# Numerical method for multi-scale PDE: applications to weakly compressible fluids

F. Bouchut<sup>5</sup>, E. Franck<sup>12</sup>, L. Navoret<sup>2</sup>

Workshop Multi-scale problem, INRIA Nancy

<sup>&</sup>lt;sup>1</sup>Inria Nancy Grand Est, France

<sup>&</sup>lt;sup>2</sup>IRMA, Strasbourg university, France

<sup>&</sup>lt;sup>3</sup>Marne la Vallée, university, France

# Outline

Physical and mathematical context

Relaxation method

Other multi-scale problems for plasma physics



E. Franck

Physical and mathematical context



# Gas dynamic: Euler equations

#### TONUS Team work's

Multi-scale in time/space models for plasmas: MHD, Vlasov equations.

Plasma: gas dynamic + electromagnetic.

- We propose to understand the problem on a "simpler" problem: gas dynamic.
- Euler equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho I_d) = 0 \\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

- with  $\rho(t, \mathbf{x}) > 0$  the density,  $\mathbf{u}(t, \mathbf{x})$  the velocity and  $E(t, \mathbf{x}) > 0$  the total energy.
- The pressure  $p(t, \mathbf{x})$  is defined by  $p = \rho T$  (perfect gas law) with  $T(t, \mathbf{x})$  the temperature.

#### Model

The system is an hyperbolic system which model nonlinear transport/waves. Physically it correspond to conservation laws.

#### **Properties**

No dissipation (no smoothing) processus. These systems can generated discontinuities.

(nría-

E. Franck

# Wave propagation and scales

The model can be write on a general form

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}_x(\mathbf{U}) + \partial_y \mathbf{F}_y(\mathbf{U}) = \mathbf{G}(\mathbf{U})$$

$$\longrightarrow \partial_t \mathbf{U} + A_x(\mathbf{U})\partial_x \mathbf{U} + A_y(\mathbf{U})\partial_y \mathbf{U} = \mathbf{G}(\mathbf{U})$$

for smooth solutions.

 These models propagate some complex waves with the velocities given by the eigenvalues of

$$A(\mathbf{U}) = A_x(\mathbf{U})n_x + A_y(\mathbf{U})n_y$$

with n a normal vector.

At the end three eigenvalues: (u, n) and  $(u, n) \pm c$  with the sound speed  $c^2 = \gamma \frac{p}{\rho}$ .

### Physic interpretation:

- the acoustic waves due to the pressure and normal velocity perturbations,
- $\blacksquare$  the density, momentum and energy transport at the velocity u.
- Two important scales: u and c

lnria

E. Franck

# Physical problem I: large acoustic waves.

- We introduce the Mach number  $M = \frac{|u|}{c}$  the ratio between the two velocities/scales.
- We consider the initial state:

$$\rho = 2.0 + 0.05 G(x), \quad u = 0.2, \quad p = 0.5 + \underbrace{\delta p}_{|\delta p| \approx 0.}$$

- The large perturbation of p generate a large acoustic wave with  $\delta u \approx 0.2$ .
- This velocity gradient created by the waves generates an important compression density.



Left:  $\rho(t, \mathbf{x})$ , Middle:  $p(t, \mathbf{x})$ , Right: Mach number

#### Conclusion:

- We must correctly capture this large wave to capture the good behavior of the density.
- This phenomena is a one-scale phenomena since  $M \approx 0.3$ .

(nría-

/ 24

# Physical problem II: small acoustic waves.

- We introduce the Mach number  $M = \frac{|u|}{c}$  the ratio between the two velocities/scales.
- We consider the initial state:

$$\rho = 2.0 + 0.05G(x), \quad u = 0.2, \quad p = 30 + \underbrace{\delta p}_{|\delta p| \approx 0.5}$$

- The small perturbation of p generates a small gravity wave with  $\delta u \approx 0.03$ .
- This velocity gradient created by the waves is very small and and there is no compression of density (just advection).



Left:  $\rho(t, \mathbf{x})$ , Middle:  $p(t, \mathbf{x})$ , Right: Mach number

### Conclusion:

- Since  $\partial_x u \approx \partial_x p \approx 0$ , the main dynamic is given by:  $\partial_t \rho + u \partial_x \rho = 0$
- No necessary to capture these small waves to capture the behavior of the density.
- This phenomena is a two-scale phenomena since  $M \approx 0.05$ .

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
  - $\square$  we introduce characteristic time  $t_0$ , velocity V, length L.
  - $\Box$  the characteristic velocity  $u_0$  and pressure  $\gamma p_0$ . The sound velocity is  $c^2 = \frac{\gamma p_0}{\rho_0}$ .

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
  - $\square$  we introduce characteristic time  $t_0$ , velocity V, length L.
  - $\Box$  the characteristic velocity  $u_0$  and pressure  $\gamma p_0$ . The sound velocity is  $c^2 = \frac{\gamma p_0}{\rho_0}$ .

$$\left\{ \begin{array}{l} \partial_t \rho + \left[\frac{t_0 u_0}{L}\right] \nabla \cdot (\rho \boldsymbol{u}) = 0 \\ \rho \partial_t \boldsymbol{u} + \left[\frac{t_0 u_0}{L}\right] \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \left[\frac{t_0 p_0}{\rho_0 u_0 L}\right] \nabla \rho = 0 \\ \partial_t \rho + \left[\frac{t_0 u_0}{L}\right] \boldsymbol{u} \cdot \nabla \rho + \left[\frac{\gamma t_0 u_0}{L}\right] \rho \nabla \cdot \boldsymbol{u} = 0 \end{array} \right.$$

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
  - $\square$  we introduce characteristic time  $t_0$ , velocity V, length L.
  - $\Box$  the characteristic velocity  $u_0$  and pressure  $\gamma p_0$ . The sound velocity is  $c^2 = \frac{\gamma p_0}{\rho_0}$ .

$$\begin{cases} \partial_t \rho + \left[\frac{u_0}{V}\right] \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \left[\frac{u_0}{V}\right] \rho \mathbf{u} \cdot \nabla \mathbf{u} + \left[\frac{c_0^2}{u_0 V}\right] \nabla \rho = 0 \\ \partial_t \rho + \left[\frac{u_0}{V}\right] \mathbf{u} \cdot \nabla \rho + \left[\frac{\gamma u_0}{V}\right] \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
  - we introduce characteristic time  $t_0$ , velocity V, length L.
- the characteristic velocity  $u_0$  and pressure  $\gamma p_0$ . The sound velocity is  $c^2 = \frac{\gamma p_0}{q_0}$ .
- We want to focus on the fluid motion consequently we choose  $V = u_0$ .
- We define the mach number:  $M = \frac{u_0}{c_0}$ . Using this we obtain

$$\begin{cases} \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \\ \rho \partial_t \textbf{\textit{u}} + \rho \textbf{\textit{u}} \cdot \nabla \textbf{\textit{u}} + \left[\frac{1}{M^2}\right] \nabla \rho = 0 \\ \partial_t \rho + \textbf{\textit{u}} \cdot \nabla \rho + \gamma \rho \nabla \cdot \textbf{\textit{u}} = 0 \end{array} \longrightarrow \begin{cases} \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \\ \partial_t (\rho \textbf{\textit{u}}) + \nabla \cdot (\rho \textbf{\textit{u}} \otimes \textbf{\textit{u}}) + \frac{1}{M^2} \nabla \rho = 0 \\ \partial_t E + \nabla \cdot (E \textbf{\textit{u}} + \rho \textbf{\textit{u}}) = 0 \end{array} \end{cases}$$

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
  - we introduce characteristic time  $t_0$ , velocity V, length L.
- $\Box$  the characteristic velocity  $u_0$  and pressure  $\gamma p_0$ . The sound velocity is  $c^2 = \frac{\gamma p_0}{q_0}$ .
- We want to focus on the fluid motion consequently we choose  $V = u_0$ .
- We define the mach number:  $M = \frac{u_0}{c_0}$ . Using this we obtain

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \\ \rho \partial_t \textbf{\textit{u}} + \rho \textbf{\textit{u}} \cdot \nabla \textbf{\textit{u}} + \left[\frac{1}{M^2}\right] \nabla \rho = 0 \\ \partial_t \rho + \textbf{\textit{u}} \cdot \nabla \rho + \gamma \rho \nabla \cdot \textbf{\textit{u}} = 0 \end{array} \right. \longrightarrow \left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \\ \partial_t (\rho \textbf{\textit{u}}) + \nabla \cdot (\rho \textbf{\textit{u}} \otimes \textbf{\textit{u}}) + \frac{1}{M^2} \nabla \rho = 0 \\ \partial_t E + \nabla \cdot (E \textbf{\textit{u}} + \rho \textbf{\textit{u}}) = 0 \end{array} \right.$$

#### Low Mach limit

When M tends to zero, we obtain incompressible Euler equation:

$$\left\{ \begin{array}{l} \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0 \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \Pi = 0 \\ \nabla \cdot \boldsymbol{u} = 0 \end{array} \right.$$

In 1D we have just advection of  $\rho$ .

Caria-

# Numerical problem I: time discretization.

When we discretize in space a PDE we obtain an ODE:

$$\partial_t \boldsymbol{U} = A(\boldsymbol{U})$$

Classical time discretization : explicit time scheme.

$$\frac{\boldsymbol{U}^{n+1}-\boldsymbol{U}^n}{\Delta t}=A(\boldsymbol{U}^n)$$

- **Default of Explicit scheme**: the CFL condition  $\Delta t < \frac{\Delta x}{\lambda}$  with lambda the maximal speed of the system.
- For low mach flow (small acoustic waves):
  - ☐ The fast phenomena: acoustic wave at velocity *c*
  - ☐ The important phenomena: transport at velocity  $\underline{u}$
  - $\square$  Expected CFL:  $\Delta t < rac{\Delta x}{|u|}$ , CFL in practice  $\Delta t < rac{\Delta x}{|c|}$
  - $\Box$  At the end we use a  $\Delta t$  divised by M compare to the expected  $\Delta t$
- Solution: Implicit time scheme. No CFL condition

$$\frac{\boldsymbol{U}^{n+1}-\boldsymbol{U}^n}{\Delta t}=A(\boldsymbol{U}^{n+1})$$

#### Idea

Taking a larger time step, the implicit scheme allows to filter the fast acoustic waves which are not useful in the low-Mach regime.

# Implicit scheme and conditioning I

Implicit time scheme:

$$M_i \boldsymbol{U}^{n+1} = (I_d + \Delta t A(I_d)) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n$$

- We must solve a nonlinear system and after linearization redsolve some linear systems.
- How solve a linear system:
  - $\hfill\Box$  Exact solver. Too costly for large problem ( system, 3D, high order discretization).
  - □ iterative solver. Used in practice. Default: slow convergence for ill-conditioning matrix.
- Conditioning of a matrix M:

$$k(M) = \frac{\mid M^{-1} \mid}{\mid M \mid} \approx \frac{\lambda_{max}}{\lambda_{min}}$$

Approximative conditioning

$$k(M_i) \approx 1 + O\left(\frac{\Delta t}{\Delta x^p M}\right)$$

#### Remark

 We recover the two scales in the conditioning number. The full implicit schemes are difficult to use for this reason.

### Semi implicit scheme

#### First idea

- We explicit the slow scale (transport) and implicit the fast scales (acoustic)
- Euler equation in 1D:

$$\begin{cases} \partial_t \rho + \partial_x(\rho u) = 0 \\ \partial_t(\rho u) + \partial_x(\rho u^2) + \partial_x p = 0 \\ \partial_t E + \partial_x(Eu) + \partial_x(\rho u) = 0 \end{cases}$$

We use an explicit scheme for convection ( or we split the convection). Implicit acoustic step:

$$\left\{ \begin{array}{l} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x \rho^{n+1} + Rhs_u \\ E^{n+1} = E^n - \Delta t \partial_x (\rho^{n+1} u^{n+1}) = Rhs_E \end{array} \right.$$

Plugging this in the second equation, we obtain

$$E^{n+1} - \Delta t^2 \partial_{\mathsf{x}} \left( \frac{p^{n+1}}{\rho^n} \partial_{\mathsf{x}} p^{n+1} \right) = \mathsf{Rhs}(E^n, u^n, \rho)$$

■ Matrix-vector product to compute  $u^{n+1}$ .

### Semi implicit scheme

#### First idea

- We explicit the slow scale (transport) and implicit the fast scales (acoustic)
- Euler equation in 1D:

$$\begin{cases} \partial_t \rho + \partial_x(\rho u) = 0 \\ \partial_t(\rho u) + \partial_x(\rho u^2) + \partial_x p = 0 \\ \partial_t E + \partial_x(Eu) + \partial_x(\rho u) = 0 \end{cases}$$

We use an explicit scheme for convection ( or we split the convection). Implicit acoustic step:

$$\begin{cases} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x \rho^{n+1} + Rhs_u \\ \frac{\rho^{n+1}}{\gamma - 1} + \frac{1}{2} \rho^n u^n = E^n - \Delta t \partial_x (\rho^{n+1} u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left( \frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)$$

• Matrix-vector product to compute  $u^{n+1}$ .

Innin-

### Semi implicit scheme

#### First idea

- We explicit the slow scale (transport) and implicit the fast scales (acoustic)
- Euler equation in 1D:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0 \\ \partial_t E + \partial_x (E u) + \partial_x (\rho u) = 0 \end{cases}$$

We use an explicit scheme for convection ( or we split the convection). Implicit acoustic step:

$$\begin{cases} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\ \frac{\rho^{n+1}}{\gamma - 1} + \frac{1}{2} \rho^n u^n = E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left( \frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)$$

Matrix-vector product to compute  $u^{n+1}$ .

#### Conclusion

- Semi implicit: only one scale in the implicit symmetric positive operator.
- Strong gradient of  $\rho$  generates ill-conditioning. Assembly at each time (costly).

Nonlinear solver which bad convergence for if  $\Delta t >> 1$  and  $\partial_x p$  not so small.

(nría

### Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to  $O(\Delta x)$ .
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales
- Example: isolated contact:
  - □ varying density (gaussian)
    - constant pressure (p = 1) and velocity (u << 1)
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

which is equivalent to a translation of  $u_0t$ .

Ratio between transport and acoustic:

$$\frac{1}{4} \approx 20$$

Naive scheme  $T_f = 2$   $u_0 = 0.05$  and 1000 cells



### Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to  $O(\Delta x)$ .
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
  - $\square$  varying density (gaussian)
  - □ constant pressure (p = 1) and velocity (u << 1)
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

which is equivalent to a translation of  $u_0 t$ .

Ratio between transport and acoustic:

$$\frac{1}{4} \approx 50$$

Naive scheme  $T_f = 5$   $u_0 = 0.02$  and 1000 cells



### Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to  $O(\Delta x)$ .
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
  - □ varying density (gaussian)
  - $\ \square$  constant pressure (p=1) and velocity (u<<1)
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

which is equivalent to a translation of  $u_0t$ .

Ratio between transport and acoustic:

$$\frac{1}{M} \approx 20$$

Good scheme  $T_f = 2 \ u_0 = 0.05$  and 1000 cells



### Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to  $O(\Delta x)$ .
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
  - varying density (gaussian)
  - $\square$  constant pressure (p=1) and velocity (u<<1)
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

which is equivalent to a translation of  $u_0t$ .

Ratio between transport and acoustic:

$$\frac{1}{\sqrt{4}} \approx 50$$

Good scheme scheme  $T_f = 5 \ u_0 = 0.02$  and 1000 cells



### Relaxation method



### Relaxation method

- Problem: the nonlinearity of the implicit acoustic step generate difficulties.
- Non conservative form and acoustic term:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t u + u \partial_x u + \frac{1}{\rho} \partial_x p = 0 \\ \partial_t p + u \partial_x p + \rho c^2 \partial_x u = 0 \end{cases}$$

Idea: Relax only the acoustic part to linearized the implicit part.

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \Pi) = 0 \\ \partial_t E + \partial_x (E v + \Pi v) = 0 \\ \partial_t \Pi + v \partial_x \Pi + \phi \lambda^2 \partial_x v = \frac{1}{\varepsilon} (\rho - \Pi) \\ \partial_t v + v \partial_x v + \frac{1}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{cases}$$

Limit:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \varepsilon \partial_x \left[ A \partial_x \rho \right] \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \rho) = \varepsilon \partial_x \left[ (A u \partial_x \rho) + B \partial_x u \right] \\ \partial_t E + \partial_x (E u + \rho u) = \varepsilon \partial_x \left[ A E \partial_x \rho + A \partial_x \frac{\rho^2}{2} + B \partial_x \frac{u^2}{2} \right] \end{cases}$$

- with  $A = \frac{1}{\rho} \left( \frac{\rho}{\phi} 1 \right)$  and  $B = \left( \rho \phi \lambda^2 \rho^2 c^2 \right)$ .
- **Stability**:  $\phi \lambda > \rho c^2$  and  $\rho > \phi$ .

### Avdantage

 We keep the conservative form for the original variables and obtain a fully linear acoustic.

lnia

### Splitting

### Splitting

If you want solve  $\partial_t \mathbf{U} = A\mathbf{U}$  the solution is given by

$$U(t) = e^{-At}U(t=0) = e^{-(A_1+A_2)t}U(t=0) \approx e^{-A_1t}e^{-A_2t}U(t=0)$$

A splitting scheme consists to solve two/or more parts of the system separately.

#### Aim

- For large acoustic waves (Mach number not small) we want capture all the phenomena. Consequently use an explicit scheme.
- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \mathcal{M}^2(t) \Pi) = 0 \\ \partial_t E + \partial_x (E v + \mathcal{M}^2(t) \Pi v) = 0 \\ \partial_t V + v \partial_x V + \frac{\mathcal{M}^2(t)}{\phi} \partial_x \Pi = 0 \end{cases}$$

$$\begin{cases} \partial_t \rho = 0 \\ \partial_t (\rho u) + (1 - \mathcal{M}^2(t)) \partial_x \Pi = 0 \\ \partial_t E + (1 - \mathcal{M}^2(t)) \partial_x (\Pi v) = 0 \\ \partial_t \Pi + \phi (1 - \mathcal{M}^2(t)) \lambda_a^2 \partial_x v = 0 \\ \partial_t v + (1 - \mathcal{M}^2(t)) \frac{1}{\phi} \partial_x \Pi = 0 \end{cases}$$

$$\begin{aligned} & \sigma_{t}\rho = 0 \\ & \partial_{t}(\rho u) + (1 - \mathcal{M}^{2}(t))\partial_{x}\Pi = 0 \\ & \partial_{t}E + (1 - \mathcal{M}^{2}(t))\partial_{x}(\Pi v) = 0 \\ & \partial_{t}\Pi + \phi(1 - \mathcal{M}^{2}(t))\lambda_{a}^{2}\partial_{x}v = 0 \\ & \partial_{t}v + (1 - \mathcal{M}^{2}(t))\frac{1}{\phi}\partial_{x}\Pi = 0 \end{aligned}$$

with  $\mathcal{M}(t) \approx \max_{x} \frac{|u|}{s}$ 

After each time step: we project  $\Pi=p$  and  $\nu=u$  (can be view as a discretization of the stiff source term)

### Implicit time scheme

We introduce the implicit scheme for the "acoustic part":

$$\begin{cases} \rho^{n+1} = \rho^{n} \\ (\rho u)^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} \Pi^{n+1} = (\rho u)^{n} \\ E^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} (\Pi v)^{n+1} = E^{n} \\ \Pi^{n+1} + \Delta t \phi (1 - \mathcal{M}^{2}(t_{n})) \lambda_{a}^{2} \partial_{x} v^{n+1} = \Pi^{n} \\ v^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \frac{1}{\phi} \partial_{x} \Pi^{n+1} = v^{n} \end{cases}$$

- We plug the equation on v in the equation on  $\Pi$ . We obtain the following algorithm:
  - □ Step 1: we solve

$$(I_d - (1 - \mathcal{M}^2(t_n))^2 \Delta t^2 \lambda_c^2 \partial_{xx}) \Pi^{n+1} = \Pi^n - \Delta t (1 - \mathcal{M}^2(t_n)) \phi \lambda_c^2 \partial_x v^n$$

□ Step 2: we compute

$$v^{n+1} = v^n - \Delta t (1 - \mathcal{M}^2(t_n)) \frac{1}{\phi} \partial_x \Pi^{n+1}$$

Step 3: we compute

$$(\rho u)^{n+1} = (\rho u)^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x \Pi^{n+1}$$

□ Step 4: we compute

$$E^{n+1} = E^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x (\Pi^{n+1} v^{n+1})$$

### Advantage

- We solve only a constant Laplacian. We can assembly matrix one time.
- No problem of conditioning, which comes from to the strong gradient of  $\rho$

(nría-

E. Franck

### Results I

Smooth contact :

$$\begin{cases} \rho(t, x) = \chi_{x < x_0} + 0.1 \chi_{x > x_0} \\ u(t, x) = 0.01 \\ \rho(t, x) = 1 \end{cases}$$

Error

| cells | Ex Rusanov | Ex LR                      | SI Rusanov  | New SI Rus                  | New SI LR   |
|-------|------------|----------------------------|-------------|-----------------------------|-------------|
| 250   | 0.042      | $3.6E^{-4}$                | $1.4E^{-3}$ | $7.8E^{-4}$                 | $4.1E^{-4}$ |
| 500   | 0.024      | $1.8E^{-4}$                | $6.9E^{-4}$ | 3.9 <i>E</i> − <sup>4</sup> | $2.0E^{-4}$ |
| 1000  | 0.013      | $9.0E^{-5}$                | $3.4E^{-4}$ | $2.0E^{-4}$                 | $1.0E^{-5}$ |
| 2000  | 0.007      | 4.5 <i>E</i> <sup>-5</sup> | $1.7E^{-4}$ | $9.8E^{-5}$                 | $4.9E^{-5}$ |

- Suliciu: relaxation scheme different. The implicit Laplacian is not constant and depend of  $\rho^n$ .
- Comparison time scheme:

| Scheme            | $\lambda$                                                                                             | $\Delta t$  |
|-------------------|-------------------------------------------------------------------------------------------------------|-------------|
| Explicit          | $\max(\mid u-c\mid,\mid u+c\mid)$                                                                     | $2.2E^{-4}$ |
| SI Suliciu        | $\max(\mid u-\mathcal{M}(t_n))rac{\lambda}{ ho}\mid,\mid u+\mathcal{M}(t_n))rac{\lambda}{ ho}\mid)$ | 0.0075      |
| SI new relaxation | $\max(\mid v-\mathcal{M}(t_n))\lambda\mid,\mid v+\mathcal{M}(t_n))\lambda\mid)$                       | 0.04        |

Conditioning:

| Schemes      | $\Delta t$ | conditioning |  |
|--------------|------------|--------------|--|
| Si suliciu   | 0.00757    | 3000         |  |
| Si new relax | 0.041      | 9800         |  |
| Si new relax | 0.0208     | 2400         |  |
| si new relax | 0.0075     | 320          |  |

### First 2D result I

■ We take 100\*100 cells  $T_f = 1$  and

$$\left\{ \begin{array}{l} \rho(t,\mathbf{x}) = G(\mathbf{x} - \mathbf{u}_0 t) \\ \mathbf{u}(t,\mathbf{x}) = \mathbf{u}_0, \quad \text{such that } \nabla \cdot \mathbf{u}_0 = 0 \text{ and } \mid \mathbf{u}_0 \mid \approx 10^{-3} \\ \rho(t,\mathbf{x}) = 1 \end{array} \right.$$

Results:

| Vars       | Ex Rusanov                 | Ex LR                      | SI Rusanov                 | New SI LR          |
|------------|----------------------------|----------------------------|----------------------------|--------------------|
| ρ          | 0.39                       | $1.9E^{-4}$                | 8.4 <i>E</i> <sup>-4</sup> | 7.5 <i>E</i> -5    |
| и          | 0.87                       | 0.51                       | $5.3E^{-3}$                | $2.7E^{-3}$        |
| р          | 9.6 <i>E</i> <sup>-8</sup> | 5.5 <i>E</i> <sup>-7</sup> | $1.8E^{-6}$                | 7.2E <sup>-7</sup> |
| $\Delta t$ | $4.2E^{-4}$                | $4.4E^{-4}$                | 0.8                        | 1(max 9)           |



Figure: Explicit Rusanov scheme, Ex LR-Like, Semi Implicit relax

18/24

### First 2D results II

- Gresho vortex: stationary vortex with varying Mach number and  $\nabla \cdot \mathbf{u} = 0$ .
- $\blacksquare$  We plot the norm of  $\boldsymbol{u}$



Ex scheme: M=0.5 ( $\Delta t=1.4E^{-3}$ ), M=0.1 ( $\Delta t=3.5E^{-4}$ ), M=0.01 ( $\Delta t=3.5E^{-5}$ ), M=0.001 ( $\Delta t=3.5E^{-6}$ )



New scheme: M = 0.5 ( $\Delta t = 2.5E^{-3}$ ), M = 0.1 ( $\Delta t = 2.5E^{-3}$ ), M = 0.01 ( $\Delta t = 2.5E^{-3}$ ), M = 0.001 ( $\Delta t = 2.5E^{-3}$ )

### First 2D results II

- Gresho vortex: stationary vortex with varying Mach number and  $\nabla \cdot \boldsymbol{u} = 0$ .
- $\blacksquare$  Convergence for  $\boldsymbol{u}$  and p



Results with New-relax. Left: 120\*120 cells, Right: 240\*240 cells



 $(^{19}/_{24})$ 

Other multi-scale problems for plasma physics



# Tokamak simulation and magnetized plasma

- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10<sup>8</sup> Kelvin), is confined using magnetic fields. Larger Tokamak: Iter



### Specificity for the Tokamak

- To stabilize the plasma we need very large magnetic field **B**.
- This very large magnetic field generates time/space two scale problem between parallel and perpendicular (to B) dynamic.

 $^{21}/_{24}$ 

### Ap schemes for Vlasov-Maxwell and MHD

- Plasma description:
  - □ **Microscopic**: Newton laws for each particle. Coupled by external forces.
  - □ **Mesoscopic**: description by probability density. Probability to have a particle at the time t the position  $\mathbf{x}$  and the velocity  $\mathbf{v}$ .
  - Macroscopic: description by macro quantities: density, velocity, pressure etc.
     Euler, Navier-Stokes, MHD equations.
- Dimensionless Vlasov- Maxwell equation:

$$\begin{cases} \partial_t f_i + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_i + e \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_i = \frac{1}{\tau} Q(f_i, f_i) \\ \delta \left( \partial_t f_e + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_e \right) - e \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_e = \frac{1}{\tau} Q(f_e, f_e) \\ \frac{e^2}{2} \partial_t \mathbf{E} - \nabla \times \mathbf{B} = -\mu_0 \mathbf{J} \\ \partial_t \mathbf{B} + \nabla \times \mathbf{E} = 0 \\ \nabla \cdot \mathbf{B} = 0 \\ \frac{e^2}{2} \nabla \cdot \mathbf{E} = n_i - n_e \end{cases}$$

with  $\varepsilon \approx \frac{V_0}{c}$ ,  $\tau = \frac{\lambda}{L}$  with  $\lambda$  the mean free path,  $\delta = \frac{m_e}{m_i}$  the mass ratio.

- **Limit** :  $\tau \rightarrow 0 ==>$  Euler-Maxwell bi-fluid.
- **Limit** :  $\tau \to 0$ ,  $\varepsilon \to 0$ ,  $\delta \to 0 ==>$  Extended MHD.

#### Aim

- Aim  $\tau \to 0$ : filter collision and capture the equilibrium.
- Aim  $\varepsilon \to 0$ : filter fast electromagnetic waves (weak coupling with the rest).
  - Aim  $\delta \to 0$ : filter inertial effect of electron. Main dynamic given by ions.

# Gyro-kinetic limit and Anisotropic diffusion

- Gyrokinetic model: We consider the Vlasov Maxwell equations.
- For large magnetic field: two space/time scales:
  - ☐ fast rotation of ion around the magnetic field lines (radius, velocity depends of B)
  - average transport of ion in the parallel direction.
- Gyrokinetic model filter the fast rotation. We can design aslo numerical scheme for Vlasov to filter this rotation if necessary.



$$\partial_t T - \nabla \cdot (\kappa_{\parallel} \boldsymbol{B} \otimes \boldsymbol{B} \nabla T) - \kappa_{iso} \Delta T = 0$$

- To avoid a strong CFL condition: implicit scheme.
- Conditioning of the matrix:

$$C \approx \frac{\kappa_{\parallel}}{\kappa_{\textit{iso}} \Delta^2} \approx 10^2 - 10^{10}$$





### Conclusion

#### **Problem**

- We consider problem with two space/time scales.
- Sometimes we want solve the two scales. Sometimes we want filter ( neglect ) the fast one and capture the slow one.
- Naive method: we must capture the fast one to capture the slow one. Very important cost.

### Euler equation

- Introducing Dynamic splitting scheme we separate the scales.
- Introducing implicit scheme for the acoustic wave we can filter these waves.
- Introducing relaxation we simplify at the maximum the implicit scheme.
- An adapted spatial scheme is also very important.

#### Announcement

- With some colleges we organize the summer school "Cemracs 2020".
- Theme: "Models and simulation of many passive/active particles". Physics particles, cells, population dynamic, crowd movement, smart city.

lnia

24/24