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Plasma and models

Plasma

B Plasma: ionized gas (high energies).
B Strong coupling between hydrodynamics and electromagnetic (nuclear fusion,
astrophysics) etc.
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Kinetic modeling
{ Of +v - Vxf + V- (Vof) =0

—A¢ = p(x)
B Viasov-Poisson. Other models: Vlasov-Maxwell or gyrokinetic.
B Kinetic models coupled with elliptic model.

Fluid modeling: MHD

Otp+ V - (pu) =0,

pOtu+ pu-Vu+Vp=(V xB)xB+vAu

Oep+ V- -(pu)+(y—1)pV-u=V (kBB +¢cly)VT)
0tB —V x (ux B) =1V x (V x B)

V-B=0

B Hyperbolic model coupled with parabolic model. ,-\
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Times scales and time schemes

Problem

B |n general the plasma dynamic is a strongly multiscale problem.
B Kinetic model:

0 Strong oscillations of the electric potential generate very large velocities compare
to the average velocity.

B Fluid model:

0 Fast magnetosonic waves ( pressure and magnetic field pertubation) generate very
large velocities compare to the fluid velocity.

B Anisotropic diffusion:
O Very large diffusion in one direction compare to the other.

B Conclusion: for the models we need CFL-free method.
B Implicit schemes: these problem are ill-conditioned.

Construct High-Order Solver CFL-free and without matrix
invertion for the different type of PDE.
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Kinetic model and SL schemes

Semi Lagrangian scheme

B One of the main scheme to treat transport and kinetic equations.
B |dea: use the characteristic method.

B Example: Backward SL

8tf + aaxf =0
U Aim: compute at the mesh point x;: .
f(t+ At, x;) (n+1) At
0 Solution:
f(t+ At, x;) = f(t, x; — alt)
At
0 x, = xj — alAt is not a mesh point. " = :
O Using f(t, x;) we interpolate the function at xp.

B BSL/FSL: follow the backward characteristic and interpolate/follow the forward
characteristic and distribute on the mesh.

B Different type of SL: Classical SL (punctual values), Conservative SL (Average cell
values), DG/CG SL (weak form of SL scheme).

Advantages/drawbacks

B Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
B Drawbacks: BC and Gibbs oscillations due to high-order methods.
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Case I: hyperbolic systems
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Relaxation scheme

B We consider the classical Xin-Jin [95] relaxation for a scalar system 9:u + OxF(u) = 0:

Otu+Oxv =0
1

Bev + N20u = = (F(u) — v)
€

' The limit scheme of the relaxation system is

Bru + BxF(u) = edx((N2— | OF (u) [?)dxu) + O(£?)
O Stability: the limit system is dissipative if (\2— | 9F (u) |?) > 0.
O Sub-characteristic: A\ >| 0F (u) | with X the velocity of the new model.

. ) to obtain

B We diagonalize the hyperbolic matrix ( ;)2 0

1
Befo — NoKf- = ~(fog — F-)
Oufy +X0ufy = (i — F+)

B withu=f +f and fif = 4+ 2.

B New system: D1Q2 kinetic model (diagonal transport). /\
8
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Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:
o:U+ O«F(U)=0
Lattice: W = {)\q,...., An, } a set of velocities.

Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".

Kinetic relaxation system:

Oef + NOF = 2(F9(U) — F)
g

Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

PfeI(U) =U
C{ PAFEI(U)=F(U)

In 1D : same property of stability that the classical relaxation method.
Limit of the system:

AU + OxF(U) = ey ((PN*0yfeI(U)— | DF(U) |*) 9xU) + O(€?)

Natural extension in 2D/3D.
General scheme: [D1Q2]", one D1Q2 by macroscopic equation. r-\
9
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation (Dellar [13]).

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £*9(U) is explicit:

P (0:F) = P (g(feq(U) _ f)) s Ol = %(Pfeq(U) 7 —

B Scheme: Theta-scheme for the relaxation and SL scheme for the transport.
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Time discretization

Main property

B Relaxation system: "the nonlinearity is local and the non locality is linear”.
B Main idea: splitting scheme between transport and the relaxation (Dellar [13]).

B Key point: the macroscopic variables are conserved during the relaxation step.
Therefore £¢9(U) is explicit:

P(0:F) =P (é(f‘*"(u) - f)) s BU = %(Pfe"(u) —u)=o,

B Scheme: Theta-scheme for the relaxation and SL scheme for the transport.

First order scheme (exact transport)

B \We define the two operators for each step :

TA . eAt/\ax fn+1 — fn

S () — ) = £ - (1 0) S (Fe(un) - £7)

B Final scheme: Tp; o RAt is consistent with
2 —w)A
8:U + 0xF(U) = (%) 0 (D(U)3,U) + O(AF?)
w

B with w = B and D(U) = (PA0yf*I(U) — OF(U)?).
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High-Order time schemes

Second-order scheme

B QOrder of convergence: one for the kinetic variables. one or two (w = 2 and exact
transport) for the macroscopic variables.

B Second order scheme: Strang Splitting + SL scheme

V(A =T (%) oR(At,w=2)oT (%) .

High order scheme: composition method

Mp(At) = W(y1At) o W(pAt) o..... o U(ysAt)

B with +; € [-1, 1], we obtain a p-order schemes.
B Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p =6.

CV and new scheme

B All the schemes convergence only with the second order for the kinetic variables.
B | oss of order also for macroscopic variables (see numerical results).

B The 2th order scheme satisfies W(At) = W—1(—At) but not W(At = 0) # I4.
Correction:

o= (5) (5= )or(§)on(5e-2)or(%)
\
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Burgers: convergence results

B Model: Burgers equation

B Spatial discretization: SL-scheme, 2000 cells, degree 11.

2
Oep + O (%) =0

B Test: p(t =0, x) = sin(2mx). Tf = 0.14 (before the shock) and no viscosity.

B Scheme: splitting schemes and Suzuki composition + splitting.

SPL1,6=1 SPL1,6=05 SPL2,6=05 Suzuki
At Error order Error order Error order Error order
0.005 2.6E—2 - 13E3 - 7.6E* - 40E—* -
0.0025 1.4E-7 0.91 3.4E—* 1.90 1.9E-* 2.0 33E~° 3.61
0.00125 | 7.1E—3 0.93 8.7E—® 1.96 47E® 2.0 2.4E~°® 3.77
0.000625| 3.7E—3 0.95 22E 1.99 1.2E—° 2.0 1.6E-7 3.89
B Scheme: second order =
splitting scheme.
B Same test after the shock:
/:»/‘
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Remark on the relaxation scheme

B (Classical result: Strang Splitting + second order/exact scheme for relaxation converge
at first order for € = 0. SL solver + Strang splitting.

CN Exact SSP RK2
Error Order Error Order Error Order
At =4.10"3 | 48E—* - 2.0E—2 2.0E—?

At=210"3 | 1.2E~* 20 | 11E7%2| 086 | 1.1E-2 | 0.86
At=1.10"3 | 29E—° 205 | 57E-3 | 095 | 55E3 1.0
At=510"% | 74E-% | 195 | 29E—3 | 097 | 28E-3 | 0.98

B Conclusion: we lose one order of cv with exact and SPP-RK solver.

B Schemes for & ~ O: B We solve the EDO 0:u = %(ueq —u).

B For Euler implicit, exact and
SSP-RK2 schemes.

L FE9(UM) + O(e)

B For Crank-Nicolson.

1~ 2FS9(U) — F" + O(e) B Implicit Euler scheme. At = 100e

B |f you start far from £ the exact/SPP-RK solvers seems better.
B However, for high-order splitting schemes the over-relaxation (CN) seems important.
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[ ] -1 _
B Schemes for & ~ 0: We solve the EDO Oru = < (ueq — u).

B For Euler implicit, exact and
SSP-RK2 schemes.

il = £ (U") + O(e)
. FOr Crank_Nicolson. * o o ok o5 100 135 1% 175 200

il = 2F9(U™) — £ 4 O(e) B Exact time scheme. At = 100e

B |f you start far from £ the exact/SPP-RK solvers seems better.
However, for high-order splitting schemes the over-relaxation (CN) seems important.
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Convergence

B Equation: Euler isothermal
B Model [D1Q2]? High-order space scheme. Comparison of the time scheme.
B Test case: smooth solution. At = % with 8 = 50
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——— Suzuki/ Strang splitting
—s— Suzuki/ time-symmetric splitting
—s— Kahan-Li / Strang splitting

—&— Kahan-Li/ time-symmetric splitting

B With Strang splitting: only order 2 for f.
B | oss of convergence for macroscopic variables for Kahan-li + Strang splitting. r‘\
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

. 3D case in cylinder
2D case in annulus Y

Figure: Plot of the mass fraction of gas Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models

Model : liquid-gas Euler model with gravity.
Kinetic model : (D2 — Q4)". Symmetric Lattice.

Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

Test case : Rayleigh-Taylor instability.

2D cut of the 3D case

2D case in annulus

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gasr-\
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BC : preliminary results

B Question: What BC for the kinetic variables. How keep the order ?

First result

O The second order symmetric scheme (W) for the following equation (equivalent to
[D1Q2]" kinetic model):
0tU+0xV =0
1
8V 4+ 228,U = =(F(U) — V)
€
is consistant with
U + 0xF(U) = O(At?)
W — OF (U)o W = O(At?)
with W = F(U) — V.

B Natural BC: entering condition for U and W =0 or W = 0.
B Example: F(u) = cu (transport):

1f ,—‘
—t=0.02
> —1=0.09
T os| d p t=0.17
/ t=0.25
‘x/,/ =033
L e et
0 05 1 0 05 1
X X
B Transport of the u (dashed lines) and w = v — f(u) (plain lines) quantities.
&’L‘"’?: — ” oy E. Franck
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B |nitial state and comparison of the final states. Gaussian initial profile, Ax = 277, ’16/ \
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Case ll: parabolic systems
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Relaxation scheme for diffusion

B We consider the classical Xin-Jin relaxation for a scalar system 0;u — vOxu = 0:

Otu+0Oxv =0
)\2

Orv + —ZBXU =——v
€ €

' The limit scheme of the relaxation system is

Oru — BX()\28X U) = 528)<xxxu + 0(54)

O Consistency: Choosing A2 = v we obtain the initial solution.

. ) to obtain

B We diagonalize the hyperbolic matrix ( ;)2 0

A 1
O — 20.F = S (fir(u) — £)
Ocfy + —Oxfy = ;Q(f;;(”) —f)

B with u=f_ 4 f; and foq(u)* = 3

B Many schemes for this limit. Hyperbolic case: Jin-Levermore [96], Gosse-Toscani [00]
etc. Kinetic case: Lemou-Cresetto and al [09-14-17], Pareschi-Dimarco [07-10-14] etr\
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Discretization
Consistency analysis
B We consider 0:p — vOxp = 0. We define the two operators for each step:
TAt . eAt%BX fn+1 r

f"+1+9 (feq(U) frily = (1—9) L(Fea(u) - £7)

B Final scheme: Tp; o RAt is consistent with

1- 1\ A2
Bp=0td ([ —2 +2) o) + 0(a?)
w 2) g2
B We don’t have convergence for all €. The splitting scheme is not AP

B Taking v = A2, 0 = 0.5 and ¢ = /At we obtain the diffusion equation.
Cv: First order at the theoretical level and second order at the numerical one. J

B Heat equation. Scheme with ¢ = At" and very high order SL + fine grid.

=3 v=1 v=2
Error order | Error | order | Error | order

At =0.04 1.87E? - 1.43 - 1.43 -

At =0.02 6.57TE—3 1.50 0.2 0 0.23 0

At =0.01 1.85E—3 1.82 0.2 0 0.23 0

At =0.005 3.6E* 2.36 0.2 0 0.23 0

At = 0.0025 73E° | 230 | 02 0 0.23 0 ﬁg‘\
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Conclusion

Time scheme for Kinetic BGK model

B High order time scheme: Composition + Strang Splitting (or modified version) +
Crank-Nicolson scheme for relaxation.

B Default: scheme not accurate (compare to Jin-Filbet/Pareschi-Gimarco schemes) far
from the equilibrium.

B Advantage: independent transport equation so high parallelism.

Implicit Kinetic relaxation schemes

B We can approximate hyperbolic/parabolic PDE by small kinetic models.

B Using SL scheme in space + previous time scheme we obtain high-order space/time
method CFL-free without matrix invertion.

B This algorithm is very competitive against classical implicit schemes (no matrices, no
solvers).

Future works

| A

B Apply method tononlinear/anisotropic diffusion equation and increase order of
convergence.

B 1D scheme for low-mach Euler equation. Extension in 2D/3D and improve stability.

B Application to MHD and anisotropic diffusion for plasma.

B Continue the study for the BC. -\
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