary degree p and regularity between C0 and Cp−1.

� B-Splines: by 1D tensor product. Complex geometries obtained by global mapping.

� Compatible space: DeRham sequence

grad rot
H1(Ω) −→ H(curl, Ω) −→ L2(Ω)

g̃rad ∗ r̃ot∗
H1(P) ←− H(curl,P) ←− L2(P)

2D Vector fields 1

curl div
H1(Ω) −→ H(div , Ω) −→ L2(Ω)

c̃url ∗ d̃iv∗

H1(P) ←− H(div ,P) ←− L2(P)

2D Vector fields 2

� We can, as in 3D, construct a Discrete DeRham sequence.
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Compatible space II

� Advantage of Compatible B-Splines space:

� High degree, high regularity.
� Preservation of the properties (3D case here)

divh(Curlh) = 0, Curlh(grad h) = 0

and
Curl ∗h = Curlh, grad ∗h = divh

� Dual properties useful for energy conservation, kernel properties for constraints and
avoid spurious modes.

� Other point: strong form (equation verified at the coefficient level). Example: Explicit
Maxwell. 

En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� We take the B equation, choose E ∈ H(curl) and consequently B ∈ H(div ), multiply
by test function and integrate to obtain

MBn+1
h = MBn

h + ∆tCEn
h

� with M the mass matrix and C the weak curl matrix.
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En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� Property of the space: C = MCurlh therefore we have the following strong form

Bn+1
h = Bn

h + ∆tCurlhEn
h

� Applying divh we obtain divhBn+1
h = 0.
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Compatible space II
� Advantage of Compatible B-Splines space:
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En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� Taking B ∈ H(div ) we don’t have compatibility with the first equation since we have
∇×B. Idea: integrate by part the first equation (weak form)∫

(En+1, C ) =
∫
(En, C ) + ∆t

∫
(Bn,∇×C )

� Taking C ∈ H(curl) we obtain a consistent equation.
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avoid spurious modes.

� Other point: strong form (equation verified at the coefficient level). Example: Explicit
Maxwell. 

En+1 = En + ∆t∇×Bn = 0
Bn+1 = Bn − ∆t∇× En = 0
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� At the matrix level, we obtain

McurlEn+1 = McurlEn + ∆tCurlTh MdivBn

� Taking C ∈ H(curl) we obtain a consistent equation.
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Compatible space III
� Additionally we need the commutative projection.
� The 3D projectors are defined by:

Π̃h
h1 :=

{
Π̃h

h1f = f 0
p ∈ V h

f 0
p (xk ) = xk , ∀xk ∈ Nh

Π̃h
L2 :=

 Π̃h
L2f = f3

p ∈ X h∫
vk

f3
p =

∫
sk

f, ∀vk ∈ Ωh

� with Nh the nodes of the mesh. Ωh the cells of the mesh.

Π̃h
curl :=

 Π̃h
curl f = f1

p ∈ V h
curl∫

ek

f1
p · t =

∫
ek

f · t, ∀ek ∈ Eh
Π̃h

div :=

 Π̃h
div f = f2

p ∈ V h
div∫

fk

f2
p · n =

∫
fk

f · n, ∀fk ∈ Fh

� with Eh the edges of the mesh. Ωh the faces of the mesh.

� Exemple: ρ2 = ∇× (2x(1− x)y (1− y )). Comparison between L2 and commutative
projection in H(div ):
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Compatible space IV
� Numerical example: 2D Maxwell model:

En+1 = En + ∆tCurlBn − µ0J
Bn+1 = Bn − ∆trot(En)
∇ ·Bn+1 = 0,∇ · En+1 = ρ

� with CurlB =

(
∂yB
−∂xB

)
and Rot(E ) = ∂xEy − ∂yEx .

� Property to preserve

∇ · ∂tE = ∂tρ, since ∂tρ +∇ · J = 0.

� Charge conservation for Implicit scheme with 16*16 cells. Order 3

� Left: Compatible space with commutative projection. Right: Compatible space
without commutative projection.
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Three stage Energy conserving Splitting
� Magnetic step:


∂tρ = 0,
ρ∂tu = (∇×B)×B
∂tp = 0
∂tB −∇× (u ×B) = 0
∇ ·B = 0

� Strong conservation of ∇ ·B = 0 ==> Bh ∈ H(div )
� Multiply by v and integrate by part

∂t

∫
(uh, v ) +

∫
(Bh,∇× (v ×Bh)) = 0

� So (uh ×Bh), (ref v ) ∈ H(Curl) ===> uh ∈ H(Curl)
� Commutative projection needed.

� Acoustic step:
∂tρ = 0,
ρ∂tu +∇p = 0
∂tp +∇ · (pu) + (γ− 1)p∇ · u = 0
∂tB = 0
∇ ·B = 0

� uh ∈ H(Curl) ==> p ∈ H1

� Multiply by q and integrate by part

∂t

∫
phq −

∫
(pu,∇q)− (γ− 1)(u,∇(phq)) = 0

� Commutative projection needed.
� Convection - diffusion step:


∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u = 0
∂tp = 0
∂tB = 0

� ρu ∈ H(Div ) ===> ρh ∈ L2.

� We that to u · ∇u = ∇× u × u +∇(u, u) to obtain∫
ρ(∂tu, v ) +

∫
(∇× u × u, v )− 1

2
| u |2 ∇ · (ρv )

� Energy: strong form of ρ equation multiply 1
2 | uh |2

and integrate.
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Splitting and nonlinear solver: reduced MHD 199
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Model
� Resistive reduced MHD 1999 model for Tokamak:

∂tρ + u⊥ · ∇ρ + ρ∇ · u⊥ = ∇ · (D(ψ)∇T )
∂tT + u⊥ · ∇T + (γ− 1)T∇ · u⊥ = ∇ · (K (ψ)∇T )

∇× (ρ̂∂tu⊥) · eφ +∇× (ρ̂u⊥ · ∇u⊥) · eφ + (∇R2 ×∇p) · eφ +B · ∇j = ∇ · (ν∇w )

1

R2
∂tψ +B · ∇u =

η(T )

R2
j

j = ∆∗ψ
w = ∆polu

� with u the electric potential, ψ the poloidal magnetic flux, w the vorticity and j the
toroidal current. ρ̂ = R2ρ.

� Reduced operators:

� B = F0
R eφ + 1

R∇ψ× eφ

� u = u⊥ = −R∇∇u × eφ

� Reduced operators:

� B · ∇Id = − 1
R [ψ, Id ] +

F0
R2 ∂φId

� u⊥ · ∇ = −R [Id , u]

� ∇ · u⊥ = − 1
R [R

2, u] = −2∂Zu

Energy balance

d

dt
E (t) =

d

dt

∫ (
ρ̂
| ∇u |2

2
+
| ∇ψ |2

2R2
+

p

γ− 1

)
≤
∫

η(T )j2 + ν
∫

w2
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Two stage Energy conserving Splitting

Idea
Separate the convection diffusion and magneto-acoustic part. Parabolize the
magneto-acoustic part.

� Convection - diffusion step:

∂tρ = ∇ · (D(ψ)∇T )
∂tT = ∇ · (K (ψ)∇T )
∇× (ρ̂∂tu⊥) · eφ +∇× (ρ̂u⊥ · ∇u⊥) · eφ = ∇ · (ν∇w )
1

R2
∂tψ =

η(T )

R2
j

j = ∆∗ψ
w = ∆polu

� Energy balance

d

dt
E (t) ≤ 0

� Magneto-Acoustic step:

∂tρ + u⊥ · ∇ρ + ρ∇ · u⊥ = 0
∂tT + u⊥ · ∇T + (γ− 1)T∇ · u⊥ = 0
∇× (ρ̂∂tu⊥) · eφ + (∇R2 ×∇p) · eφ +B · ∇j = 0
1

R2
∂tψ +B · ∇u = 0

j = ∆∗ψ
w = ∆polu

� Energy balance

d

dt
E (t) = 0

� Splitting: does not preserved the energy balance. Possible to modify the splitting to
assure the balance.
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Nonlinear solver for convection-diffusion step

� First possibility: classical Newton method.

� Other possibility: less accurate method but simpler to solve.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We consider a Crank- Nicolson scheme to obtain:

ρn+1 − θ∆t∇ · (D(ψn+1)∇ρn+1) = Rρ

T n+1 − θ∆t∇ · (K (ψn+1)∇T n+1) = RT

∇× (ρ̂nun+1
⊥ ) · eφ + θ∆t∇× (ρ̂n+1un+1

⊥ · ∇un+1
⊥ ) · eφ − θ∆t∇ · (ν∇wn+1) = Ru

1

R2
ψn+1 − η(T n+1)

R2
∆∗ψn+1 = Rψ

wn+1 = ∆polu
n+1
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Nonlinear solver for convection-diffusion step

� First possibility: classical Newton method.

� Other possibility: less accurate method but simpler to solve.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We write the following picard algorithm:
ρk+1 − θ∆t∇ · (D(ψk+1)∇T k+1) = Rρ

T k+1 − θ∆t∇ · (K (ψk+1)∇T k+1) = RT

∇× (ρ̂nuk+1
⊥ ) · eφ + θ∆t∇× (ρ̂kuk

⊥ · ∇uk+1
⊥ ) · eφ − θ∆t∇ · (ν∇∆polu

k+1) = Ru

1

R2
ψk+1 − θ∆t

η(T k )

R2
∆∗ψk+1 = Rψ

� Algorithm (at each linear step):

� we solve two independent equations on the poloidal magnetic flux and potential.
� Using ψk+1 and uk+1 we compute the two last equations on density and

temperature.
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Nonlinear solver for magneto acoustic step

� First possibility: classical Newton method. Problem: complicate to couple with
parabolization.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We consider a Crank- Nicolson scheme to obtain:

ρn+1 + θ∆tun+1
⊥ · ∇ρn+1 + θ∆tρn+1∇ · u⊥n+1 = Rρ

T n+1 + θ∆tun+1
⊥ · ∇T n+1 + θ∆t(γ− 1)T n+1∇ · un+1

⊥ = RT

∇× (ρ̂nun+1
⊥ ) · eφ + θ∆t(∇R2 ×∇pn+1) · eφ +Bn+1 · ∇jn+1 = Ru

1

R2
ψn+1 + θ∆tBn+1 · ∇un+1 = Rψ

j = ∆∗ψ
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Nonlinear solver for magneto acoustic step
� First possibility: classical Newton method. Problem: complicate to couple with

parabolization.

Idea
Use a specific Picard nonlinear solver which allows to decouple the equation.

� We write the following picard algorithm:

ρk+1 + θ∆tuk+1
⊥ · ∇ρk + θ∆tρk∇ · uk+1

⊥ = Rρ

T k+1 + θ∆tuk+1
⊥ · ∇ρk + θ∆t(γ− 1)T k∇ · uk+1

⊥ = RT

∇× (ρ̂nuk+1
⊥ ) · eφ + θ∆t(∇R2 ×∇pk+1) · eφ +Bk · ∇∆∗ψk+1 = Ru

1

R2
ψk+1 + θ∆tBk · ∇uk+1 = Rψ

j = ∆∗ψ

� Algorithm (at each linear step):
� We plug the pressure and poloidal flux equations in the potential equation. We

obtain

∇× (ρ̂nuk+1
⊥ ) · eφ − (∆t2θ2)

[
T kR2 ×∇

(
ρk∇ · uk+1

⊥

)
+ ρkR2 ×∇

(
T k∇ · uk+1

⊥

)
+
(
Bk · ∇

(
∆∗Bk · ∇uk+1

)]
� We solve this equation and after we compute pk+1 and ψk+1 using uk+1 (matrix

vector product).
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Numerical results in JOREK I

� Aim: compare growth rates of the splitting/ full scheme for different ∆t.

� Tearing mode. Circular domain. nTor = 3

� Convergence ∆t / growth rates

∆t Full scheme
∆t = 3000 3.77E−4

∆t = 1000 3.45E−4

∆t = 500 3.43E−4

∆t = 250 3.41E−4

∆t = 125 3.41E−4

∆t Splitting scheme
∆t = 1500 1.23E−4

∆t = 1000 1.76E−4

∆t = 500 2.64E−4

∆t = 200 3.24E−4

∆t = 100 3.37E−4

� Conclusion: We obtain similar result with a time step 5 times smaller. The splitting
under estimate the GR and the full over estimate a little bit.

� Comment: test made without picard scheme on the two steps. Picard scheme validate
for the convection step not for the magneto-acoustic step.
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Numerical results in JOREK II
� Aim: compare growth rates of the splitting/ full scheme for different ∆t.
� Inxflow test case. D-Shape geometry. nTor = 3
� Convergence ∆t / growth rates

∆t Full Spl scheme
1 6.1E−2 4.2− 5.8E−2, 4.5− 4.8E−2

0.5 6.1E−2 4.5− 5.5E−2, 5.1− 5.2E−2

0.25 6.1E−2 5.5− 5.7E−2, 5.6− 5.7E−2

0.125 6.1E−2 6.0− 6.1E−2, 6.05− 6.1E−2

� Conclusion: Convergence of the two methods. We obtain similar result with a time
step 5 times smaller. For large time step oscillation of the growth rate.

� Comment: test made without picard scheme on the two steps.

� Left: Growth rates for the splitting scheme with ∆t = 1. Right: Growth rates for the
splitting scheme with ∆t = 0.25
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Default of the splitting: resistivity
� Resistivity: play an important role in the instability growth-rate.

� Resistivity dependency: the resistivity is given by:

η(T ) = η0T
− 5

2

� Strong nonlinear dependency between resistivity and temperature.

main Remark

� Main evolution for T: magneto-acoustic step. The evolution of the temperature is
important in this step.

� Main problem: the resistivity term is in the other step. This splitting can explain the
error on the growth-rate.

� Better result if resistivity is in the magneto -acoustic step but no compatible with
parabolization.

Possible solution

� Keep a part (constant ?) of the resistivity effect in the magneto acoustic part.
Predictor-corrector or other method.

� Iterative splitting. Each step is solver more than one during one time step but simpler
step.
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Conclusion

Full mhd
� Energy preserving Splitting + compatible space allows:

� Preserve energy at the discrete level in ideal case. More stability ?
� Preserve strongly ∇ ·B = 0.
� In each step we solve simple problems ( elliptic or advection diffusion) + matrix

vector product.
� High-order and High-regularity.
� Needs: stabilization for advection and preconditioning for elliptic solvers.

Splitting for Reduced mhd
� Splitting less efficient as full solver but useful.
� Time step divise by around 5 for a similar accuracy.
� Simpler problems to solve at each step.

Following work for reduced MHD
� Picard solver for Magnetic-acoustic step (June).
� Validation of the scheme with Picard solver for each step (July).
� Parabolization for magneto-acoustic step and september (July - September).
� Extension to the model 303 and PeTsc for each sub step.
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