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Physical and mathematical context
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Plasma and models

Plasma
� Plasma: ionized gas (high energies).
� Strong coupling between hydrodynamics and electromagnetic (nuclear fusion,

astrophysics) etc.

Kinetic modeling  ∂t f + v · ∇xf +∇v · (∇φf ) = 0

−∆φ = ρ(x)

� Vlasov-Poisson. Other models: Vlasov-Maxwell or gyrokinetic.
� Kinetic models coupled with elliptic model.

Fluid modeling: MHD
∂tρ+∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = (∇× B)× B + ν∆u
∂tp +∇ · (pu) + (γ − 1)p∇ · u = ∇ · ((κB ⊗ B + εId )∇T )
∂tB −∇× (u × B) = η∇× (∇× B)
∇ · B = 0

� Hyperbolic model coupled with parabolic model.
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Times scales and time schemes

Problem
� In general the plasma dynamic is a strongly multiscale problem.

� Kinetic model:

� Strong oscillations of the electric potential generate very large velocities compare
to the average velocity.

� Fluid model:

� Fast magnetosonic waves ( pressure and magnetic field pertubation) generate very
large velocities compare to the fluid velocity.

� Anisotropic diffusion:

� Very large diffusion in one direction compare to the other.

� Conclusion: for the models we need CFL-free method.
� Implicit schemes: these problem are ill-conditioned.

Aim:

Construct High-Order Solver CFL-free and without matrix
invertion for the different type of PDE.
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Kinetic model and SL schemes

Semi Lagrangian scheme
� One of the main scheme to treat transport and kinetic equations.
� Idea: use the characteristic method.

� Example: Backward SL
∂t f + a∂x f = 0

� Aim: compute at the mesh point xj :

f (t + ∆t, xj )
� Solution:

f (t + ∆t, xj ) = f (t, xj − a∆t)

� xn = xj − a∆t is not a mesh point.
� Using f (t, xi ) we interpolate the function at xn.

� BSL/FSL: follow the backward characteristic and interpolate/follow the forward
characteristic and distribute on the mesh.

� Different type of SL: Classical SL (punctual values), Conservative SL (Average cell
values), DG/CG SL (weak form of SL scheme).

Advantages/drawbacks
� Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
� Drawbacks: BC and Gibbs oscillations due to high-order methods.
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Case I: hyperbolic systems
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Relaxation scheme
� We consider the classical Xin-Jin [95] relaxation for a scalar system ∂tu + ∂xF (u) = 0:{

∂tu + ∂xv = 0

∂tv + λ2∂xu =
1

ε
(F (u)− v)

Limit

� The limit scheme of the relaxation system is

∂tu + ∂xF (u) = ε∂x ((λ2− | ∂F (u) |2)∂xu) + O(ε2)

� Stability: the limit system is dissipative if (λ2− | ∂F (u) |2) > 0.

� Sub-characteristic: λ >| ∂F (u) | with λ the velocity of the new model.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain

∂t f− − λ∂x f− =
1

ε
(f −eq − f−)

∂t f+ + λ∂x f+ =
1

ε
(f +
eq − f+)

� with u = f− + f+ and f ±eq = u
2
± F (u)

2λ
.

� New system: D1Q2 kinetic model (diagonal transport).
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Generic kinetic relaxation scheme

Kinetic relaxation system
� Considered model:

∂tU + ∂xF (U) = 0
� Lattice: W = {λ1, ....,λnv } a set of velocities.

� Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .

� Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

� Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

C
{

Pf eq(U) =U
PΛf eq(U)=F (U)

� In 1D : same property of stability that the classical relaxation method.

� Limit of the system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂U f eq(U)− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

� Natural extension in 2D/3D.

� General scheme: [D1Q2]n, one D1Q2 by macroscopic equation.
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Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Main idea: splitting scheme between transport and the relaxation (Dellar [13]).
� Key point: the macroscopic variables are conserved during the relaxation step.

Therefore f eq(U) is explicit:

P (∂t f ) = P

(
1

ε
(f eq(U)− f )

)
,−→ ∂tU =

1

ε
(Pf eq(U)−U) = 0,

� Scheme: Theta-scheme for the relaxation and SL scheme for the transport.
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Time discretization

Main property
� Relaxation system: ”the nonlinearity is local and the non locality is linear”.
� Main idea: splitting scheme between transport and the relaxation (Dellar [13]).
� Key point: the macroscopic variables are conserved during the relaxation step.

Therefore f eq(U) is explicit:

P (∂t f ) = P

(
1

ε
(f eq(U)− f )

)
,−→ ∂tU =

1

ε
(Pf eq(U)−U) = 0,

� Scheme: Theta-scheme for the relaxation and SL scheme for the transport.

First order scheme (exact transport)
� We define the two operators for each step :

T∆t : e∆tΛ∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(Un)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(Un)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq(U)− ∂F (U)2

)
.
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High-Order time schemes

Second-order scheme
� Order of convergence: one for the kinetic variables. one or two (ω = 2 and exact

transport) for the macroscopic variables.
� Second order scheme: Strang Splitting + SL scheme

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
.

High order scheme: composition method

Mp(∆t) = Ψ(γ1∆t) ◦Ψ(γ2∆t) ◦ ..... ◦Ψ(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.
� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

CV and new scheme
� All the schemes convergence only with the second order for the kinetic variables.
� Loss of order also for macroscopic variables (see numerical results).

� The 2th order scheme satisfies Ψ(∆t) = Ψ−1(−∆t) but not Ψ(∆t = 0) 6= Id .
Correction:

Ψap(∆t) = T

(
∆t

4

)
◦ R

(
∆t

2
,ω = 2

)
◦ T

(
∆t

2

)
◦ R

(
∆t

2
,ω = 2

)
◦ T

(
∆t

4

)
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Burgers: convergence results
� Model: Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Spatial discretization: SL-scheme, 2000 cells, degree 11.

� Test: ρ(t = 0, x) = sin(2πx). Tf = 0.14 (before the shock) and no viscosity.
� Scheme: splitting schemes and Suzuki composition + splitting.

SPL 1, θ = 1 SPL 1, θ = 0.5 SPL 2, θ = 0.5 Suzuki
∆t Error order Error order Error order Error order
0.005 2.6E−2 - 1.3E−3 - 7.6E−4 - 4.0E−4 -
0.0025 1.4E−2 0.91 3.4E−4 1.90 1.9E−4 2.0 3.3E−5 3.61
0.00125 7.1E−3 0.93 8.7E−5 1.96 4.7E−5 2.0 2.4E−6 3.77
0.000625 3.7E−3 0.95 2.2E−5 1.99 1.2E−5 2.0 1.6E−7 3.89

� Scheme: second order
splitting scheme.

� Same test after the shock:

� Comparison for different time step. Violet:
∆t = 0.001 (CFL 5-30), Green: ∆t = 0.005 (CFL
20-120), Blue ∆t = 0.01 (CFL 50-300), Black :
reference.
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Remark on the relaxation scheme
� Classical result: Strang Splitting + second order/exact scheme for relaxation converge

at first order for ε ≈ 0. SL solver + Strang splitting.

CN Exact SSP RK2
Error Order Error Order Error Order

∆t = 4.10−3 4.8E−4 - 2.0E−2 - 2.0E−2 -
∆t = 2.10−3 1.2E−4 2.0 1.1E−2 0.86 1.1E−2 0.86
∆t = 1.10−3 2.9E−5 2.05 5.7E−3 0.95 5.5E−3 1.0
∆t = 5.10−4 7.4E−6 1.95 2.9E−3 0.97 2.8E−3 0.98

� Conclusion: we lose one order of cv with exact and SPP-RK solver.

� Schemes for ε ≈ 0:

� For Euler implicit, exact and
SSP-RK2 schemes.

f n+1 ≈ f eq(Un) + O(ε)

� For Crank-Nicolson.

f n+1 ≈ 2f eq(Un)− f n + O(ε)

� We solve the EDO ∂tu = 1
ε

(ueq − u).

� Implicit Euler scheme. ∆t = 100ε

Conclusion:
� If you start far from f eq the exact/SPP-RK solvers seems better.
� However, for high-order splitting schemes the over-relaxation (CN) seems important.
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Convergence
� Equation: Euler isothermal

� Model [D1Q2]2 High-order space scheme. Comparison of the time scheme.

� Test case: smooth solution. ∆t = β∆x
λ

with β = 50

� With Strang splitting: only order 2 for f .

� Loss of convergence for macroscopic variables for Kahan-li + Strang splitting.
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

3D case in cylinder

Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

2D cut of the 3D case

Figure: Plot of the mass fraction of gas
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BC : preliminary results
� Question: What BC for the kinetic variables. How keep the order ?

First result

� The second order symmetric scheme (Ψap) for the following equation (equivalent to
[D1Q2]n kinetic model):{

∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

is consistant with {
∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with W = F (U)− V .

� Natural BC: entering condition for U and W = 0 or ∂xW = 0.
� Example: F (u) = cu (transport):

0 0.5 1
0

0.5

1

x

w
,y

0 0.5 1
x

t=0.02
t=0.09
t=0.17
t=0.25
t=0.33

� Transport of the u (dashed lines) and w = v − f (u) (plain lines) quantities.
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First result
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� Example: F (u) = cu (transport):

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

x

v
,w

v(t = 0, x)

v(t = tmax, x)
”Exact” strategy
”Dirichlet” strategy
”Neumann” strategy

2−72−82−92−102−112−12

10−5

10−4

10−3

10−2

10−1

∆x

e
n ∆
x

1st order

2nd order
Exact
Dirichlet
Neumann

� Initial state and comparison of the final states. Gaussian initial profile, ∆x = 2−7.
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Case II: parabolic systems
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Relaxation scheme for diffusion
� We consider the classical Xin-Jin relaxation for a scalar system ∂tu − ν∂xxu = 0: ∂tu + ∂xv = 0

∂tv +
λ2

ε2
∂xu = −

1

ε2
v

Limit

� The limit scheme of the relaxation system is

∂tu − ∂x (λ2∂xu) = ε2∂xxxxu + O(ε4)

� Consistency: Choosing λ2 = ν we obtain the initial solution.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain


∂t f− −

λ

ε
∂x f− =

1

ε2
(f −eq (u)− f−)

∂t f+ +
λ

ε
∂x f+ =

1

ε2
(f +
eq (u)− f+)

� with u = f− + f+ and feq(u)± = u
2

.

� Many schemes for this limit. Hyperbolic case: Jin-Levermore [96], Gosse-Toscani [00]
etc. Kinetic case: Lemou-Cresetto and al [09-14-17], Pareschi-Dimarco [07-10-14] etc.
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Discretization

Consistency analysis
� We consider ∂tρ− ν∂xxρ = 0. We define the two operators for each step:

T∆t : e∆t Λ
ε
∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε2
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε2
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tρ = ∆t∂x

((
1− ω
ω

+
1

2

)
λ2

ε2
∂xρ

)
+ O(∆t2)

� We don’t have convergence for all ε. The splitting scheme is not AP
� Taking ν = λ2, θ = 0.5 and ε =

√
∆t we obtain the diffusion equation.

� Cv: First order at the theoretical level and second order at the numerical one.

� Heat equation. Scheme with ε = ∆tγ and very high order SL + fine grid.

γ = 1
2

γ = 1 γ = 2
Error order Error order Error order

∆t = 0.04 1.87E−2 - 1.43 - 1.43 -
∆t = 0.02 6.57E−3 1.50 0.2 0 0.23 0
∆t = 0.01 1.85E−3 1.82 0.2 0 0.23 0
∆t = 0.005 3.6E−4 2.36 0.2 0 0.23 0
∆t = 0.0025 7.3E−5 2.30 0.2 0 0.23 0
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Conclusion

Time scheme for Kinetic BGK model
� High order time scheme: Composition + Strang Splitting (or modified version) +

Crank-Nicolson scheme for relaxation.
� Default: scheme not accurate (compare to Jin-Filbet/Pareschi-Gimarco schemes) far

from the equilibrium.
� Advantage: independent transport equation so high parallelism.

Implicit Kinetic relaxation schemes
� We can approximate hyperbolic/parabolic PDE by small kinetic models.
� Using SL scheme in space + previous time scheme we obtain high-order space/time

method CFL-free without matrix invertion.
� This algorithm is very competitive against classical implicit schemes (no matrices, no

solvers).

Future works
� Apply method tononlinear/anisotropic diffusion equation and increase order of

convergence.
� 1D scheme for low-mach Euler equation. Extension in 2D/3D and improve stability.
� Application to MHD and anisotropic diffusion for plasma.
� Continue the study for the BC.
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