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Iter Project and nuclear fusion

Applications

B Modeling and numerical simulation for the nuclear fusion.

B Fusion DT: At sufficiently high energies
deuterium and tritium (plasmas) can
fuse to Helium. Free energy is released. Deuterium Helium

* {
B Plasma: For very high temperature, the ‘\ G*-t‘
gas is ionized and give a plasma which @ "

can be controlled by magnetic and \
electric fields.
¢ / \ Energy
(W) ¢

B Tokamak: toroidal chamber where the
plasma (108 Kelvin), is confined using Tritium Neutron
magnetic fields. Larger Tokamak: Iter

B Plasma turbulence (Tokamak center) ==> Kinetic models.
B Plasma instabilities (Tokamak edge) ==> Fluid models.
B Necessary to simulate these phenomena and test some controls in realistic geometries

of Tokamak.
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Applications

B Modeling and numerical simulation for the nuclear fusion.

B Fusion DT: At sufficiently high energies
deuterium and tritium (plasmas) can o e
fuse to Helium. Free energy is released. — [o—

(tor plasma positioning and shaping)

B Plasma: For very high temperature, the
gas is ionized and give a plasma which
can be controlled by magnetic and
electric fields.

B Tokamak: toroidal chamber where the
plasma (108 Kelvin), is confined using
magnetic fields. Larger Tokamak: Iter (soconary nstomer )

B Plasma turbulence (Tokamak center) ==> Kinetic models.
B Plasma instabilities (Tokamak edge) ==> Fluid models.
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MHD equations

B MHD equation (non conservative form):

Otp+ V- (pu)=0

potu +pu-Vu+Vp=(VxB)xB
Op+V-(pu)+(y—1)pV-u=0
0:B+V x (u x B)

V-B=0

with p the density, u the velocity, p the pressure and B the magnetic field.
We can write the model on conservative form. It is a hyperbolic system admitting a

entropy dissipation equation.
OtpS+V - (pSu)<V-B

B Eigen-structure:
O Material waves at the velocity (u, n)

2
O Alfven waves at the velocity vy = 1/%

O Slow and Fast Magneto-acoustic waves: depending of v4 and ¢ = % the sound
speed.
B The ratio between the wave speeds can be huge. The MHD is a strongly multi-scale
problem in time.
|

For tokamak simulation the phenomena are strongly anisotropic with B as dominant
direction.

5
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MHD equilibrium and instabilities

B |n tokamak we want maintains the plasma
around an equilibrium

(V x B)xB = Vp,
N——
J

with u = 0.

B Some instabilities can appear and damages
the device.

B |t important to simulate these instabilities
and the possible methods to control them.

B Physical regime:

U Low 3: c << V,

U compressible in parallel direction:
UH ~ C

U incompressible in perpendicular
direction: u; << c

B To treat this regime and the strong diffusion
in parallel direction we need implicit/semi
implicit scheme.
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Euler equation and Low-Mach regime

B To treat the MHD problem we need a scheme efficient for compressible flow (parallel
part) and nearly incompressible flow (perpendicular part).
B Simplify problem: Construct schemes for compressible Euler equations able to treat
the two regimes.
B Equations:
Orp+V - (pu) =0
potu+ pu-Vu+Vp=0
Op+V-(pu)+(y—1)pV-u=0

B Normalization:

O we introduce characteristic time ty, velocity V, length L.

O the characteristic velocity up and pressure ypp. The sound velocity is ¢2 = %.

Application

B Astrophysics with the Euler equations (additional gravity term in general).
B Nuclear fission with multi-phase models.
B Nuclear fusion in Tokamak with the MHD model.
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Euler equation and Low-Mach regime

B To treat the MHD problem we need a scheme efficient for compressible flow (parallel
part) and nearly incompressible flow (perpendicular part).
B Simplify problem: Construct schemes for compressible Euler equations able to treat
the two regimes.
B Equations:
Otp+ V- (pu)=0
potu+ pu-Vu+Vp=0
Otp+ V- (pu)+(vy—=1)pV-u=0
B Normalization:
0 we introduce characteristic time tp, velocity V, length L.
O the characteristic velocity ug and pressure vpg. The sound velocity is ¢2 = 77‘;’.
to U
Oep + [% V- (pu) =0
topo
pouoL

oo 2] [

t
patu—&—{OTuo}pu~Vu+[ }szo

Application
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B Nuclear fusion in Tokamak with the MHD model.
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Euler equation and Low-Mach regime

B To treat the MHD problem we need a scheme efficient for compressible flow (parallel
part) and nearly incompressible flow (perpendicular part).
B Simplify problem: Construct schemes for compressible Euler equations able to treat
the two regimes.
B Equations:
Otp+ V- (pu)=0
potu+pu-Vu+Vp=0
Op+V - (pu)+(y—1)pV-u=0
B Normalization:

U we introduce characteristic time tp, velocity V, length L.
O the characteristic velocity up and pressure ypp. The sound velocity is ¢? = %.
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Euler equation and Low-Mach regime

To treat the MHD problem we need a scheme efficient for compressible flow (parallel
part) and nearly incompressible flow (perpendicular part).

Simplify problem: Construct schemes for compressible Euler equations able to treat
the two regimes.

Equations:
Otp+ V- (pu)=0
potu+ pu-Vu+Vp=0
Otp+V - (pu)+(y—1)pV-u=0

Normalization:
U we introduce characteristic time tp, velocity V, length L.

O the characteristic velocity up and pressure ypp. The sound velocity is ¢? = %.
We want to focus on the fluid motion consequently we choose V = wp.
We define the mach number:M = %8 . Using this we obtain
Otp+V-(pu)=0 Otp+V - (pu)=0
potu + pu - Vu + %}szo — 6t(pu)+V~(pu®u)+%Vp:0
Op+u-Vp+pV -u=0 HE+V - (Eu)+V - (pu)=0

i __p 2 plul?
with E = ﬁ—l-M e
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Low-Mach limit

Limit in 2D
O We consider u = ug + M2?uy, We consider p = pg + M?py. The limit is:

Otpo + uo - Vpo = 01

Orug + ug - Vug + ;Vpl =0

0

V- upg = 0
L If po = cts we obtain the classical incompressible Euler equation.
O Interpretation: Fluid motion around the acoustic equilibrium : V - ug =0, Vpy = 0.

Limit in 1D

O We consider u = ug + M?u;, We consider p = po + M?p;. The limit is:

| A

Otpo + upOxpo = 0
Orug + Oxp1 = 0
Oxug =0
O Interpretation: Fluid motion (isolated contact) around the acoustic equilibrium :
Oxug = 0 and Oxpp = 0.

O A scheme which has a good behavior in the limit regime ( around the acoustic
equilibrium).

8
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Numerical difficulties in space: VF and DG
B Methods used: VF/DG (FE also but not here). Principle of VF method:
B:U(t, x) + 0xF(U(t, X)) = 0
/iamnm+/‘&ﬂuuxnzo
9 Q
B with Q; a cell. Easily we obtain:
&/’Wan+/1aﬂuum»:o
Q Q
B We consider U(t,x) = 3_; Ujxq; with U;(t) = ‘QLJI Jo U(t, x)
|95 1 6:U;(t) + F(U(t, x;, 1)) — F(U(t,x;_1)) = 0

B The quantities F(U(t, inl)) are unknown. VF idea: F(U(t, Xy ) = G(Uj, Ujty).
2

We speak about of numerical fluxes.

1
2
B (Classical fluxes : centered (unstable with explicit scheme):

G(U;, Uj1) = % (F(Uj) + F(Uj+1))
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Numerical difficulties in space: VF and DG
B Methods used: VF/DG (FE also but not here). Principle of VF method:
0:U(t, x) + 0«F(U(t, x)) = 0
/“@mn@+/1@nuum»:o
Q; Q;
B with Q; a cell. Easily we obtain:
@/‘an+/1@ﬂuuxnza
4] K
lWum%ﬂU@ﬂzZﬂWWMm%ﬁhﬁ%&U@ﬂ
J
|95 1 6eU;(t) + F(U(t, x;, 1)) — F(U(t.x;_1)) = 0

B The quantities F(U(t, inl)) are unknown. VF idea: F(U(t, inl)) ~ G(Uj,Uj).
2 2
We speak about of numerical fluxes.

B (Classical fluxes : upwind, Riemann Solver etc:

G(U;, Uj) = 5 (F(U) + F(U2)) = A(U;, Ujx)(Uja — U)
B Discrete scheme:
0t U(t) + Dop(U(t)) — AxDy(A(U)DLU) =0

B with Dy, the k order discrete derivative; h
?/30
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Numerical difficulties in space: VF and DG
B Methods used: VF/DG (FE also but not here). Principle of VF method:
BeU(t, x) + OxF(U(t, x)) = 0
/ DUt x)+/ DF(U(t,x)) = 0
Q; Q;
B with Q; a cell. Easily we obtain: !
at/ U(t,x)+/ O F(U(t, x)) = 0.
B We consider U(t,x) = >_; Ujxq; with U;(t) = ‘Q I Jo U(t, x)

|95 1 6:U;(t) + F(U(t, x;, 1)) — F(U(t,x;_1)) =0

B The quantities F(U(t, inl)) are unknown. VF idea: F(U(t, inl)) ~ G(Uj, Uj1).
2 2
We speak about of numerical fluxes.

B (lassical fluxes : upwind, Riemann Solver etc:

1
G(U;, Uj) = 5 (F(Uj) + F(Ujs1)) = AU}, Uj11)(Ujs1 — U;))
B Equivalent equation:

BrU(t, x) + O F(U(t, x)) — Dxdy(A(U)d,U) = O(Ax2)

B We speak about numerical diffusion. h
?/30
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Numerical difficulties in space: VF and DG I

Properties of hyperbolic systems: these models can generate discontinuities. No
unicity of the weak solution.
To obtain uniqueness and stability we introduce additional entropy equation:

om(U) +0xQ(U) <0 — Bt/r](U) <0
with 7(U) a convex function, {(U) the entropic flux such that n,(U)F,(U) = QI(U).

The left part is exactly zero for smooth solution.
Stability of the scheme:

en(U) + Dh¢(U) < oﬁat/n(U) <0

Approximated model:

8:U + 0 F(U) — Ax0,(A(U)0,U) = O(Ax2)

The structure of the numerical diffusion play an important role in the stability.

Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the
solutions or some particular solutions ( low mach flow, steady state etc) and keeping
the stability properties.
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B with n(U) a convex function, {(U) the entropic flux such that n,(U)F,(U) = QI(U).
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Numerical difficulties in space: VF and DG I
B Properties of hyperbolic systems: these models can generate discontinuities. No

unicity of the weak solution.
B To obtain uniqueness and stability we introduce additional entropy equation:

den(U) + 3:Q(U) < 0 aat/n(U) <o
B with n(U) a convex function, ¢(U) the entropic flux such that n,(U)F,(U) = Q/(U).
The left part is exactly zero for smooth solution.
B Stability of the scheme:
Den(U) + Dyc(U) < 0 — 8t/17(U) <0
B Approximated model:
Am(U) + 8Q(U) — Axdy(n (U)A(U)IxU) < 0+ O(Ax?) — 8; /n(u) <0

® if " (U)A(U) > 0.

B The structure of the numerical diffusion play an important role in the stability.

B Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the
solutions or some particular solutions ( low mach flow, steady state etc) and keeping
the stability properties.
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Numerical difficulties in space: VF in 1D

B Second method: Finite volume and DG method
U VF method + Rusanov flux. Equivalent equation:

Oep + Ox(pu) = Taxxp
SAx
5 —— Oxx(pu)

1
0u(pu) + Du(pt) + o5 0p =
OE + Ox(Eu) + 0x(pu) = STBXXE

U Problem: S must be larger that ;; for stability. Huge diffusion.

B Example: isolated contact p =1 and
u=0.1. B Rusanov scheme T = 2 g = 0.05

B Exact. solution: and 1000 cells

Otp + updxp =0
B Rusanov scheme:

SAx
atp + anxp == Taxxp 25
with S > ug+c=1.5

B Upwind scheme for limit:

ugAx o0 02 04 06 08 10

Oxxp h
11/39
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B Second method: Finite volume and DG method
U VF method + Rusanov flux. Equivalent equation:

Oep + Ox(pu) = Taxxp
SAx
5 —— Oxx(pu)

1
0u(pu) + Du(pt) + o5 0p =
OE + Ox(Eu) + 0x(pu) = STBXXE

U Problem: S must be larger that ;; for stability. Huge diffusion.

B Example: isolated contact p =1 and
u=0.1. B Rusanov scheme T =5 up = 0.02

B Exact. solution: RS

Otp + updxp =0
B Rusanov scheme:

EL

Otp + upOxp = %(’Mﬂ 25
with S > ug+c=1.5
B Upwind scheme for limit:
ugAx

Otp + upOxp =

0o 02 ) U5 o8 10
8><XP ﬁ
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Numerical difficulties in space: VF in 2D

B Same analysis in 2D.

U VF method + Rusanov flux. Equivalent equation:

SA

X

Otp+ V- (pu) = TAP

Ot(pu) + V- (pu ® u)
HE+V - (Eu)+V - (pu) =

U Problem: S must be larger that % for stability. Huge diffusion.

B Example: isolated contact p =1, V- up = 0 and ug constant in time.
B Rusanov scheme Ty = 2 | ug |~ 0.001 and 100*100 cells.

density, t=2.0

1.0x10°"

7.5%10°°

5.0010°°

25x10°8

B Red: exact solution, Blue: numerical solution.

norm2u,t=2.0
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Numerical difficulties in space: VF in 2D

B Same analysis in 2D.
U VF method + Rusanov flux. Equivalent equation:

SA
Otp+ V- (pu) = TXAp

I SA
potu + pu - Vu + —MZVp: —2XAu
Ax
Op+u-Vp+~4pV - -u= Vp

U Problem: S must be larger that % for stability. Huge diffusion.

B Example: isolated contact p =1, V- up = 0 and ug constant in time.
B Rusanov scheme Ty = 2 | ug |~ 0.001 and 100*100 cells.

density, t=2.0 norm2u,t=2.0
1.0%10°7 ‘ .
7.5%10°°

5.0010°°

25x10°8

B Red: exact solution, Blue: numerical solution. r-\
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Numerical difficulties in time

Explicit time scheme

B Low-Mach regime: fast and small acoustic waves. Weak/no coupling with the fluid
motion.
B Explicit scheme: CFL condition

maxyx (u+ %) At <h

B At is very small and allows to capture the fast waves. We want/can filter the fast
waves.
B Solution: full implicit/semi implicit time schemes.

| A

Implicit time scheme

B Nonlinear problem to invert: Newton/picard + linear solver.
B Drawbacks: matrix to assembly, to store and to invert.
B Operator to invert:
(lgh — AtA) =~ A, for h<<1land At >>1
with A the discrete spatial scheme of the Jacobian.
U Full implicit: Eigenvalues of A: (u — 7, u, u + ). So ill-conditioning.
O In 2D additional zero eigenvalue (shear wave) which generate ill-conditioning.
O Strong gradient of p and p generate also ill-conditioning.

137 Y

E. Franck \
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R R R R RRERERRERRRREEE==S=———————
Classical implicit scheme

B We use an explicit scheme for convection ( or we split the convection).
B Implicit acoustic step:

pn+1 =p"
(pu)"t = p"u" — Atdxp™t! + Rhs,
E™l = E" — Atdx(p"ttu"t1) = Rhsg

Plugging this in the second equation, we obtain
pn+1
E™! — At29, (7@,3"“) = Rhs(E", u", p)

B Matrix-vector product to compute u"*+1.
B Works with similar idea: [DegondTang09]-[DLV17]-[DDLV18].
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B We use an explicit scheme for convection ( or we split the convection).
B |mplicit acoustic step:
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(pu)™t = p"u" — Atdxp™t + Rhs,
n+1
f{rl + 2p"u" = E" — AtOx(p"tu"tt) = Rhsg

Plugging this in the second equation, we obtain

pn+1

v—1

pn+1
— A20 (—naxp"“) = Rhs(E", u", p)
p

B Matrix-vector product to compute u"+1.
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R R R R RRERERRERRRREEE==S=———————
Classical implicit scheme

B We use an explicit scheme for convection ( or we split the convection).
B |mplicit acoustic step:

pn+1 =p"
(pu1)n+1 =p"u" — Ataxpn-H + Rhsy
n+
I'Jy—l + %pnun — En _ Atax(pn+1un+l) = Rhsg

Plugging this in the second equation, we obtain

aco, (P70, 1) = Rhs(E?, w7
- x \ = OxP = Rhs(E", u", p)
y—1 p"

B Matrix-vector product to compute u"+1.
B Works with similar idea: [DegondTang09]-[DLV17]-[DDLV18].

B Semi implicit: We have only one scale in the implicit operator. The operator is
symmetric and positive.

B Strong gradient of p and p generate also ill-conditioning. The matrix must be
assembled at each time (costly).

B Nonlinear solver which bad convergence for if At >> 1 and the gradient of p not so
small.

¥ 14
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==
Numerical difficulties in time

B Design implicit/semi implicit VF/DG scheme without problem of
conditioning/inverting etc.

B Solution proposed: construct new model larger, but simpler (relaxation model) with
approximate the original model and write the scheme for the new model to obtain the
scheme for the original one.

\‘ 15/39
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Linear and full implicit relaxation scheme
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R R R R R R RS
General principle

B We consider the following nonlinear hyperbolic system

o:U+0F(U)=0
B with U a vector of N functions.
B Aim: Find a way to approximate this system with a sequence of simple systems.

B |dea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADNOO].

0:U+ 6,V =0
OV + 220U = 1(f-'(u) -v)
€

Limit of the hyperbolic relaxation scheme

0 The limit scheme of the relaxation system is

B8:U + 0xF(U) = 205 (N2— | A(U) [2)8xU) + o(£?)
O with A(U) the Jacobian of F(U).

B Conclusion: the relaxation system is an approximation of the hyperbolic original

system (error in €). /\
17/
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Specific kinetic model: stability

B First order stability: we consider the first order approximation

DU + O F(U) = edx ((NIh— | OF(U) ?) 9xU) 4 O(?)

den(U) + 0:Q(U) — =0s (0 (U) (31— | OF (U) [2) 0.U) <0+ O(=2)

B The second equation is true if n”(U)A(U) >0.
B Finally, we have the entropy property at the first order if

A > Vpmax | OF(U) |, with A(U) = (\2l,— | 8F (U) %) .

B Entropy stability: For the model [Jin95]

Oru+Oxv =0
1
v + N20,u = = (F(u) — v)
€
we obtain

OrP(u, v) + OV (u, v) < f§8v¢(u, v)-(v—"~f(u)) <0

with ®(u, v) = hy(v+ Au)+ h_(v —Au), V(u, v) = X(he(v+Au) — h—(v—Au)) and

1
(P £ 20) = 5 (o) = H2)
2 A
B The inequality is true if ®(u, v) convex compare to v and 8, ®(u, v = f(u)) = 0.
B |t is true if | F'(u) |< A. The situation seems the same for systems. h
18
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XlIn-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non locality is linear"”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation
[Parul5].

= Key point: the ;U = 0 during the relaxation step. Therefore f¢(U) is explicit.

B Relaxation step:
Un+1 ur
{ 0L (F(U™1) — V) 4 (1 - 0) AL (F(U") - V")

B Transport step (order 1) :

0 1 Un+1 un
(o) (Va )= (W)
L We plug the equation on V in the equation on U.
0 We obtain the implicit part:
(lg — A2A20,) U™ = U™ — Atd V"
' We apply a matrix-vector product
Vn+1 — —At)\28X Un+1

B Advantages: N independent elliptic equations with constant coefficient. r'\
B Natural extension at the second order in time. In space: FV (used here) or DG/FE. 19/39
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XlIn-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non locality is linear"”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation
[Parul5].

= Key point: the ;U = 0 during the relaxation step. Therefore f¢(U) is explicit.

B Relaxation step:
Un+1 ur
{ Vs 2 rwny - vy« - nperum - v

B Transport step (order 1) :

0 1 Un+1 un
(o) (V)= (W)
L We plug the equation on V in the equation on U.
0 We obtain the implicit part:
(lg — A2A20,) U™ = U™ — Atd V"
' We apply a matrix-vector product
Vn+1 — —At)\28X Un+1

B Advantages: N independent elliptic equations with constant coefficient. r'\
B Natural extension at the second order in time. In space: FV (used here) or DG/FE. 19/39
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XlIn-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non locality is linear"”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation
[Parul5].

= Key point: the ;U = 0 during the relaxation step. Therefore f¢(U) is explicit.

B Relaxation step:
Un+1 un
{ (1o +048) V7l = 9ALF(U") + (1 - )AL (F(U") — V™)

B Transport step (order 1) :

0 1 Un+1 uyn
’d+( a0 )BX( vert )= e
U We plug the equation on V in the equation on U.
U We obtain the implicit part:
(lg — A2A20,) U™ = U — Atd V"
L We apply a matrix-vector product

Vn+1 — —At)\28X Un+1

B Advantages: N independent elliptic equations with constant coefficient. r'\
B Natural extension at the second order in time. In space: FV (used here) or DG/FE. 19/39
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XlIn-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non locality is linear”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation
[Parul5].

- Key point: the 9:U = 0 during the relaxation step. Therefore f¢(U) is explicit.

B Relaxation step:

Un+1 —y"
B Transport step (order 1) :

0 1 yntl ur
o+ (o )o(ven )= (W)

0 We plug the equation on V in the equation on U.
L We obtain the implicit part:

(lg — A2A20,) U™ = U™ — Atd V"
L We apply a matrix-vector product

vt = — Ao, Ut

B Advantages: N independent elliptic equations with constant coefficient.
B Natural extension at the second order in time. In space: FV (used here) or DG/FE.F\

E. Franck \19/39
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Time discretization

B Consistency analysis of the scheme : splitting + CN for relaxation + Euler implicit for
transport.

First order scheme (first order transport )

B \We define the two operators for each step :

(g + AtAd ) F L = £"
f”+1+9 (feq(U) f”+1):f" (179) (fec’(U) fm)
B Final scheme: Tp; o RAt is consistent with

0eU + 0xF(U) = %)\28XXU+ (%) 0. (D(U)D,U) + O(AL)
w

B with w = and D(U) = (\2I,— | OF(U) ).

At
e+0At

B Order 2: If we choose ¢ =0 + 6 = 0.5 for the relaxation (so we have w = 2) +
Crank-Nicolson for transport part 4+ Strang splitting. No numerical diffusion but
numerical dispersion.

\‘ 20 /39‘
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BC : results

B Question: What BC for the kinetic variables. How keep the order ?

First result

0 The second order symmetric (modified version tot he previous scheme) scheme for the
Xin-Jin relaxation: 0:U + OV =0
1
{ BV + N0, U = =(F(U) — V)
€

is consistent with
U + 0xF(U) = O(At?)
W — OF (U)W = O(At?)

with W = F(U) — V.

B Natural BC: entering condition for U and W =0 or 0xW = 0.
B Example: F(u) = cu (transport):

1f ,—‘
—1=0.02
. \ —t=0.09
S 05 I A t=0.17

B

\ / t=0.25
! i J/ =033

0 ppedamt N ] [ QAN

0 05 1 0 05 1

B Transport of the u (dashed lines) and w = v — f(u) (plain lines) quantities.

B Same results for the Euler equations. r-\
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BC : results

B Question: What BC for the kinetic variables. How keep the order ?

First result

O The second order symmetric (modified version tot he previous scheme) scheme for the
Xin-Jin relaxation: 0:U+ 0,V =0
1
{ 8V 4+ X28,U = =(F(U) — V)
€
is consistent with
9:U + 04F(U) = O(At)
W — OF (U)o, W = O(At?)
with W = F(U) — V.

B Natural BC: entering condition for U and W =0 or 9xW = 0.
B Example: F(u) = cu (transport):

15

—v(t=0,x) | 107!
== v(t = tmax, X) i
— "Exact” strategy

-- "Dirichlet” strategy
0.5 | "Neumann” strategy

— 1% order
— 2" order
© Exact

4 Dirichlet
© Neumann

T T T T - T - T 10°
0 02 0.4 0.6 0.8 1 g g g ge oo
X Ax

B Same results for the Euler equations. r-\
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Xin-Jin relaxation: limit of the method

Numerical error

B FError for the first order splitting scheme:

U + 8y F(U) = At (N2 ly— | A(U) [2)0xU) + o(At?)

B Low-Mach Euler equation: we take A > c. For the density equation, we obtain
Bep + Ox(pu) = Atd (N2 — 1u?)xp — pdxu?® — Dxp) + o(At?)
B |n Low mach regime Oxu =~ M, Oxp ~ M and u = M consequently
Bep + Ox(pu) = Atdx(c20xp) — O(M)dxxp + o( At?)

B Conclusion: Huge diffusion for the contact wave.

Test: smooth contact. First order time scheme. T = % At = T¢/100.

22 ; ; ; t:IZ.(] ; ; ; 22 ; ; ; t= IZO.O‘
2.0 :
1.8
16
14
12
10

0'—82.0—1.5—1.0—0.5 0.0 05 10 15 20 1'92.0—1.5—1.0—0.5 0.0 05 1.0 15 2.0
X X

Order 1. Left: M =0.1. Right: M =0.01 ,22/ \
39
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Xin-Jin relaxation: limit of the method

Numerical error

B FError for the first order splitting scheme:

8:U + 8 F(U) = Atd((N2lg— | A(U) [2)8xU) + o(At?)

B Low-Mach Euler equation: we take A\ > c. For the density equation, we obtain
Btp + Ox(pu) = Atd (N2 — u?)Byp — pdxu? — Bxp) + o(At?)
B |n Low mach regime dxu =~ M, Oxp =~ M and u = M consequently
Bep + Ox(pu) = Atdy(c20xp) — O(M)dsxp + o(At?)

B Conclusion: Huge diffusion for the contact wave.

item Test: smooth contact. Second order time scheme. T = % At = T¢/100.

t=2.0 t=20.0
24

ogb—i+ i i i ot i i NG
=2.0-1.5-1.0-050.0 05 1.0 1.5 2.0 =2.0-1.5-1.0-050.0 05 1.0 1.5 2.0
X X

Order 1 Left: M = 0.1. Right: M =0.01 ,22/ \
39
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R R R R RRRRRERERRERERRREEEE==S=————————
Possible solution: Relaxation with central wave
B Relaxation methods with a central wave [Bou09]-[Nat96]-[ADNO0O].
8tU + 8X V = 0

BV + W = ~(F(U) — V)

M | =

1
AW + €0V = Z(\(FT(U) — F~(U)) — W)
€
with F(U) = F*(U) + F~(U) . Additional zero wave.
B Limit:
U + 0xF(U) = Atd(MAT(U) — A= (U))— | 9F(U) [2)8xU) + o(At?)
B Question: choice of the flux splitting.
B Test case: Acoustic wave. Very high-order, 4000 cells.

B Xin-Jin At = 0.005 (yellow), Splitting-Relaxation At = 0.005/0.01 (red, green).
Contact captured.

B Conclusion: Relaxation with central Can preserve contact wave and the low mach
limit. BUT Stability not clear.

23/
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Semi implicit relaxation scheme
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First Semi implicit scheme |

Previous approach difficult to relax the two scales correctly and keep stability.
Idea: Relax only the acoustic part to linearized the implicit part [CGS11]-[CC12]
Suliciu approach: relax the pressure which is a strongly nonlinear function of
macroscopic variables.
Otp + Ox(pu) = 0
de(pu) + dx(pu® +M) =0
OE + Ox(Eu+MNu)=0
Bt(pMN) + dx(pMu) + X20xu = £(p — M)
Limit:
Orp + Ox(pu) =0
Or(pu) + 8X(pu2 + p) = €0« (()\2 — p2C2) Oxu)
2
OE + 0x(Eu + pu) = =0, (W = p2c?) 0%

Stability: A > pc.

Contact waves: Oep + udxp =0
Oxu=20
oxkp=0

redare preserved by the relaxation approximation.

Another way to say that : the contact waves are also solution of the relaxation model
if 7(t = 0) = p(t = 0).

For the low-mach flow (around the contact waves) the relaxation model is a very

accurate approximation. h
25
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First Semi implicit scheme I

Idea: splitting + implicit scheme for acoustic part [IDG18];

Splitting scheme: convective part

3:P+ax(pu) =0
(€)= Bt (pu) + Ox(pu® + E7(1)M) = 0
OtE + Ox(Eu+ E%(t)NMu) =0
Bt(pMN) + dx(pMNu) + NZ0xu = 2(p — )

The eigenvalues: (u— E(t)%, u, u+ g(f)%)-

Splitting scheme: acoustic part

Bep =0
P 8t€pu)+(1—52(t))8)<|'|:0
(A) =1 8.E + (1= £2(£))au(Mu) = 0

9e(pM) + (1 — £2(1))A\30xu = 2(p — 1)

The eigenvalues: (—(1 — 82(1_“))%, 0,(1- Ez(t))%)

B with A2 = A2 + (1 — &2(t))A\2.
B |mportant point: )
. u
E2(t) ~ min (Sm;n,max (21)> .
Lisia E. Franck y
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First Semi implicit scheme IlI

B Spatial scheme for convective part: Rusanov scheme:

U Principle of Rusanov scheme. Diffusion matrix:

)
A(U) = -IdU
2
with S larger that the maximal wave speed.
O For the full explicit scheme S >| u | +c & ¢ in low mach regime.

O For the splitting implicit scheme S >| u | +&(t) & 2u in low mach regime.

Conclusion: the density is slowly damped as a classical scheme for advection.
Good behavior of scheme for low mach flow.
O

Since is never zero. The scheme doesn't preserve steady contact wave (u=0).
]

For high-mach flow the full model is explicit and we obtain classical scheme.

B Spatial scheme for the acoustic part: centered scheme. The stability is preserved since
this part will be implicit.

\l 27/39
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First Semi implicit scheme IV

B Time scheme:
(pu)™! = p"u" — At(1 — E2(t))oxN"t =0
Ertl = En — At(1 — £2(1))0x(MN™ 1 um1) = 0
PN = p" " — (1 — £%(1))AtA20,u™ ! =0

The last equation can be rewritten as

1
U = u" — At(1 - E%(1)) S 0N =0
P

Plugging this in the second equation, we obtain

n 1 1 n n n
Nt — A?(1 - 52(t))2ﬁax (Exgaxn +1) = p(N", u")

B Matrix-vector product to compute u and E.

B Advantages Implicit part: just one linear elliptic problem to invert.

B Defaults: conditioning depending of the density and need to be assembly at each
time.

B Problem: velocity is a nonlinear function of p and pu.

\‘ 28/39
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Second Semi implicit scheme |

B |dea: Relax only the acoustic part to linearized the implicit part.
B New approach: relax the pressure and velocity (acoustic variables).
Oep + Ox(pv) =0
Ot(pu) + Ox(puv + M) =0
afE+ BX(EV + I'Iv) = 0
AN + vOxN + ¢pA20xv = 1(p — M)
Orv + vOxv + %8)(” = %(u —v)
B Limit:
— 1(e _1)6
Oep + Ox(pu) = €0y [p (d> 1) dxp]
Be(pu) + Bx(pt? + p) = dx [% [u (f;j - 1) Oep+ (pdp)2 — p22) aXuH

OE +0u(Eu+pu) =<0y [L [E (2 —1) oep+ (£ -1) 0B + (ppX2 — p2c?) 2]

N

B Stability: ¢\ > pc? and p > ¢.

B Contact waves: Otp + udxp =0
Oxu=20
oxkp=0

B redare preserved by the relaxation approximation.
B The contact waves are also solutions if w(t = 0) = p(t = 0) and v(t = 0) = u(t = 0).
B For the low-mach flow (around the contact waves) the relaxation model is a very

accurate approximation. r‘\
29
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Second Semi implicit scheme |l

B First order stability: we consider the first order approximation
U + 05 F(U) = €0, (A(U)dxU) + O(£?)
(V) + :Q(U) — 0x (0 (VA(U)DU) <0+ O(c?)

B The second equation is true if n”(U)A(U) > 0. It is true for the matrix associated
with relaxation scheme if ) 5
O > pct, p > ¢
B Entropy stability: We rewrite the model as
atp + a)<(pV) =0
Ot(pu) + Ox(puv + M) =0
atE+ ax(EV —+ I'Iv) = 0
dt(pN) 4 Ox(pvN) 4 abdxv = 2(p — M)
Ae(pv) + Dx(pv?) + 20xM = 2{u —v)
Ora+ Ox(av) =0
Otb + 0x(bv) =0
B with a(t = 0) = pA and b(= 0) = ¢A.
B |dea : comparison principle. We consider S the entropy and $ the function such that
8:54+v8,.5=0, with §(t =0)=S(t=0)

B We prove using the equations that S(p, s) < é and using specific invariants that
é > e(p, 8). We deduce that

S(p.e) >§,H/S(t)2/§(t):/5(t:0) (30/ \
39
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Second Semi implicit scheme Il

B |dea: splitting + implicit scheme for acoustic part.
B Splitting scheme: convective part

Brp+ Di(pv) = 0
Ot(pu) + Ox(puv + E2(t)M) =0
(C) = OtE + Ox(Ev + E2(t)Mv) = 0
OeM + vo, M + (p/\28Xv =Lp-n

dev + voyv + £ t)BXﬂf s(u—v)
B The eigenvalues: (v — E(t)A, v, v + E(t)N).

B Splitting scheme: acoustic part

8:[7: 0
Ae(pu) + (1 — £2(1))x
(A)={ OE+(1—E%(t))ox (nv) = o
AN+ (1 — E%(1))pA20v = —(p—N)
Orv+ (11— Sz(t))é oxN = 1(u —v)

B The eigenvalues: (—(1 — E2(t))A, 0, (1 — E2(t))A
B with A2 = A2 + (1 — 2(t))\2.

B Important point:

52(t) & min (é’m,-,,, max (g 1))2 .
\‘ 31/39
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Second Semi implicit scheme IV

B Spatial scheme for convective part: Rusanov scheme:
U Diffusion matrix for this scheme:
S
(A(U)ocU) = EBXXU
with S larger that the maximal wave speed.
O For the full explicit scheme S >| u | +c = ¢ in low mach regime.
O For the splitting implicit scheme S >| u | +£(t) = 2u in low mach regime.
O Conclusion: the density is slowly damped as a classical scheme for advection.
Good behavior of scheme for low mach flow.
B Spatial scheme for convective part: LR-like scheme:
U Diffusion matrix for this scheme:
O(l u | 9xp) + x(pOxp)
(AU U) = | (| u | u(pu)) + Ox(pudsp) + E(t) 5 Ot
Ox(| u| OxE) + O«x(Edxp) + %(8(t)6x(u8)<p) + E(t)30x(pOxu))
U Conclusion: the density is slowly damped as a classical scheme for advection.
Good behavior of scheme for low mach flow.

U This scheme is less dissipative for the density and preserve exactly stationary
contact.

B Spatial scheme for the acoustic part: centered scheme. The stability is preserved since
this part will be implicit.

E. Franck \32/39
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Second Semi implicit scheme V

B Time scheme:

pn+1 =p"

(pu)™ = (pu)” — At(1 — E3(1))oxN"H!

(A1) ) BT EN = A= E()o(M
N7+ 4 (1 — (1)) AtpA20,v L = N7
VIt 4 (1= E(1)) At 5N = vn

We consider the equation on the new velocity
v A1 — gQ(r))%aXn"+1 4o
We plug into the equation on Il and we obtain
(I — 0%(1 — £2(1))*At?A204) 0™ = R(N", v")

B Matrix-vector product to compute v, E and pu.

B Advantages Implicit part: just one linear and constant elliptic problem to invert.

B The matrix can be constructed once and the conditioning does not depend of p.
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Results |

B Smooth contact

P(ty X) = Xx<xp + 0-1X><>Xo

u(t,x) =0.01
p(t,x) =1
B Error
cells | Ex Rusanov Ex LR I Xin-jin | Sl Rusanov | New Sl Rus | New SI LR
250 0.042 3.6E—* 0.32 1.4E-3 7.8E7% 41E %
500 0.024 1.8E—% 0.24 6.9E—* 3.9E* 2.0E—*
1000 0.013 9.0E—° 0.17 3.4E% 2.0E~* 1.0E—5
2000 0.007 45E—5 0.12 1.7E % 9.8E—5 49E—5
B Comparison time scheme:
Scheme A At
Explicit max(| u—c|,|u+c]) 22E*
Xin-Jin - 0.0052
SI Suliciu max(| u—E(t)2 |, [u+E()3 ]) | 0.0075
Sl new relaxation | max(| v —E(t)A || v+ E(E)A]) 0.04

B Conditioning:

Schemes At conditioning
Si suliciu 0.00757 3000

Si new relax 0.041 9800

Si new relax 0.0208 2400

si new relax 0.0075 320
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2D extension

B 2D extension:
Otp+V-(pv)=0
Ot(pu) +V - (pu®v)+ VN =0
OE+ V- -(Ev+TNv)=0
oM+ v- V|'|+¢)\2V v—l(p n
v+v-Vv+ 1 VI'I— (u—v)

B Limit:
8tp+V-(pu):5V-[l< )
Ot(pu) + V- (pu®@v)+Vp=¢eV-
HE+V - ((E+p)u) =eV - [l [
+eV - [; (qu)\z — p?c ) uVv - u]

g

5 (8 1) Vo] +e¥ [} (02 = 2 v -
P

¢

-1)ve+ (§-1)v5]]

Remark: This diffusion approximate of the relaxation model preserve the acoustic
steady states and consequently the low mach limit.

O Splitting " convection” (Euler explicit) + "acoustic” (theta scheme).
L Convective part: Lagrange+remap-like scheme on Cartesian meshes.
O

Acoustic part: centered scheme based also on nodal method.

35/
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First 2D result |

B We take 100*100 cells T = 1 and
p(t,x) = G(x — upt)

p(t,x) =1
B Results:
Vars | Ex Rusanov Ex LR SI Rusanov | New SI Rus...
p 0.39 1.9E% 8.4E—* 7.3E~*
u 0.87 0.51 53E3 48E3
p 9.6E—8 5.5E—7 1.8E-° 72E7
At 42E7 44E7 0.8 1(max 9)
'] o ]
| P |
o L o & o5
e /

u(t, x) = ug,

such that V- ug =0 and | ug |~ 1073

o
T _—
50 TS50

density, t=1.0

norm2 u, t=1.0

T o5 70 15 20

ol W AN
T o5 1o 15 20

/D ” ’
L o L 1L
T T o5 T s o5 T TE 55 0 g2
density, t=1.0 norm2 u,t=1.0 density, t=1.0 norm2 u, t=1.0
/ . W
10x10”7 I
[0
st o8 It
i
\ somi0t o so0 I
\ /iR
\ 25010 250t I
\ oz /
_ b - ] \ o J
& o5 w0 P G e w5 o O TR T TR R T

Figure: Explicit Rusanov scheme, ex Lr-Like, Semi Implicit relax
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First 2D results Il

B Gresho vortex: stationary vortex with varying Mach number.

B (Classical test case for Low-Mach flow for Euler equation.

.
o
. o
091
0 0 10
e e | ™
] ] e
density, t=1.0 M.t=10 density, t=1.0
hd ~ 0
\ p—
o . e . oo
1005 100m o coooorete
1010 10008 oo4 e oot
o Lots . .
1o ) ) . pe— oo
W - 1.0002 . LA N
e o p— [ — -
00 025 080 075 100 00 025 050 075 100 000 000 025 o080 075 100 000 025 0% 075 100
% om ww om0 ow o ek oW %
ressure, t=1.0 ressure, t= 1.0
P 0 pressure, t=1.0 P B
42 7 s 1004 7 — 0
e w0z
- .
os 0 1m0 08
» 1o X
e 04 90098 o
02 e oz
s o ome
00 b oo,
0 025 050 015 100 00 02 04 08 08 10 @0z 0% 07 100 o0 0z dos 08 10

Figure: Results with Rusanov: M = 0.5 (At = 1.4E73), M

0.1 (At = 3.5E7%),
M =0.01 (At =3.5E7%)
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First 2D results Il

B Gresho vortex: stationary vortex with varying Mach number.

B (lassical test case for Low-Mach flow for Euler equation.
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Figure: Results with New-relax: M = 0.5 (At = 2.5E73), M = 0.1 (At = 2.5E73),
M =0.01 (At =25E73)
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Conclusion

Full implicit schemes
|

The Xin-Jin model + high order scheme gives good results.
Drawback: Not sufficiently accurate in the Low -mach regime.
First relaxation method with central wave as solution.

Future works: understand the stability of these relaxation methods for low-mach flow
and extend in 2D.

B All these relaxation models can be rewritten/generalized on a diagonal form

(approximated BGK methods) with very high-order schemes and Semi-Lagrangian
schemes.

Semi implicit schemes

| A

B Relaxation + Splitting + VF allows to preserve contact wave and low Mach regime
with a simple implicit step.

B Stability: Possible modification of the scheme to obtain discrete entropy inequality.

B Future works:

L High accuracy for acoustic wave with a theta scheme for relaxation and implicit.

Modification splitting: Problem of time step if 9:£(t) >> 1.
DG Extension in 1D/2D. Which limiting ? MOOD ? Subcell etc ?
MHD, Exner, Euler with gravity extension in 1D.

MHD in 2D. Large difficulty to be accurate around the magneto-acoustic steady
state.

Ooooao
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