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Physical and mathematical context
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Gas dynamic: Euler equations

TONUS Team work’s

Multi-scale in time/space models for plasmas: MHD, Vlasov equations.
Plasma: gas dynamic + electromagnetic.

B \We propose to understand the problem on a "simpler” problem: gas dynamic.
B Euler equation:
Otp+ V- (pu) =0
Or(pu) + V- (pu@u+ply) =0
OHE+V - (Eu+pu)=0

with p(t,x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

The pressure p(t, x) is defined by p = pT (perfect gas law) with T(t,x) the
temperature.

The system is an hyperbolic system which model nonlinear transport/waves. Physically it
correspond to conservation laws.

Properties

No dissipation (no smoothing) processus. These systems can generated discontinuities.

i
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Wave propagation and scales

B The model can be write on a general form
0:U + O«F«(U) + 0,F,(U) = G(U)

— 0:U+ A(U)oxU + A, (U)o, U = G(U)
for smooth solutions.
B These models propagate some complex waves with the velocities given by the
eigenvalues of
A(U) = Ax(U)nx + Ay (U)ny
with n a normal vector.

B At the end three eigenvalues: (u,n) and (u,n) & c with the sound speed c? = 'y%.

Physic interpretation:

B the acoustic waves due to the pressure and normal velocity perturbations,
B the density, momentum and energy transport at the velocity u.

B Two important scales: u and ¢

(-

e E. Franck \ /24‘




R R R R RRRRRERERRERERRREEEE==S=————————
Physical problem |: large acoustic waves.

B \We introduce the Mach number M = 14

- the ratio between the two velocities/scales.
B We consider the initial state:
p=20+0.05G(x), u=02 p=05+ dp
~~

|6p|~0.5
B The large perturbation of p generate a large acoustic wave with du ~ 0.2.

B This velocity gradient created by the waves generates an important compression
density.

v

B |eft: p(t,x), Middle: p(t,x), Right: Mach number

B \We must correctly capture this large wave to capture the good behavior of the density.
B This phenomena is a one-scale phenomena since M ~ 0.3.
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Physical problem |I: small acoustic waves.

B We introduce the Mach number M = % the ratio between the two velocities/scales.
B We consider the initial state:

p=204+0.05G(x), u=02  p=30+ dp
~—
|6p|~0.5

B The small perturbation of p generates a small gravity wave with du = 0.03.
B This velocity gradient created by the waves is very small and and there is no
compression of density (just advection).
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B |eft: p(t,x), Middle: p(t,x), Right: Mach number

B Since Oxu =~ Oxp ~ 0, the main dynamic is given by: 9:p + udxp =0
B No necessary to capture these small waves to capture the behavior of the density.
B This phenomena is a two-scale phenomena since M = 0.05.
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Low mach limit

B We propose an asymptotic interpretation of the small acoustic waves case.

B \We want obtain dimensionless equation. We rewrite the equation

ep+ V- (pu) =0
potu+ pu-Vu+Vp=0
Op+ V- (pu)+(y—1)pV-u=0

B Normalization:

U we introduce characteristic time ty, velocity V, length L.
O the characteristic velocity up and pressure ypy. The sound velocity is ¢2 = %.
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==
Low mach limit

B \We propose an asymptotic interpretation of the small acoustic waves case.
B We want obtain dimensionless equation. We rewrite the equation

Otp+ V- (pu)=0
potu+ pu-Vu+Vp=0
Op+ V- (pu)+(y—1)pV-u=0
B Normalization:
U we introduce characteristic time ty, velocity V, length L.

O the characteristic velocity up and pressure ypy. The sound velocity is ¢2 = Vp—i".
to U
Oep+ | 22| V- (pu) =0
t
}pqu—i— [ino} Vp=20
pouoL

Patu-ﬁ-{
1 1
Otp + {OTUO}U~Vp+ [lLuo} pV-u=0

touo
L
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Low mach limit
B We propose an asymptotic interpretation of the small acoustic waves case
B \We want obtain dimensionless equation. We rewrite the equation
Otp+V - (pu) =0

potu+ pu-Vu+Vp=0
Op+V - (pu)+(y—1)pV-u=0

B Normalization:
U we introduce characteristic time tp, velocity V, length L.
ity is ¢2 = 2%
P

U the characteristic velocity ug and pressure ypg. The sound velocity is ¢
2]
6m+[v}v-@m=o
Up
potu + -Vu+ } =0
o[
Btp+[v]uAVp+[ ] u=20
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==
Low mach limit

B We propose an asymptotic interpretation of the small acoustic waves case.
B We want obtain dimensionless equation. We rewrite the equation

Otp+ V- (pu)=0
potu+pu-Vu+Vp=0
Otp+V - (pu)+(y—1)pV-u=0
B Normalization:
U we introduce characteristic time tp, velocity V, length L.

O the characteristic velocity up and pressure ypg. The sound velocity is ¢2 = 77’;’.
B \We want to focus on the fluid motion consequently we choose V = wyp.
B We define the mach number:M = %8 . Using this we obtain
Otp+V - (pu) =0 Otp+ V- (pu) =0
1 1
patu+pu-Vu+{W}Vp:0 —q O(pu) +V - (pu@u)+ —Vp=0
Otp+u-Vp+ypV-u=0 HE+V - (Eu+pu)=0
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==
Low mach limit

B We propose an asymptotic interpretation of the small acoustic waves case.
B We want obtain dimensionless equation. We rewrite the equation

Otp+ V- (pu)=0
potu+ pu -Vu+Vp=0
Otp+V - (pu)+(y—1)pV-u=0
B Normalization:
U we introduce characteristic time tp, velocity V, length L.

O the characteristic velocity up and pressure ypg. The sound velocity is ¢2 = 77’3’.
B \We want to focus on the fluid motion consequently we choose V = wyp.
B We define the mach number:M = %8 . Using this we obtain
Otp+ V- (pu)=0 Otp+ V- (pu)=0
1
patu+pu-Vu+{W}Vp=0 —q O(pu) +V - (pu@u)+ —Vp=0
Otp+u-Vp+ypV-u=0 HE+V - (Eu+pu)=0

When M tends to zero, we obtain incompressible Euler equation:

Op+u-Vp=0
potu+ pu -Vu+ VI =0
V-u=0

In 1D we have just advection of p.

|
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Numerical problem I: time discretization.
B When we discretize in space a PDE we obtain an ODE:
9:U = A(U)
B (lassical time discretization : explicit time scheme.

Un+1 —uy"

ar AU

B Default of Explicit scheme: the CFL condition At < % with lambda the maximal
speed of the system.

For low mach flow (small acoustic waves):

O The fast phenomena: acoustic wave at velocity ¢

U The important phenomena: transport at velocity u

O Expected CFL: At < |ATT CFL in practice At < %

U At the end we use a At divised by M compare to the expected At

B Solution: Implicit time scheme. No CFL condition
Un+1 —uy"

—A Un+1
Az (Ol

Taking a larger time step, the implicit scheme allows to filter the fast acoustic waves
which are not useful in the low-Mach regime.
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Implicit scheme and conditioning |

B Implicit time scheme:
M U™ = (I + AtA(lg)) U™t = U”

B We must solve a nonlinear system and after linearization redsolve some linear systems.

B How solve a linear system:
O Exact solver. Too costly for large problem ( system, 3D, high order discretization).
O iterative solver. Used in practice. Default: slow convergence for ill-conditioning
matrix.

B Conditioning of a matrix M:

B Approximative conditioning

B We recover the two scales in the conditioning number. The full implicit schemes are
difficult to use for this reason.
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Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scales (acoustic)

B Euler equation in 1D:
Otp + Ox(pu) =0
9t(pu) + 0x(pu?) + xp = 0
OtE + O«(Eu) + Ox(pu) =0
B We use an explicit scheme for convection ( or we split the convection). Implicit
acoustic step:
pn+l — pn
(pu)n+l — p"u" _ Ataxpn+1 + Rhs,
Er+l — fn _ Atax(pn+1un+1) = Rhsg

Plugging this in the second equation, we obtain

pn+1
E™! — At?0, (—naxp"“) = Rhs(E", u", p)
1%

B Matrix-vector product to compute u™t1.
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Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scales (acoustic)

B Euler equation in 1D:
Otp + Ox(pu) =0

9t(pu) + 0x(pu?) + xp = 0
OtE + O«(Eu) + Ox(pu) =0
B We use an explicit scheme for convection ( or we split the convection). Implicit

acoustic step:
pn+l — pn
(pu)n+l — pnun _ Ataxpn+1 + Rhs,
n+1
z71 + %p"u” = E" — AtOy(p"t1u"t1) = Rhsg
Plugging this in the second equation, we obtain

prtl ptl
3 At20, (Faxp"“) = Rhs(E", u", p")
B Matrix-vector product to compute u"*+1.
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Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scales (acoustic)

B Euler equation in 1D:
8tp + 8x(pU) =0
De(pu) + Ox(pu?) + 0p = 0
OtE + O«(Eu) + Ox(pu) =0
B We use an explicit scheme for convection ( or we split the convection). Implicit
acoustic step:

pn+l — pn
(pu)n+l — pnun _ Ataxpn+1 + Rhs,
n+1
P+ 1p"u" = E7 — Atd(p"u") = Rhse

n+1 n+1
P - — AP, (%axp"'H) = Rhs(E", u", p")

=
B Matrix-vector product to compute u"*+1.

Semi implicit: only one scale in the implicit symmetric positive operator.
Strong gradient of p generates ill-conditioning. Assembly at each time (costly).
Nonlinear solver which bad convergence for if At >> 1 and 9xp not so small.
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Spatial discretization in space

Spatial discretization

B Finite Volume method (I don't explain how its work). Based on conservative form.
B First order method: error in space homogeneous to O(Ax).

B Two scale problem: the naive VF method admit an error homogeneous to the fast
scales for the two scales.

B Example: isolated contact:

. | | B Naive scheme T = 2 ug = 0.05 and 1000
O varying density (gaussian)

cells
O constant pressure (p = 1) and
velocity (u << 1)
B Exact. solution: 35
Otp + updxp =0 20
which is equivalent to a translation s
of upt. 20
B Ratio between transport and 15
acoustic: 1 10
~ 20 00 02 04 06 08 10

M
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Spatial discretization in space

Spatial discretization

B Finite Volume method (I don't explain how its work). Based on conservative form.
B First order method: error in space homogeneous to O(Ax).

B Two scale problem: the naive VF method admit an error homogeneous to the fast
scales for the two scales.

u E le: isolated tact:
xampef sola ei con ac- B Naive scheme Tr =5 ug = 0.02 and 1000
O varying density (gaussian)

cells
O constant pressure (p = 1) and
velocity (u << 1)
B Exact. solution: 35
Otp + updxp =0 20
which is equivalent to a translation 29
of upt. 20
B Ratio between transport and 15
acoustic:
1 10
i ~ 50 00 02 04 06 08 10
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Spatial discretization in space

Spatial discretization

B Finite Volume method (I don't explain how its work). Based on conservative form.

B First order method: error in space homogeneous to O(Ax).

B Two scale problem: the naive VF method admit an error homogeneous to the fast

scales for the two scales.

B Example: isolated contact:
O varying density (gaussian)
O constant pressure (p = 1) and
velocity (v << 1)

B Exact. solution:
Orp + ugdxp =0

which is equivalent to a translation
of upt.

B Ratio between transport and

acoustic:
1

— =~ 20
M

B Good scheme T =2 upy = 0.05 and 1000

cells

35
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Spatial discretization in space

Spatial discretization

B Finite Volume method (I don't explain how its work). Based on conservative form.

B First order method: error in space homogeneous to O(Ax).

B Two scale problem: the naive VF method admit an error homogeneous to the fast

scales for the two scales.

B Example: isolated contact:
O varying density (gaussian)
O constant pressure (p = 1) and
velocity (v << 1)

B Exact. solution:
Orp + ugdxp =0

which is equivalent to a translation
of upt.

B Ratio between transport and

acoustic:
1

— =~ 50
M

B Good scheme scheme Ty =5 ug = 0.02 and
1000 cells
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Relaxation method
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==
Relaxation method

B Problem: the nonlinearity of the implicit acoustic step generate difficulties.
B Non conservative form and acoustic term:

atp + ax(PU) =0
{ Oru + udxu + %pr =0
Otp + udxp + pc?Oxu =0
B |dea: Relax only the acoustic part to linearized the implicit part.
Otp + Ox(pv) =0
Ot(pu) + Ox(puv + M) =0
8tE+ ax(EV —+ ﬂv) = 0
O + vO, M + ¢>,\20Xv = (p )
Bev + vOxv + L 8 n= 1(u— v)
B Limit:
Otp + Ox(pu) = €0« [ADxp]
O¢(pu) + Ox(pu? + p) = €0 [(Audxp) + Baxu]
OE + Ox(Eu + pu) = £dy [AE(?Xp +ALE + B }
B with A = % (g - 1) and B = (ppA? — p2c?).
B Stability: ¢\ > pc? and p > ¢.

Avdantage

B \We keep the conservative form for the original variables and obtain a fully linear
acoustic.

¥ 14
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Splitting

Splitting
B |f you want solve 9;: U = AU the solution is given by
U(t) = e AtU(t = 0) = e~ A1ty (t = 0) m e A1t~ Y(t = 0)

B A splitting scheme consists to solve two/or more parts of the system separately.

4
B For large acoustic waves (Mach number not small) we want capture all the
phenomena. Consequently use an explicit scheme.

B For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

Otp + Ox(pv) =0 Otp=0

Ot(pu) + Ox(puv + M?(t)N) =0 B (pu) + (1 — M2(1))3xM =0
OE + 0x(Ev+ M3 (t)Mv) =0 OE + (1 — M2(1))dx(Mv) =0
6,_~I'I+v6xl'l+¢);§8><v:0 M + ¢(1 — M?(t))A20xv =0
Bev +voxv + 2o n =0 Bev + (1 - M?(1) 50N =0

[u]

with M(t) = max, =
B After each time step: we project 1 = p and v = u (can be view as a discretization of
the stiff source term) ’15/ \
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Implicit time scheme

B We introduce the implicit scheme for the "acoustic part”:
pn+1 — pn
(pu)™ 1 + At(1 — M3 (1)) N"* = (pu)"
Ertl 4+ At(1 — M3(t))0x(Mv)"+t = EN
ML 4+ Atgp(1 — M2 (t))A\20xv" = N7
VI £ AL — M3 (tn)) $ 0N = v

B We plug the equation on v in the equation on 1. We obtain the following algorithm:
L Step 1: we solve

(lg — (1 = M?(t0)) 2 At2X28:6)N™H = N7 — At(1 — M?(t,))PpA20xv"
O Step 2: we compute
VL A1 — Mz(tn))laxnnﬂ
O Step 3: we compute ¢

(pu)™* = (pu)" — At(1 — M?(tn))8xN"1
O Step 4: we compute

En+1 — E" _ At(l _ M2(tn))8x(r|n+lvn+1)

Advantage

B We solve only a constant Laplacian. We can assembly matrix one time.

B No problem of conditioning, which comes from to the strong gradient of p

{16
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Results |

B Smooth contact :

p(ty X) = Xx<xp + 0-1X><>x0

u(t,x) =0.01
x)=1
B Error Pt )
cells Ex Rusanov Ex LR Sl Rusanov | New Sl Rus | New SI LR
250 0.042 3.6E* 1.46-3 7.8E—% 41E-*
500 0.024 1.8E—% 6.9E— % 39E—* 2.0E4
1000 0.013 9.0E—° 3.4E% 2.0E—* 1.0E—°
2000 0.007 45E° 1.7E—* 9.8E~° 4.9E~°

B Suliciu: relaxation scheme different. The implicit Laplacian is not constant and
depend of p".
B Comparison time scheme:

Scheme A At
Explicit max(|u—c|,|u+c]) 22E—*
Sl Suliciu max(| u — M(tn))% u+ /\/((tn))% ) | 0.0075

Sl new relaxation | max(| v — M(tn))A |, | v+ M(tn))X]) 0.04

B Conditioning:

Schemes At conditioning
Si suliciu 0.00757 3000

Si new relax 0.041 9800

Si new relax 0.0208 2400

si new relax 0.0075 320

E. Franck
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First 2D result |

B We take 100*100 cells T = 1 and
p(t,x) = G(x — upt)
u(t,x) = ug, suchthat V-up=0and |ug|~ 1073
p(t,x) =1

B Results:

Vars | Ex Rusanov Ex LR SI Rusanov | New SI LR
) 0.39 1.9E—% 8.4E—* 75E°
u 0.87 0.51 53E—3 27E3
p 9.6E—8 5.5E—7 1.8E° 7.2E—7
At 42E-7 | 44E° 0.8 1(max 9)
] o s
| ! el
o o s
i | s 2 —— ad
“m%n‘/ T \ﬂshm/ TS T T BT B
density, t=1.0 norm2 u, t=1.0 density, t=1.0 norm2 u, t=1.0 density, t=1.0 norm2 u, t=1.0
[ s A o M i
3 N [ I
o H
{ | |
! i : " [ A
[ [
i \ 25410°° 0 250" “\ |

Figure: Explicit Rusanov scheme, Ex LR-Like, Semi Implicit relax
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First 2D results Il

B Gresho vortex: stationary vortex with varying Mach number and V - u = 0.
B We plot the norm of u
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B Ex scheme: M =05 (At =1.4E73), M =0.1 (At =3.5E7%), M =0.01
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First 2D results Il

B Gresho vortex: stationary vortex with varying Mach number and V - u = 0.

B Convergence for u and p
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B Results with New-relax. Left: 120*120 cells, Right: 240*240 cells /\
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Other multi-scale problems for plasma physics
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Tokamak simulation and magnetized plasma

B Fusion DT: At sufficiently high energies
deuterium and tritium (plasmas) can
fuse to Helium. Free energy is released. Deuterium Helium

+
B Plasma: For very high temperature, the ‘\ ‘++‘
gas is ionized and give a plasma which @ g

can be controlled by magnetic and \
electric fields.
+ / \ Energy
(¥ ¢

B Tokamak: toroidal chamber where the
plasma (108 Kelvin), is confined using Tritium Noutron
magnetic fields. Larger Tokamak: Iter

Specificity for the Tokamak

B To stabilize the plasma we need very large magnetic field B.

B This very large magnetic field generates time/space two scale problem between parallel
and perpendicular (to B) dynamic.
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Ap schemes for Vlasov-Maxwell and MHD

B Plasma description:
O

Microscopic: Newton laws for each particle. Coupled by external forces.
O

Mesoscopic: description by probability density. Probability to have a particle at
the time t the position x and the velocity v.

Macroscopic: description by macro quantities: density, velocity, pressure etc.
Euler, Navier-Stokes, MHD equations.

Dimensionless Vlasov- Maxwell equation:

O

1
Oifi+v-Vxfi+e(E+vxB) - V,fi==Q(fif)
T

6(8tfs+v~vxfe)—e(E+vxB)-V.,f;:%Q(f;,f;)
2OE -V x B=—pupJ
#B+VXxE =0
V-B=0
&’V -E =nj — ne
Vo

with € ~ 2. T= % with A the mean free path, 6 = % the mass ratio.
;

Limit : 7 — 0 ==> Euler-Maxwell bi-fluid.
Limit: 7 — 0, ¢ — 0, 6 — 0 ==> Extended MHD.

Aim 7 — 0: filter collision and capture the equilibrium.
Aim ¢ — 0: filter fast electromagnetic waves (weak coupling with the rest).
Aim 6 — 0O: filter inertial effect of electron. Main dynamic given by ions.

22
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Gyro-kinetic limit and Anisotropic diffusion

B Gyrokinetic model: We consider the Vlasov
Maxwell equations.

B For large magnetic field: two space/time
scales:
O fast rotation of ion around the magnetic
field lines (radius, velocity depends of B)
U average transport of ion in the parallel
direction.

B Gyrokinetic model filter the fast rotation. We
can design aslo numerical scheme for Vlasov
to filter this rotation if necessary.

B Thermal anisotropic diffusion:
0T —V - (k| BRBVT) — kijsocAT =0
B To avoid a strong CFL condition: implicit

scheme.

B Conditioning of the matrix:

il

5 ~ 10% — 10"
Kiso A

Cx
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Conclusion

Problem

B We consider problem with two space/time scales.

B Sometimes we want solve the two scales. Sometimes we want filter ( neglect ) the fast
one and capture the slow one.

B Naive method: we must capture the fast one to capture the slow one. Very important
cost.

4

Euler equation

B |ntroducing Dynamic splitting scheme we separate the scales.

Introducing implicit scheme for the acoustic wave we can filter these waves.
Introducing relaxation we simplify at the maximum the implicit scheme.

An adapted spatial scheme is also very important.

vy

Announcement

B With some colleges we organize the summer school " Cemracs 2020".

B Theme: "Models and simulation of many passive/active particles”. Physics particles,
cells, population dynamic, crowd movement, smart city.

V.
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