Implicit/semi-implicit schemes based on relaxation methods for compressible flows

F. Bouchut⁵, D. Coulette³, C. Courtes², <u>E. Franck</u>¹², P. Helluy¹², L. Navoret²

PDE and physic seminar, Bordeaux

¹Inria Nancy Grand Est, France

²IRMA, Strasbourg university, France

³ENS Lyon, France

⁴Marseille university, France

⁴Marne la Valle, university, France

Outline

Physical and mathematical context

Linear ans full relaxation scheme

Semi implicit relaxation scheme

Physical and mathematical context

Iter Project and nuclear fusion

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

Difficulties:

- Plasma turbulence (Tokamak center) ==> Kinetic models.
- Plasma instabilities (Tokamak edge) ==> Fluid models.
- Necessary to simulate these phenomena and test some controls in realistic geometries
 of Tokamak.

⁺/39

Iter Project and nuclear fusion

Applications

- Modeling and numerical simulation for the nuclear fusion.
- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10⁸ Kelvin), is confined using magnetic fields. Larger Tokamak: Iter

Difficulties:

- Plasma turbulence (Tokamak center) ==> Kinetic models.
- Plasma instabilities (Tokamak edge) ==> Fluid models.
- Necessary to simulate these phenomena and test some controls in realistic geometries
 of Tokamak.

MHD equations

MHD equation (non conservative form):

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = (\nabla \times \mathbf{B}) \times \mathbf{B} \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \\ \partial_t \mathbf{B} + \nabla \times (\mathbf{u} \times \mathbf{B}) \\ \nabla \cdot \mathbf{B} = 0 \end{array} \right.$$

- lacksquare with ho the density, $oldsymbol{u}$ the velocity, $oldsymbol{p}$ the pressure and $oldsymbol{B}$ the magnetic field.
- We can write the model on conservative form. It is a hyperbolic system admitting a entropy dissipation equation.

$$\partial_t \rho S + \nabla \cdot (\rho S \boldsymbol{u}) \leq \nabla \cdot \boldsymbol{B}$$

- Eigen-structure:
 - Material waves at the velocity (u, n)
 - o Alfven waves at the velocity $v_{A}=\sqrt{rac{|B|^{2}}{
 ho}}$
 - □ Slow and Fast Magneto-acoustic waves: depending of v_A and $c = \sqrt{\frac{\gamma p}{\rho}}$ the sound speed.
- The ratio between the wave speeds can be huge. The MHD is a strongly multi-scale problem in time.
- For tokamak simulation the phenomena are strongly anisotropic with B as dominant direction.

MHD equilibrium and instabilities

In tokamak we want maintains the plasma around an equilibrium

$$\underbrace{(\nabla \times \mathbf{B})}_{\mathbf{J}} \times \mathbf{B} = \nabla \mathbf{p}$$

with $\boldsymbol{u} = 0$.

- Some instabilities can appear and damages the device.
- It important to simulate these instabilities and the possible methods to control them.
- Physical regime:
 - □ Low β : $c << V_a$
 - $\hfill \square$ compressible in parallel direction:
 - $u_{\parallel} \approx c$
 - incompressible in perpendicular direction: $u_{\perp} << c$
- To treat this regime and the strong diffusion in parallel direction we need implicit/semi implicit scheme.

MHD equilibrium and instabilities

In tokamak we want maintains the plasma around an equilibrium

$$\underbrace{(\nabla \times \mathbf{B})}_{\mathbf{J}} \times \mathbf{B} = \nabla \mathbf{p}$$

with $\boldsymbol{u} = 0$.

- Some instabilities can appear and damages the device.
- It important to simulate these instabilities and the possible methods to control them.
- Physical regime:
 - □ Low β : $c << V_a$
 - $\hfill \square$ compressible in parallel direction:
 - $u_{\parallel} \approx c$
 - incompressible in perpendicular direction: $u_{\perp} << c$
- To treat this regime and the strong diffusion in parallel direction we need implicit/semi implicit scheme.

MHD equilibrium and instabilities

In tokamak we want maintains the plasma around an equilibrium

$$\underbrace{(\nabla \times \mathbf{B})}_{\mathbf{J}} \times \mathbf{B} = \nabla \mathbf{p}$$

with $\boldsymbol{u} = 0$.

- Some instabilities can appear and damages the device.
- It important to simulate these instabilities and the possible methods to control them.
- Physical regime:
 - □ Low β : $c << V_a$
 - $\hfill \square$ compressible in parallel direction:
 - $u_{\parallel} \approx c$
 - incompressible in perpendicular direction: $u_{\perp} << c$
- To treat this regime and the strong diffusion in parallel direction we need implicit/semi implicit scheme.

- To treat the MHD problem we need a scheme efficient for compressible flow (parallel part) and nearly incompressible flow (perpendicular part).
- Simplify problem: Construct schemes for compressible Euler equations able to treat the two regimes.
- Equations:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
 - \square we introduce characteristic time t_0 , velocity V, length L.
 - \Box the characteristic velocity u_0 and pressure γp_0 . The sound velocity is $c^2 = \frac{\gamma p_0}{\rho_0}$.

Application

- Astrophysics with the Euler equations (additional gravity term in general).
- Nuclear fission with multi-phase models.
- Nuclear fusion in Tokamak with the MHD model.

- To treat the MHD problem we need a scheme efficient for compressible flow (parallel part) and nearly incompressible flow (perpendicular part).
- Simplify problem: Construct schemes for compressible Euler equations able to treat the two regimes.
- Equations:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
 - \square we introduce characteristic time t_0 , velocity V, length L.
 - \Box the characteristic velocity u_0 and pressure γp_0 . The sound velocity is $c^2 = \frac{\gamma p_0}{\rho_0}$.

$$\begin{cases} \partial_{t}\rho + \left[\frac{t_{0}u_{0}}{L}\right]\nabla \cdot (\rho \mathbf{u}) = 0\\ \rho \partial_{t}\mathbf{u} + \left[\frac{t_{0}u_{0}}{L}\right]\rho \mathbf{u} \cdot \nabla \mathbf{u} + \left[\frac{t_{0}p_{0}}{\rho_{0}u_{0}L}\right]\nabla \rho = 0\\ \partial_{t}\rho + \left[\frac{t_{0}u_{0}}{L}\right]\mathbf{u} \cdot \nabla \rho + \left[\frac{\gamma t_{0}u_{0}}{L}\right]\rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Application

- Astrophysics with the Euler equations (additional gravity term in general).
- Nuclear fission with multi-phase models.
 - Nuclear fusion in Tokamak with the MHD model.

- To treat the MHD problem we need a scheme efficient for compressible flow (parallel part) and nearly incompressible flow (perpendicular part).
- Simplify problem: Construct schemes for compressible Euler equations able to treat the two regimes.
- Equations:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
 - \square we introduce characteristic time t_0 , velocity V, length L.
 - \Box the characteristic velocity u_0 and pressure γp_0 . The sound velocity is $c^2 = \frac{\gamma p_0}{\rho_0}$.

$$\begin{cases} \partial_t \rho + \left[\frac{u_0}{V}\right] \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \left[\frac{u_0}{V}\right] \rho \mathbf{u} \cdot \nabla \mathbf{u} + \left[\frac{c_0^2}{u_0 V}\right] \nabla \rho = 0 \\ \partial_t \rho + \left[\frac{u_0}{V}\right] \mathbf{u} \cdot \nabla \rho + \left[\frac{\gamma u_0}{V}\right] \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Application

- Astrophysics with the Euler equations (additional gravity term in general).
- Nuclear fission with multi-phase models.
- Nuclear fusion in Tokamak with the MHD model.

- To treat the MHD problem we need a scheme efficient for compressible flow (parallel part) and nearly incompressible flow (perpendicular part).
- Simplify problem: Construct schemes for compressible Euler equations able to treat the two regimes.
- Equations:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0 \\ \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + (\gamma - 1) \rho \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Normalization:
 - □ we introduce characteristic time t_0 , velocity V, length L. □ the characteristic velocity u_0 and pressure γp_0 . The sound velocity is $c^2 = \frac{\gamma p_0}{a_0}$.
- We want to focus on the fluid motion consequently we choose $V = u_0$.
- We define the mach number: $M = \frac{u_0}{c_0}$. Using this we obtain

$$\left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \\ \rho \partial_t \textbf{\textit{u}} + \rho \textbf{\textit{u}} \cdot \nabla \textbf{\textit{u}} + \left[\frac{1}{M^2}\right] \nabla \rho = 0 \\ \partial_t \rho + \textbf{\textit{u}} \cdot \nabla \rho + \gamma \rho \nabla \cdot \textbf{\textit{u}} = 0 \end{array} \right. \longrightarrow \left\{ \begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \\ \partial_t (\rho \textbf{\textit{u}}) + \nabla \cdot (\rho \textbf{\textit{u}} \otimes \textbf{\textit{u}}) + \frac{1}{M^2} \nabla \rho = 0 \\ \partial_t E + \nabla \cdot (E \textbf{\textit{u}}) + \nabla \cdot (\rho \textbf{\textit{u}}) = 0 \end{array} \right.$$

with $E = \frac{p}{\gamma - 1} + \frac{M^2 \rho |\mathbf{u}|^2}{2}$.

Low-Mach limit

Limit in 2D

 \square We consider $u = u_0 + M^2 u_1$, We consider $p = p_0 + M^2 p_1$. The limit is:

$$\begin{cases} \partial_t \rho_0 + \mathbf{u}_0 \cdot \nabla \rho_0 = 0 \\ \partial_t \mathbf{u}_0 + \mathbf{u}_0 \cdot \nabla \mathbf{u}_0 + \frac{1}{\rho_0} \nabla \rho_1 = 0 \\ \nabla \cdot \mathbf{u}_0 = 0 \end{cases}$$

- □ If $\rho_0 = cts$ we obtain the classical incompressible Euler equation.
- □ Interpretation: Fluid motion around the acoustic equilibrium : $\nabla \cdot u_0 = 0$, $\nabla p_0 = 0$.

Limit in 1D

 $\ \square$ We consider $u=u_0+{\color{red}M^2}u_1$, We consider $p=p_0+{\color{red}M^2}p_1$. The limit is:

$$\left\{ \begin{array}{l} \partial_t \rho_0 + u_0 \partial_x \rho_0 = 0 \\ \partial_t u_0 + \partial_x p_1 = 0 \\ \partial_x u_0 = 0 \end{array} \right.$$

□ **Interpretation**: Fluid motion (isolated contact) around the acoustic equilibrium : $\partial_X u_0 = 0$ and $\partial_X p_0 = 0$.

Aim

 A scheme which has a good behavior in the limit regime (around the acoustic equilibrium).

■ Methods used: VF/DG (FE also but not here). Principle of VF method:

$$\partial_t \mathbf{U}(t,x) + \partial_x \mathbf{F}(\mathbf{U}(t,x)) = 0$$
$$\int_{\Omega_i} \partial_t \mathbf{U}(t,x) + \int_{\Omega_i} \partial_x \mathbf{F}(\mathbf{U}(t,x)) = 0$$

• with Ω_i a cell. Easily we obtain:

$$\partial_t \int_{\Omega_j} \boldsymbol{U}(t,x) + \int_{\Omega_j} \partial_x \boldsymbol{F}(\boldsymbol{U}(t,x)) = 0.$$

• We consider ${m U}(t,x)=\sum_j {m U}_j\chi_{\Omega_j}$ with ${m U}_j(t)=rac{1}{|\Omega_j|}\int_{\Omega} {m U}(t,x)$

$$|\Omega_{j}| \partial_{t} U_{j}(t) + F(U(t, x_{j+\frac{1}{2}})) - F(U(t, x_{j-\frac{1}{2}})) = 0$$

- The quantities $F(U(t, x_{j\pm\frac{1}{2}}))$ are unknown. **VF** idea: $F(U(t, x_{j\pm\frac{1}{2}})) \approx G(U_j, U_{j+1})$. We speak about of numerical fluxes.
- Classical fluxes : centered (unstable with explicit scheme):

$$oldsymbol{G}(oldsymbol{U}_j,oldsymbol{U}_{j+1}) = rac{1}{2} \left(oldsymbol{F}(oldsymbol{U}_j) + oldsymbol{F}(oldsymbol{U}_{j+1})
ight)$$

Methods used: VF/DG (FE also but not here). Principle of VF method:

$$\partial_t \mathbf{U}(t, x) + \partial_x \mathbf{F}(\mathbf{U}(t, x)) = 0$$

$$\int_{\Omega_j} \partial_t \mathbf{U}(t, x) + \int_{\Omega_j} \partial_x \mathbf{F}(\mathbf{U}(t, x)) = 0$$
a obtain:

with Ω_i a cell. Easily we obtain:

$$\partial_t \int_{\Omega_j} \boldsymbol{U}(t,x) + \int_{\Omega_j} \partial_x \boldsymbol{F}(\boldsymbol{U}(t,x)) = 0.$$

■ We consider $U(t,x) = \sum_j U_j \chi_{\Omega_j}$ with $U_j(t) = \frac{1}{|\Omega_i|} \int_{\Omega} U(t,x)$

$$|\Omega_j| \partial_t U_j(t) + F(U(t, x_{j+\frac{1}{2}})) - F(U(t, x_{j-\frac{1}{2}})) = 0$$

- The quantities $F(U(t,x_{j\pm\frac{1}{3}}))$ are unknown. VF idea: $F(U(t,x_{j\pm\frac{1}{3}})) \approx G(U_j,U_{j+1})$. We speak about of numerical fluxes.
- Classical fluxes: upwind, Riemann Solver etc:

$$G(U_j, U_{j+1}) = \frac{1}{2} (F(U_j) + F(U_{j+1})) - A(U_j, U_{j+1})(U_{j+1} - U_j)$$

Discrete scheme:

$$\partial_t \mathbf{U}(t) + D_{2h}(\mathbf{U}(t)) - \Delta \times D_h(A(\mathbf{U})D_h\mathbf{U}) = 0$$

with D_{kh} the k order discrete derivative;

■ Methods used: VF/DG (FE also but not here). Principle of VF method:

$$\partial_t \mathbf{U}(t,x) + \partial_x \mathbf{F}(\mathbf{U}(t,x)) = 0$$

$$\int_{\Omega_j} \partial_t \mathbf{U}(t,x) + \int_{\Omega_j} \partial_x \mathbf{F}(\mathbf{U}(t,x)) = 0$$

 \blacksquare with Ω_i a cell. Easily we obtain:

$$\partial_t \int_{\Omega_j} \boldsymbol{U}(t,x) + \int_{\Omega_j} \partial_x \boldsymbol{F}(\boldsymbol{U}(t,x)) = 0.$$

■ We consider $\boldsymbol{U}(t,x) = \sum_{j} \boldsymbol{U}_{j} \chi_{\Omega_{j}}$ with $\boldsymbol{U}_{j}(t) = \frac{1}{|\Omega_{j}|} \int_{\Omega} \boldsymbol{U}(t,x)$

$$|\Omega_j| \partial_t \mathbf{U}_j(t) + \mathbf{F}(\mathbf{U}(t, x_{j+\frac{1}{2}})) - \mathbf{F}(\mathbf{U}(t, x_{j-\frac{1}{2}})) = 0$$

- The quantities $F(U(t,x_{j\pm\frac{1}{2}}))$ are unknown. **VF** idea: $F(U(t,x_{j\pm\frac{1}{2}}))\approx G(U_j,U_{j+1})$. We speak about of numerical fluxes.
- Classical fluxes : upwind, Riemann Solver etc:

$$G(U_j, U_{j+1}) = \frac{1}{2} \left(F(U_j) + F(U_{j+1}) \right) - A(U_j, U_{j+1}) (U_{j+1} - U_j)$$

Equivalent equation:

$$\partial_t \mathbf{U}(t,x) + \partial_x \mathbf{F}(\mathbf{U}(t,x)) - \Delta x \partial_x (\mathbf{A}(\mathbf{U})\partial_x \mathbf{U}) = O(\Delta x^2)$$

We speak about numerical diffusion.

- Properties of hyperbolic systems: these models can generate discontinuities. No unicity of the weak solution.
- To obtain uniqueness and stability we introduce additional entropy equation:

$$\partial_t \eta(\boldsymbol{U}) + \partial_x \mathbf{Q}(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

- with $\eta(\mathbf{U})$ a convex function, $\zeta(\mathbf{U})$ the entropic flux such that $\eta'(\mathbf{U})\mathbf{F}'(\mathbf{U}) = Q'(\mathbf{U})$. The left part is exactly zero for smooth solution.
- Stability of the scheme:

$$\partial_t \eta(\boldsymbol{U}) + D_h \zeta(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

Approximated model:

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) - \Delta x \partial_x (\mathbf{A}(\mathbf{U}) \partial_x \mathbf{U}) = O(\Delta x^2)$$

Conclusion

- The structure of the numerical diffusion play an important role in the stability.
- Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the solutions or some particular solutions (low mach flow, steady state etc) and keeping the stability properties.

(nría-

- Properties of hyperbolic systems: these models can generate discontinuities. No unicity of the weak solution.
- To obtain uniqueness and stability we introduce additional entropy equation:

$$\partial_t \eta(\mathbf{U}) + \partial_x \mathbf{Q}(\mathbf{U}) \leq 0 \rightarrow \partial_t \int \eta(\mathbf{U}) \leq 0$$

- with $\eta(\mathbf{U})$ a convex function, $\zeta(\mathbf{U})$ the entropic flux such that $\eta'(\mathbf{U})\mathbf{F}'(\mathbf{U}) = Q'(\mathbf{U})$. The left part is exactly zero for smooth solution.
- Stability of the scheme:

$$\partial_t \eta(\boldsymbol{U}) + D_h \zeta(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

Approximated model:

$$\eta'(\mathbf{U})(\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) - \Delta x \partial_x (\mathbf{A}(\mathbf{U})\partial_x \mathbf{U})) = O(\Delta x^2)$$

Conclusion

- The structure of the numerical diffusion play an important role in the stability.
- Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the solutions or some particular solutions (low mach flow, steady state etc) and keeping the stability properties.

- Properties of hyperbolic systems: these models can generate discontinuities. No unicity of the weak solution.
- To obtain uniqueness and stability we introduce additional entropy equation:

$$\partial_t \eta(\boldsymbol{U}) + \partial_x \mathbf{Q}(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

- with $\eta(\mathbf{U})$ a convex function, $\zeta(\mathbf{U})$ the entropic flux such that $\eta'(\mathbf{U})\mathbf{F}'(\mathbf{U}) = Q'(\mathbf{U})$. The left part is exactly zero for smooth solution.
- Stability of the scheme:

$$\partial_t \eta(\boldsymbol{U}) + D_h \zeta(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

Approximated model:

$$\partial_t \eta(\mathbf{U}) + \partial_x \mathbf{Q}(\mathbf{U}) - \Delta x \partial_x (\eta''(\mathbf{U}) A(\mathbf{U}) \partial_x \mathbf{U}) = -\Delta x \eta''(\mathbf{U}) A(\mathbf{U}) (\partial_x \mathbf{U})^2 + O(\Delta x^2)$$

Conclusion

- The structure of the numerical diffusion play an important role in the stability.
- Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the solutions or some particular solutions (low mach flow, steady state etc) and keeping the stability properties.

- Properties of hyperbolic systems: these models can generate discontinuities. No unicity of the weak solution.
- To obtain uniqueness and stability we introduce additional entropy equation:

$$\partial_t \eta(\boldsymbol{U}) + \partial_x \mathbf{Q}(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

- with $\eta(\mathbf{U})$ a convex function, $\zeta(\mathbf{U})$ the entropic flux such that $\eta'(\mathbf{U})\mathbf{F}'(\mathbf{U}) = \mathbf{Q}'(\mathbf{U})$. The left part is exactly zero for smooth solution.
- Stability of the scheme:

$$\partial_t \eta(\boldsymbol{U}) + D_h \zeta(\boldsymbol{U}) \leq 0 \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

Approximated model:

$$\partial_t \eta(\boldsymbol{U}) + \partial_x \mathbf{Q}(\boldsymbol{U}) - \Delta x \partial_x (\eta''(\boldsymbol{U}) A(\boldsymbol{U}) \partial_x \boldsymbol{U}) \leq 0 + O(\Delta x^2) \rightarrow \partial_t \int \eta(\boldsymbol{U}) \leq 0$$

• if $\eta''(\boldsymbol{U})A(\boldsymbol{U}) \geq 0$.

Conclusion

- The structure of the numerical diffusion play an important role in the stability.
- Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the solutions or some particular solutions (low mach flow, steady state etc) and keeping the stability properties.

(nria-

- Second method: Finite volume and DG method
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_{t}\rho + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}\rho \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2}) + \frac{1}{M^{2}}\partial_{x}p = \frac{S\Delta x}{2}\partial_{xx}(\rho u) \\ \partial_{t}E + \partial_{x}(Eu) + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}E \end{cases}$$

- \square Problem: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Rusanov scheme $T_f = 2 u_0 = 0.05$ and 1000 cells

- Second method: Finite volume and DG method
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_{t}\rho + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}\rho \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2}) + \frac{1}{M^{2}}\partial_{x}p = \frac{S\Delta x}{2}\partial_{xx}(\rho u) \\ \partial_{t}E + \partial_{x}(Eu) + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}E \end{cases}$$

- □ **Problem**: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Rusanov scheme $T_f = 5 \ u_0 = 0.02$ and 1000 cells

- Second method: Finite volume and DG method
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_{t}\rho + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}\rho \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2}) + \frac{1}{M^{2}}\partial_{x}p = \frac{S\Delta x}{2}\partial_{xx}(\rho u) \\ \partial_{t}E + \partial_{x}(Eu) + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}E \end{cases}$$

- \square **Problem**: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Lagrange+remap scheme $T_f = 2$ $u_0 = 0.05$ and 1000 cells

- Second method: Finite volume and DG method
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_{t}\rho + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}\rho \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2}) + \frac{1}{M^{2}}\partial_{x}p = \frac{S\Delta x}{2}\partial_{xx}(\rho u) \\ \partial_{t}E + \partial_{x}(Eu) + \partial_{x}(\rho u) = \frac{S\Delta x}{2}\partial_{xx}E \end{cases}$$

- \square Problem: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Lagrange+remap scheme $T_f = 5$ $u_0 = 0.02$ and 1000 cells

- Same analysis in 2D.
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} & \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \frac{S\Delta x}{2} \Delta \rho \\ & \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla \rho = \frac{S\Delta x}{2} \Delta (\rho \mathbf{u}) \\ & \partial_t E + \nabla \cdot (E \mathbf{u}) + \nabla \cdot (\rho \mathbf{u}) = \frac{S\Delta x}{2} \Delta E \end{cases}$$

- \square **Problem**: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- **E**xample: isolated contact $p=1, \ \nabla \cdot {\it u}_0=0$ and ${\it u}_0$ constant in time.
- Rusanov scheme $T_f = 2 \mid \boldsymbol{u}_0 \mid \approx 0.001$ and 100*100 cells.

Red: exact solution, Blue: numerical solution.

- Same analysis in 2D.
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \frac{S\Delta x}{2} \Delta \rho \\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{M^2} \nabla p = \frac{S\Delta x}{2} \Delta \mathbf{u} \\ \partial_t p + \mathbf{u} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{u} = \frac{S\Delta x}{2} \nabla p \end{cases}$$

- \square **Problem**: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- **Example:** isolated contact $p=1, \ \nabla \cdot \textbf{\textit{u}}_0=0$ and $\textbf{\textit{u}}_0$ constant in time.
- Rusanov scheme $T_f = 2 \mid \boldsymbol{u}_0 \mid \approx 0.001$ and 100*100 cells.

Red: exact solution, Blue: numerical solution.

Numerical difficulties in time

Explicit time scheme

- Low-Mach regime: fast and small acoustic waves. Weak/no coupling with the fluid motion
- Explicit scheme: CFL condition

$$\max_{x} \left(u + \frac{c}{M} \right) \Delta t \leq h$$

- Δt is very small and allows to capture the fast waves. We want/can filter the fast waves.
- Solution: full implicit/semi implicit time schemes.

Implicit time scheme

- Nonlinear problem to invert: Newton/picard + linear solver.
- Drawbacks: matrix to assembly, to store and to invert.
- Operator to invert:

$$(\emph{I}_{d}\emph{h}-\Delta\emph{t}\emph{A})pprox\emph{A}, \quad \text{ for } \emph{h}<<1 \text{ and } \Delta\emph{t}>>1$$

with A the discrete spatial scheme of the Jacobian.

- **Full implicit**: Eigenvalues of A: $(u \frac{c}{M}, u, u + \frac{c}{M})$. So ill-conditioning. In 2D additional zero eigenvalue (shear wave) which generate ill-conditioning.
- Strong gradient of p and ρ generate also ill-conditioning.

Classical implicit scheme

- We use an explicit scheme for convection (or we split the convection).
- Implicit acoustic step:

$$\left\{ \begin{array}{l} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\ E^{n+1} = E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = Rhs_E \end{array} \right.$$

Plugging this in the second equation, we obtain

$$E^{n+1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho)$$

- Matrix-vector product to compute uⁿ⁺¹.
- Works with similar idea: [DegondTang09]-[DLV17]-[DDLV18].

Classical implicit scheme

- We use an explicit scheme for convection (or we split the convection).
- Implicit acoustic step:

$$\begin{cases} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x \rho^{n+1} + Rhs_u \\ \frac{\rho^{n+1}}{\gamma - 1} + \frac{1}{2} \rho^n u^n = E^n - \Delta t \partial_x (\rho^{n+1} u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho)$$

- Matrix-vector product to compute u^{n+1} .
- Works with similar idea: [DegondTang09]-[DLV17]-[DDLV18].

Classical implicit scheme

- We use an explicit scheme for convection (or we split the convection).
- Implicit acoustic step:

$$\left\{ \begin{array}{l} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\ \frac{p^{n+1}}{\gamma - 1} + \frac{1}{2} \rho^n u^n = E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = Rhs_E \end{array} \right.$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho)$$

- Matrix-vector product to compute u^{n+1} .
- Works with similar idea: [DegondTang09]-[DLV17]-[DDLV18].

Conclusion

- Semi implicit: We have only one scale in the implicit operator. The operator is symmetric and positive.
- \blacksquare Strong gradient of p and ρ generate also ill-conditioning. The matrix must be assembled at each time (costly).
- Nonlinear solver which bad convergence for if $\Delta t >> 1$ and the gradient of p not so small.

(nría

Numerical difficulties in time

Aim

- Design implicit/semi implicit VF/DG scheme without problem of conditioning/inverting etc.
- Solution proposed: construct new model larger, but simpler (relaxation model) with approximate the original model and write the scheme for the new model to obtain the scheme for the original one.

 $^{15}/_{39}$

Linear and full implicit relaxation scheme

General principle

We consider the following nonlinear hyperbolic system

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = 0$$

- with **U** a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume community) [JX95]-[Nat96]-[ADN00].

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \\ \partial_t \mathbf{V} + \lambda^2 \partial_x \mathbf{U} = \frac{1}{\varepsilon} (\mathbf{F}(\mathbf{U}) - \mathbf{V}) \end{cases}$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \varepsilon \partial_x ((\lambda^2 - |A(\mathbf{U})|^2) \partial_x \mathbf{U}) + o(\varepsilon^2)$$

- \square with A(U) the Jacobian of F(U).
- Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).

Specific kinetic model: stability

First order stability: we consider the first order approximation

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \varepsilon \partial_x \left(\left(\lambda^2 \mathbf{I}_n - |\partial \mathbf{F}(\mathbf{U})|^2 \right) \partial_x \mathbf{U} \right) + O(\varepsilon^2)$$

$$\partial_t \eta(\mathbf{U}) + \partial_x \mathbf{Q}(\mathbf{U}) - \varepsilon \partial_x \left(\eta'(\mathbf{U}) \left(\lambda^2 I_{\mathsf{n}} - |\partial \mathbf{F}(\mathbf{U})|^2 \right) \partial_x \mathbf{U} \right) \leq 0 + O(\varepsilon^2)$$

The second equation is true if η ''(U)A(U) ≥ 0.
 Finally, we have the entropy property at the first order if

Entropy stability: For the model [Jin95]

- $\lambda > vp_{max} \mid \partial F(U) \mid$, with $A(U) = (\lambda^2 I_n |\partial F(U)|^2)$.
- $X > V_{pmax} \mid V_{1}(\mathbf{O}) \mid, \quad \text{with } A(\mathbf{O}) = (X_{1} |V_{1}(\mathbf{O})|)$

$$\begin{cases} \partial_t u + \partial_x v = 0 \\ \partial_t v + \lambda^2 \partial_x u = \frac{1}{\varepsilon} (F(u) - v) \end{cases}$$

we obtain

$$\partial_t \Phi(u, v) + \partial_x \Psi(u, v) \le -\frac{1}{\varepsilon} \partial_v \Phi(u, v) \cdot (v - f(u)) \le 0$$

with $\Phi(u,v)=h_+(v+\lambda u)+h_-(v-\lambda u), \ \Psi(u,v)=\lambda(h_+(v+\lambda u)-h_-(v-\lambda u))$ and

$$h_{\pm}(F(u) \pm \lambda u) = \frac{1}{2} \left(\eta(u) \pm \frac{Q(u)}{\lambda} \right)$$

- The inequality is true if $\Phi(u, v)$ convex compare to v and $\partial_v \Phi(u, v = f(u)) = 0$.
- It is true if $|F'(u)| < \lambda$. The situation seems the same for systems.

XIn-Jin implicit scheme

Main property

- → Relaxation system: "the nonlinearity is local and the non locality is linear".
- → Main idea: splitting scheme between implicit transport and implicit relaxation [Paru15].
- \rightarrow Key point: the $\partial_t U = 0$ during the relaxation step. Therefore $f^{eq}(U)$ is explicit.
- Relaxation step:

$$\left\{ \begin{array}{l} \boldsymbol{U}^{n+1} = \boldsymbol{U}^{n} \\ \boldsymbol{V}^{n+1} = \theta \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^{n+1}) - \boldsymbol{V}^{N+1}) + (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^{n}) - \boldsymbol{V}^{n}) \end{array} \right.$$

Transport step (order 1) :

$$I_d + \left(\begin{array}{cc} 0 & 1 \\ \alpha^2 & 0 \end{array} \right) \partial_x \left(\begin{array}{c} \boldsymbol{U}^{n+1} \\ \boldsymbol{V}^{n+1} \end{array} \right) = \left(\begin{array}{c} \boldsymbol{U}^n \\ \boldsymbol{V}^n \end{array} \right)$$

- \square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U} .
- □ We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

□ We apply a matrix-vector product

$$V^{n+1} = -\Delta t \lambda^2 \partial_{\nu} U^{n+1}$$

- Advantages: N independent elliptic equations with constant coefficient.
- Advantages: N independent elliptic equations with constant coefficient.
 Natural extension at the second order in time. In space: FV (used here) or DG/FE.

XIn-Jin implicit scheme

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between implicit transport and implicit relaxation [Paru15].
- \rightarrow Key point: the $\partial_t U = 0$ during the relaxation step. Therefore $f^{eq}(U)$ is explicit.
- Relaxation step:

$$\left\{ \begin{array}{l} \boldsymbol{\mathit{U}}^{n+1} = \boldsymbol{\mathit{U}}^{n} \\ \boldsymbol{\mathit{V}}^{n+1} = \theta \frac{\Delta t}{\varepsilon} (\boldsymbol{\mathit{F}}(\boldsymbol{\mathit{U}}^{n}) - \boldsymbol{\mathit{V}}^{N+1}) + (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{\mathit{F}}(\boldsymbol{\mathit{U}}^{n}) - \boldsymbol{\mathit{V}}^{n}) \end{array} \right.$$

Transport step (order 1):

$$I_d + \left(\begin{array}{cc} 0 & 1 \\ \alpha^2 & 0 \end{array} \right) \partial_x \left(\begin{array}{c} \boldsymbol{U}^{n+1} \\ \boldsymbol{V}^{n+1} \end{array} \right) = \left(\begin{array}{c} \boldsymbol{U}^n \\ \boldsymbol{V}^n \end{array} \right)$$

- \square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U} .
- ☐ We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

We apply a matrix-vector product

$$V^{n+1} = -\Lambda t \lambda^2 \partial_{\nu} U^{n+1}$$

- Advantages: N independent elliptic equations with constant coefficient.
- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

XIn-Jin implicit scheme

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between implicit transport and implicit relaxation [Paru15].
- **Yey point**: the $\partial_t U = 0$ during the relaxation step. Therefore $f^{eq}(U)$ is explicit.
- Relaxation step:

$$\left\{ \begin{array}{l} \boldsymbol{\mathit{U}}^{n+1} = \boldsymbol{\mathit{U}}^{n} \\ \left(\mathit{I}_{d} + \theta \frac{\Delta t}{\varepsilon} \right) \boldsymbol{\mathit{V}}^{n+1} = \theta \frac{\Delta t}{\varepsilon} \boldsymbol{\mathit{F}} (\boldsymbol{\mathit{U}}^{n}) + (1 - \theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{\mathit{F}} (\boldsymbol{\mathit{U}}^{n}) - \boldsymbol{\mathit{V}}^{n}) \end{array} \right.$$

Transport step (order 1):

$$I_d + \begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix} \partial_x \begin{pmatrix} \boldsymbol{U}^{n+1} \\ \boldsymbol{V}^{n+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}^n \\ \boldsymbol{V}^n \end{pmatrix}$$

- We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U} .
- ☐ We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

We apply a matrix-vector product

E. Franck

$$V^{n+1} = -\Delta t \lambda^2 \partial_{\nu} U^{n+1}$$

- **Advantages**: *N* independent elliptic equations with constant coefficient.
- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

XIn-Jin implicit scheme

Main property

- → Relaxation system: "the nonlinearity is local and the non locality is linear".
- → Main idea: splitting scheme between implicit transport and implicit relaxation [Paru15].
- → Key point: the $\partial_t \mathbf{U} = 0$ during the relaxation step. Therefore $\mathbf{f}^{eq}(\mathbf{U})$ is explicit.
- Relaxation step:

$$\left\{egin{array}{l} oldsymbol{U}^{n+1} = oldsymbol{U}^n \ oldsymbol{V}^{n+1} = oldsymbol{V}^n + rac{\Delta t}{arepsilon + heta \Delta t} (oldsymbol{F}(oldsymbol{U}^n) - oldsymbol{V}^n) \end{array}
ight.$$

Transport step (order 1) :

$$I_d + \begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix} \partial_x \begin{pmatrix} \boldsymbol{U}^{n+1} \\ \boldsymbol{V}^{n+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}^n \\ \boldsymbol{V}^n \end{pmatrix}$$

- \square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U} .
- ☐ We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

□ We apply a matrix-vector product

$$V^{n+1} = -\Delta t \lambda^2 \partial_x U^{n+1}$$

- Advantages: N independent elliptic equations with constant coefficient.
- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

Time discretization

Consistency analysis of the scheme : splitting + CN for relaxation + Euler implicit for transport.

First order scheme (first order transport)

■ We define the two operators for each step :

$$T_{\Delta t}: (I_d + \Delta t A \partial_x I_d) \mathbf{f}^{n+1} = \mathbf{f}^n$$

$$R_{\Delta t}: \mathbf{f}^{n+1} + \theta \frac{\Delta t}{\varepsilon} (\mathbf{f}^{eq}(\mathbf{U}) - \mathbf{f}^{n+1}) = \mathbf{f}^n - (1 - \theta) \frac{\Delta t}{\varepsilon} (\mathbf{f}^{eq}(\mathbf{U}) - \mathbf{f}^n)$$

■ Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \frac{\Delta t}{2} \lambda^2 \partial_{xx} \boldsymbol{U} + \left(\frac{(2-\omega)\Delta t}{2\omega}\right) \partial_x \left(D(\boldsymbol{U})\partial_x \boldsymbol{U}\right) + O(\Delta t^2)$$

- with $\omega = \frac{\Delta t}{\varepsilon + \theta \Delta t}$ and $D(\mathbf{U}) = (\lambda^2 I_n |\partial \mathbf{F}(\mathbf{U})|^2)$.
- Order 2: If we choose $\varepsilon=0+\theta=0.5$ for the relaxation (so we have $\omega=2)+$ Crank-Nicolson for transport part + Strang splitting. No numerical diffusion but numerical dispersion.

Unita E. Franck

BC: results

Question: What BC for the kinetic variables. How keep the order?

First result

☐ The second order symmetric (modified version tot he previous scheme) scheme for the Xin-Jin relaxation:

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \\ \partial_t \mathbf{V} + \lambda^2 \partial_x \mathbf{U} = \frac{1}{\varepsilon} (\mathbf{F}(\mathbf{U}) - \mathbf{V}) \end{cases}$$

is consistent with

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = O(\Delta t^2) \\ \partial_t \mathbf{W} - \partial \mathbf{F}(\mathbf{U}) \partial_x \mathbf{W} = O(\Delta t^2) \end{cases}$$

with W = F(U) - V.

- Natural BC: entering condition for U and W = 0 or $\partial_x W = 0$.
- Example: F(u) = cu (transport):

- Transport of the u (dashed lines) and w = v f(u) (plain lines) quantities.
- Same results for the Euler equations.

BC: results

Question: What BC for the kinetic variables. How keep the order?

First result

☐ The second order symmetric (modified version tot he previous scheme) scheme for the Xin-lin relaxation:

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \\ \partial_t \mathbf{V} + \lambda^2 \partial_x \mathbf{U} = \frac{1}{\varepsilon} (\mathbf{F}(\mathbf{U}) - \mathbf{V}) \end{cases}$$

is consistent with

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = O(\Delta t^2) \\ \partial_t \mathbf{W} - \partial \mathbf{F}(\mathbf{U}) \partial_x \mathbf{W} = O(\Delta t^2) \end{cases}$$

with
$$W = F(U) - V$$
.

- Natural BC: entering condition for U and W = 0 or $\partial_x W = 0$.
- **E**xample: F(u) = cu (transport):

Same results for the Euler equations.

Xin-Jin relaxation: limit of the method

Numerical error

Error for the first order splitting scheme:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \Delta t \partial_x ((\lambda^2 \boldsymbol{I}_d - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + o(\Delta t^2)$$

Low-Mach Euler equation: we take $\lambda > c$. For the density equation, we obtain

$$\partial_t \rho + \partial_x (\rho u) = \Delta t \partial_x ((\lambda^2 - u^2) \partial_x \rho - \rho \partial_x u^2 - \partial_x p) + o(\Delta t^2)$$

■ In Low mach regime $\partial_x u \approx M$, $\partial_x p \approx M$ and $u \approx M$ consequently

$$\partial_t \rho + \partial_x (\rho u) \approx \Delta t \partial_x (c^2 \partial_x \rho) - O(M) \partial_{xx} \rho + o(\Delta t^2)$$

■ Conclusion: Huge diffusion for the contact wave.

Test: smooth contact. First order time scheme. $T_f = \frac{2}{M}$. $\Delta t = T_f/100$.

Order 1. Left: M = 0.1. Right: M = 0.01

Xin-Jin relaxation: limit of the method

Numerical error

Error for the first order splitting scheme:

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \Delta t \partial_x ((\lambda^2 \mathbf{I}_d - |A(\mathbf{U})|^2) \partial_x \mathbf{U}) + o(\Delta t^2)$$

Low-Mach Euler equation: we take $\lambda > c$. For the density equation, we obtain

$$\partial_t \rho + \partial_x (\rho u) = \Delta t \partial_x ((\lambda^2 - u^2) \partial_x \rho - \rho \partial_x u^2 - \partial_x \rho) + o(\Delta t^2)$$

■ In Low mach regime $\partial_x u \approx M$, $\partial_x p \approx M$ and $u \approx M$ consequently

$$\partial_t \rho + \partial_x (\rho u) \approx \Delta t \partial_x (c^2 \partial_x \rho) - O(M) \partial_{xx} \rho + o(\Delta t^2)$$

Conclusion: Huge diffusion for the contact wave.

item **Test**: smooth contact. Second order time scheme. $T_f = \frac{2}{M}$. $\Delta t = T_f/100$.

Order 1 Left: M = 0.1. Right: M = 0.01

Possible solution: Relaxation with central wave

Relaxation methods with a central wave [Bou09]-[Nat96]-[ADN00].

$$\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \\ \partial_t \mathbf{V} + \partial_x \mathbf{W} = \frac{1}{\varepsilon} (\mathbf{F}(\mathbf{U}) - \mathbf{V}) \\ \partial_t \mathbf{W} + \lambda^2 \partial_x \mathbf{V} = \frac{1}{\varepsilon} (\lambda (\mathbf{F}^+(\mathbf{U}) - \mathbf{F}^-(\mathbf{U})) - \mathbf{W}) \end{cases}$$

with $F(U) = F^+(U) + F^-(U)$. Additional zero wave.

Limit:

$$\partial_t \textbf{\textit{U}} + \partial_x \textbf{\textit{F}}(\textbf{\textit{U}}) = \Delta t \partial_x (\lambda (\textbf{\textit{A}}^+(\textbf{\textit{U}}) - \textbf{\textit{A}}^-(\textbf{\textit{U}})) - |\partial_x \textbf{\textit{U}})|^2) \partial_x \textbf{\textit{U}}) + o(\Delta t^2)$$

- Question: choice of the flux splitting.
- **Test case**: Acoustic wave. Very high-order, 4000 cells.

- Xin-Jin $\Delta t = 0.005$ (yellow), Splitting-Relaxation $\Delta t = 0.005/0.01$ (red, green). Contact captured.
- Conclusion: Relaxation with central Can preserve contact wave and the low mach limit. BUT Stability not clear.

Semi implicit relaxation scheme

First Semi implicit scheme I

- Previous approach difficult to relax the two scales correctly and keep stability.
- Idea: Relax only the acoustic part to linearized the implicit part [CGS11]-[CC12]
- Suliciu approach: relax the pressure which is a strongly nonlinear function of macroscopic variables.

$$\begin{cases} \partial_t \rho + \partial_x(\rho u) = 0 \\ \partial_t(\rho u) + \partial_x(\rho u^2 + \Pi) = 0 \\ \partial_t E + \partial_x(Eu + \Pi u) = 0 \\ \partial_t(\rho \Pi) + \partial_x(\rho \Pi u) + \lambda^2 \partial_x u = \frac{\rho}{\varepsilon}(\rho - \Pi) \end{cases}$$

Limit:

$$\begin{cases} \partial_{t}\rho + \partial_{x}(\rho u) = 0 \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2} + \rho) = \varepsilon \partial_{x} \left(\left(\lambda^{2} - \rho^{2} c^{2} \right) \partial_{x} u \right) \\ \partial_{t}E + \partial_{x}(Eu + \rho u) = \varepsilon \partial_{x} \left(\left(\lambda^{2} - \rho^{2} c^{2} \right) \partial_{x} \frac{u^{2}}{2} \right) \end{cases}$$

- **Stability**: $\lambda > \rho c$.
- Contact waves:

$$\begin{cases} \partial_t \rho + u \partial_x \rho = 0 \\ \partial_x u = 0 \\ \partial_x \rho = 0 \end{cases}$$

- redare preserved by the relaxation approximation.
- Another way to say that : the contact waves are also solution of the relaxation model if $\pi(t=0) = p(t=0)$.
- For the low-mach flow (around the contact waves) the relaxation model is a very accurate approximation.

First Semi implicit scheme II

- Idea: splitting + implicit scheme for acoustic part [IDG18];
- Splitting scheme: convective part

$$(C) = \begin{cases} \partial_t \rho + \partial_x(\rho u) = 0 \\ \partial_t(\rho u) + \partial_x(\rho u^2 + \mathcal{E}^2(t)\Pi) = 0 \\ \partial_t E + \partial_x(Eu + \mathcal{E}^2(t)\Pi u) = 0 \\ \partial_t(\rho \Pi) + \partial_x(\rho \Pi u) + \lambda_c^2 \partial_x u = \frac{\rho}{\varepsilon}(\rho - \Pi) \end{cases}$$

- The eigenvalues: $(u \mathcal{E}(t)\frac{\lambda}{\rho}, u, u + \mathcal{E}(t)\frac{\lambda}{\rho})$.
- Splitting scheme: acoustic part

$$(A) = \begin{cases} \partial_t \rho = 0 \\ \partial_t (\rho u) + (1 - \mathcal{E}^2(t)) \partial_x \Pi = 0 \\ \partial_t E + (1 - \mathcal{E}^2(t)) \partial_x (\Pi u) = 0 \\ \partial_t (\rho \Pi) + (1 - \mathcal{E}^2(t)) \lambda_{\theta}^2 \partial_x u = \frac{\rho}{\varepsilon} (\rho - \Pi) \end{cases}$$

- The eigenvalues: $\left(-(1-\mathcal{E}^2(t))\frac{\lambda}{\rho}, 0, (1-\mathcal{E}^2(t))\frac{\lambda}{\rho}\right)$
- with $\lambda^2 = \lambda_c^2 + (1 \mathcal{E}^2(t))\lambda_a^2$.
- Important point:

$$\mathcal{E}^2(t) \approx \min \left(\mathcal{E}_{min}, \max \left(\frac{u}{2}, 1 \right) \right)^2$$
.

First Semi implicit scheme III

- Spatial scheme for convective part: Rusanov scheme:
 - ☐ Principle of Rusanov scheme. Diffusion matrix:

$$A(\boldsymbol{U}) = \frac{S}{2} Id \boldsymbol{U}$$

with S larger that the maximal wave speed.

- \Box For the full explicit scheme $S > |u| + c \approx c$ in low mach regime.
- \Box For the splitting implicit scheme $S > |u| + \mathcal{E}(t) \approx 2u$ in low mach regime.
- Conclusion: the density is slowly damped as a classical scheme for advection.
 Good behavior of scheme for low mach flow.
- \square Since is never zero. The scheme doesn't preserve steady contact wave (u=0).
- For high-mach flow the full model is explicit and we obtain classical scheme.
- Spatial scheme for the acoustic part: centered scheme. The stability is preserved since this part will be implicit.

First Semi implicit scheme IV

Time scheme:

$$\left\{ \begin{array}{l} (\rho u)^{n+1} = \rho^n u^n - \Delta t (1 - \mathcal{E}^2(t)) \partial_x \Pi^{n+1} = 0 \\ E^{n+1} = E^n - \Delta t (1 - \mathcal{E}^2(t)) \partial_x (\Pi^{n+1} u^{n+1}) = 0 \\ \rho^n \Pi^{n+1} = \rho^n \Pi^n - (1 - \mathcal{E}^2(t)) \Delta t \lambda_a^2 \partial_x u^{n+1} = 0 \end{array} \right.$$

The last equation can be rewritten as

$$u^{n+1} = u^n - \Delta t (1 - \frac{\mathcal{E}^2(t)}{\rho^n}) \frac{1}{\rho^n} \partial_x \Pi^{n+1} = 0$$

Plugging this in the second equation, we obtain

$$\Pi^{n+1} - \Delta t^2 (1 - \frac{\mathcal{E}^2(t)}{\rho^n})^2 \frac{1}{\rho^n} \partial_x \left(\frac{1}{\rho^n} \lambda_a^2 \partial_x \Pi^{n+1} \right) = b(\Pi^n, u^n)$$

- Matrix-vector product to compute u and E.
- Advantages Implicit part: just one linear elliptic problem to invert.
- Defaults: conditioning depending of the density and need to be assembly at each time.
- **Problem**: velocity is a nonlinear function of ρ and ρu .

lnría-

E. Franck

Second Semi implicit scheme I

- Idea: Relax only the acoustic part to linearized the implicit part.
- New approach: relax the pressure and velocity (acoustic variables).

$$\begin{cases} \begin{array}{l} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \Pi) = 0 \\ \partial_t E + \partial_x (E v + \Pi v) = 0 \\ \partial_t \Pi + v \partial_x \Pi + \phi \lambda^2 \partial_x v = \frac{1}{\varepsilon} (\rho - \Pi) \\ \partial_t v + v \partial_x v + \frac{1}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{array}$$

Limit:

$$\left\{ \begin{array}{l} \partial_{t}\rho + \partial_{x}(\rho u) = \varepsilon \partial_{x} \left[\frac{1}{\rho} \left(\frac{\rho}{\phi} - 1 \right) \partial_{x} \rho \right] \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2} + \rho) = \varepsilon \partial_{x} \left[\frac{1}{\rho} \left[u \left(\frac{\rho}{\phi} - 1 \right) \partial_{x} \rho + \left(\rho \phi \lambda^{2} - \rho^{2} c^{2} \right) \partial_{x} u \right] \right] \\ \partial_{t}E + \partial_{x}(Eu + \rho u) = \varepsilon \partial_{x} \left[\frac{1}{\rho} \left[E \left(\frac{\rho}{\phi} - 1 \right) \partial_{x} \rho + \left(\frac{\rho}{\phi} - 1 \right) \partial_{x} \frac{\rho^{2}}{2} + \left(\rho \phi \lambda^{2} - \rho^{2} c^{2} \right) \partial_{x} \frac{u^{2}}{2} \right] \right] \end{array}$$

- **Stability**: $\phi \lambda > \rho c^2$ and $\rho > \phi$.
- Contact waves:

$$\begin{cases} \partial_t \rho + u \partial_x \rho = 0 \\ \partial_x u = 0 \\ \partial_x \rho = 0 \end{cases}$$

- redare preserved by the relaxation approximation.
- The contact waves are also solutions if $\pi(t=0) = p(t=0)$ and v(t=0) = u(t=0).
- For the low-mach flow (around the contact waves) the relaxation model is a very accurate approximation.

Second Semi implicit scheme II

First order stability: we consider the first order approximation

$$\partial_{t} \mathbf{U} + \partial_{x} \mathbf{F}(\mathbf{U}) = \varepsilon \partial_{x} \left(\mathbf{A}(\mathbf{U}) \partial_{x} \mathbf{U} \right) + O(\varepsilon^{2})$$
$$\partial_{t} \eta(\mathbf{U}) + \partial_{x} \mathbf{Q}(\mathbf{U}) - \varepsilon \partial_{x} \left(\eta'(\mathbf{U}) \mathbf{A}(\mathbf{U}) \partial_{x} \mathbf{U} \right) \leq 0 + O(\varepsilon^{2})$$

- The second equation is true if $\eta''(\textbf{\textit{U}})A(\textbf{\textit{U}}) \geq 0$. It is true for the matrix associated with relaxation scheme if $\phi\lambda^2 > \rho c^2$. $\rho > \phi$.
- Entropy stability: We rewrite the model as

$$\begin{cases} \begin{array}{l} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \Pi) = 0 \\ \partial_t E + \partial_x (E v + \Pi v) = 0 \\ \partial_t (\rho \Pi) + \partial_x (\rho v \Pi) + ab\partial_x v = \frac{\rho}{\varepsilon} (\rho - \Pi) \\ \partial_t (\rho v) + \partial_x (\rho v^2) + \frac{a}{b} \partial_x \Pi = \frac{\rho}{\varepsilon} (u - v) \\ \partial_t a + \partial_x (av) = 0 \\ \partial_t b + \partial_x (bv) = 0 \end{array}$$

- with $a(t=0) = \rho \lambda$ and $b(=0) = \phi \lambda$.
- **Idea** : comparison principle. We consider S the entropy and \hat{S} the function such that

$$\partial_t \hat{S} + v \partial_x \hat{S} = 0$$
, with $\hat{S}(t=0) = S(t=0)$

• We prove using the equations that $S(\rho, s) \leq \hat{e}$ and using specific invariants that $\hat{e} > e(\rho, \hat{s})$. We deduce that

$$S(
ho,e)>\hat{S},
ightarrow\int S(t)\geq\int \hat{S}(t)=\int S(t=0)$$

Second Semi implicit scheme III

- Idea: splitting + implicit scheme for acoustic part.
- Splitting scheme: convective part

$$(C) = \begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \mathcal{E}^2(t)\Pi) = 0 \\ \partial_t E + \partial_x (E v + \mathcal{E}^2(t)\Pi v) = 0 \\ \partial_t \Pi + v \partial_x \Pi + \phi \lambda_c^2 \partial_x v = \frac{1}{\varepsilon} (\rho - \Pi) \\ \partial_t v + v \partial_x v + \frac{\mathcal{E}^2(t)}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{cases}$$

- The eigenvalues: $(v \mathcal{E}(t)\lambda, v, v + \mathcal{E}(t)\lambda)$.
- Splitting scheme: acoustic part

$$(A) = \begin{cases} \partial_t \rho = 0 \\ \partial_t (\rho u) + (1 - \mathcal{E}^2(t)) \partial_x \Pi = 0 \\ \partial_t E + (1 - \mathcal{E}^2(t)) \partial_x (\Pi v) = 0 \\ \partial_t \Pi + (1 - \mathcal{E}^2(t)) \phi \lambda_{\widehat{g}}^2 \partial_x v = \frac{1}{\varepsilon} (p - \Pi) \\ \partial_t v + (1 - \mathcal{E}^2(t)) \frac{1}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{cases}$$

- The eigenvalues: $(-(1-\mathcal{E}^2(t))\lambda, 0, (1-\mathcal{E}^2(t))\lambda)$
- with $\lambda^2 = \lambda_c^2 + (1 \mathcal{E}^2(t))\lambda_a^2$.
- Important point:

 $\mathcal{E}^2(t) \approx \min \left(\mathcal{E}_{min}, \max \left(\frac{u}{2}, 1 \right) \right)^2$.

Second Semi implicit scheme IV

- Spatial scheme for convective part: Rusanov scheme:
 - Diffusion matrix for this scheme:

$$\partial_{x}(A(\mathbf{U})\partial_{x}\mathbf{U})=\frac{S}{2}\partial_{xx}\mathbf{U}$$

with S larger that the maximal wave speed.

- \Box For the full explicit scheme $S>\mid u\mid +c\approx c$ in low mach regime.
- \Box For the splitting implicit scheme $S>\mid u\mid +\mathcal{E}(t)\approx 2u$ in low mach regime.
- Conclusion: the density is slowly damped as a classical scheme for advection. Good behavior of scheme for low mach flow.
- Spatial scheme for convective part: LR-like scheme:
 - Diffusion matrix for this scheme:

$$\partial_{x}(A(\boldsymbol{U})\partial_{x}\boldsymbol{U}) = \begin{pmatrix} \partial_{x}(\mid u\mid\partial_{x}\rho) + \partial_{x}(\rho\partial_{x}p) \\ \partial_{x}(\mid u\mid\partial_{x}(\rho u)) + \partial_{x}(\rho u\partial_{x}p) + \frac{\mathcal{E}(t)\frac{\phi\lambda}{2}}{2}\partial_{xx}u \\ \partial_{x}(\mid u\mid\partial_{x}E) + \partial_{x}(E\partial_{x}p) + \frac{\phi\lambda}{2}(\mathcal{E}(t)\partial_{x}(u\partial_{x}p) + \frac{\mathcal{E}(t)^{3}}{2}\partial_{x}(\rho\partial_{x}u)) \end{pmatrix}$$

- Conclusion: the density is slowly damped as a classical scheme for advection.
 Good behavior of scheme for low mach flow.
- This scheme is less dissipative for the density and preserve exactly stationary contact.
- Spatial scheme for the acoustic part: centered scheme. The stability is preserved since this part will be implicit.

Second Semi implicit scheme V

Time scheme:

$$(A1) = \begin{cases} \rho^{n+1} = \rho^{n} \\ (\rho u)^{n+1} = (\rho u)^{n} - \Delta t (1 - \mathcal{E}^{2}(t)) \partial_{x} \Pi^{n+1} \\ E^{n+1} = E^{n} - \Delta t (1 - \mathcal{E}^{2}(t)) \partial_{x} (\Pi^{n+1} v^{n+1}) \end{cases}$$
$$\frac{\Pi^{n+1} + (1 - \mathcal{E}(t)) \Delta t \phi \lambda_{a}^{2} \partial_{x} v^{n+1} = \Pi^{n} \\ v^{n+1} + (1 - \mathcal{E}(t)) \Delta t \frac{1}{\phi} \partial_{x} \Pi^{n+1} = v^{n} \end{cases}$$

We consider the equation on the new velocity

$$v^{n+1} = -\Delta t (1 - \mathcal{E}^2(t)) \frac{1}{\phi} \partial_x \Pi^{n+1} + v^n$$

We plug into the equation on Π and we obtain

$$\left(I_d - \theta^2 (1 - \mathcal{E}^2(t))^2 \Delta t^2 \lambda_a^2 \partial_{xx}\right) \Pi^{n+1} = R(\Pi^n, v^n)$$

- Matrix-vector product to compute v, E and ρu.
- Advantages Implicit part: just one linear and constant elliptic problem to invert.
- The matrix can be constructed once and the conditioning does not depend of ρ .

Results I

Smooth contact

$$\begin{cases} \rho(t,x) = \chi_{x < x_0} + 0.1 \chi_{x > x_0} \\ u(t,x) = 0.01 \\ \rho(t,x) = 1 \end{cases}$$

Error

cells	Ex Rusanov	Ex LR	I Xin-jin	SI Rusanov	New SI Rus	New SI LR
250	0.042	$3.6E^{-4}$	0.32	$1.4E^{-3}$	7.8 <i>E</i> ⁻⁴	$4.1E^{-4}$
500	0.024	$1.8E^{-4}$	0.24	$6.9E^{-4}$	$3.9E^{-4}$	$2.0E^{-4}$
1000	0.013	9.0 <i>E</i> −5	0.17	3.4 <i>E</i> ⁻⁴	$2.0E^{-4}$	$1.0E^{-5}$
2000	0.007	4.5 <i>E</i> ⁻⁵	0.12	$1.7E^{-4}$	$9.8E^{-5}$	$4.9E^{-5}$

Comparison time scheme:

Scheme	λ	Δt
Explicit	$\max(\mid u-c\mid,\mid u+c\mid)$	$2.2E^{-4}$
Xin-Jin	-	0.0052
SI Suliciu	$\max(\mid u - \mathcal{E}(t)\frac{\lambda}{\rho}\mid,\mid u + \mathcal{E}(t)\frac{\lambda}{\rho}\mid)$	0.0075
SI new relaxation	$\max(\mid v - \mathcal{E}(t)\lambda\mid,\mid v + \mathcal{E}(t)\lambda\mid)$	0.04

Conditioning:

Schemes	Δt	conditioning	
Si suliciu	0.00757	3000	
Si new relax	0.041	9800	
Si new relax	0.0208	2400	
si new relax	0.0075	320	

2D extension

2D extension:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{v}) + \nabla \Pi = 0 \\ \partial_t E + \nabla \cdot (E \mathbf{v} + \Pi \mathbf{v}) = 0 \\ \partial_t \Pi + \mathbf{v} \cdot \nabla \Pi + \phi \lambda^2 \nabla \cdot \mathbf{v} = \frac{1}{\varepsilon} (\rho - \Pi) \\ \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \frac{1}{\phi} \nabla \Pi = \frac{1}{\varepsilon} (\mathbf{u} - \mathbf{v}) \end{cases}$$

Limit:

$$\left\{ \begin{array}{l} \partial_{t}\rho + \nabla \cdot \left(\rho \boldsymbol{u}\right) = \varepsilon \nabla \cdot \left[\frac{1}{\rho}\left(\frac{\rho}{\phi} - 1\right)\nabla\rho\right] \\ \partial_{t}(\rho \boldsymbol{u}) + \nabla \cdot \left(\rho \boldsymbol{u} \otimes \boldsymbol{v}\right) + \nabla\rho = \varepsilon \nabla \cdot \left[\frac{1}{\rho}u\left(\frac{\rho}{\phi} - 1\right)\nabla\rho\right] + \varepsilon \nabla\left[\frac{1}{\rho}\left(\rho\phi\lambda^{2} - \rho^{2}c^{2}\right)\nabla \cdot \boldsymbol{u}\right] \\ \partial_{t}E + \nabla \cdot \left(\left(E + \rho\right)\boldsymbol{u}\right) = \varepsilon \nabla \cdot \left[\frac{1}{\rho}\left[E\left(\frac{\rho}{\phi} - 1\right)\nabla\rho + \left(\frac{\rho}{\phi} - 1\right)\nabla\frac{\rho^{2}}{2}\right]\right] \\ + \varepsilon \nabla \cdot \left[\frac{1}{\rho}\left(\rho\phi\lambda^{2} - \rho^{2}c^{2}\right)\boldsymbol{u}\nabla \cdot \boldsymbol{u}\right] \end{array} \right.$$

Remark: This diffusion approximate of the relaxation model preserve the acoustic steady states and consequently the low mach limit.

Scheme

- Splitting "convection" (Euler explicit) + "acoustic" (theta scheme).
- Convective part: Lagrange+remap-like scheme on Cartesian meshes.
- Acoustic part: centered scheme based also on nodal method.

First 2D result I

■ We take 100*100 cells $T_f = 1$ and

E. Franck

$$\left\{ \begin{array}{l} \rho(t,\mathbf{x}) = G(\mathbf{x} - \mathbf{u}_0 t) \\ \mathbf{u}(t,\mathbf{x}) = \mathbf{u}_0, \quad \text{such that } \nabla \cdot \mathbf{u}_0 = 0 \text{ and } \mid \mathbf{u}_0 \mid \approx 10^{-3} \\ \rho(t,\mathbf{x}) = 1 \end{array} \right.$$

Results:

Vars	Ex Rusanov	Ex LR	SI Rusanov	New SI Rus	New SI LR
ρ	0.39	$1.9E^{-4}$	8.4 <i>E</i> ⁻⁴	7.3E ⁻⁴	7.5 <i>E</i> -5
и	0.87	0.51	$5.3E^{-3}$	$4.8E^{-3}$	$2.7E^{-3}$
р	9.6 <i>E</i> ⁻⁸	5.5 <i>E</i> ⁻⁷	$1.8E^{-6}$	7.2E ⁻⁷	7.2E ⁻⁷
Δt	4.2E ⁻⁴	$4.4E^{-4}$	0.8	1(max 9)	1(max 9)

Figure: Explicit Rusanov scheme, ex Lr-Like, Semi Implicit relax

First 2D results II

- Gresho vortex: stationary vortex with varying Mach number.
- Classical test case for Low-Mach flow for Euler equation.

Figure: Results with Rusanov: M = 0.5 ($\Delta t = 1.4E^{-3}$), M = 0.1 ($\Delta t = 3.5E^{-4}$), M = 0.01 ($\Delta t = 3.5E^{-4}$)

First 2D results II

- Gresho vortex: stationary vortex with varying Mach number.
- Classical test case for Low-Mach flow for Euler equation.

Figure: Results with New-relax: M = 0.5 ($\Delta t = 2.5E^{-3}$), M = 0.1 ($\Delta t = 2.5E^{-3}$), M = 0.01 ($\Delta t = 2.5E^{-3}$)

lnria

 $^{37}/_{39}$

Conclusion

Full implicit schemes

- The Xin-Jin model + high order scheme gives good results.
- Drawback: Not sufficiently accurate in the Low -mach regime.
- First relaxation method with central wave as solution.
- Future works: understand the stability of these relaxation methods for low-mach flow and extend in 2D.
- All these relaxation models can be rewritten/generalized on a diagonal form (approximated BGK methods) with very high-order schemes and Semi-Lagrangian schemes.

Semi implicit schemes

- Relaxation + Splitting + VF allows to preserve contact wave and low Mach regime with a simple implicit step.
- **Stability**: Possible modification of the scheme to obtain discrete entropy inequality.
- Future works:
 - ☐ High accuracy for acoustic wave with a theta scheme for relaxation and implicit.
 - □ Modification splitting: Problem of time step if $\partial_t \mathcal{E}(t) >> 1$.
 - □ DG Extension in 1D/2D. Which limiting? MOOD? Subcell etc?
 - ☐ MHD, Exner, Euler with gravity extension in 1D.
 - MHD in 2D. Large difficulty to be accurate around the magneto-acoustic steady state.

lnría

E. Franck

References

- [DegondTang09]: All speed scheme for the low mach number limit of the Isentropic Euler equation, P. Degond, M. Tang, 2009.
- [DLV17]: Study of a new Asymptotic Preserving schemes for the Euler system in the low Mach number limit, avec
 G. Dimarco, R. Loubre, 2017.
- [DDLV18]: Second order Implicit-Explicit Total Variation Diminishing schemes for the Euler system in the low Mach regime, avec G. Dimarco, R. Loubre et V. Michel-Dansac, 2018.
- [BRS17]: All Mach Number Second Order Semi-Implicit Scheme for the Euler Equations of Gasdynamics, S. Boscarino, G. Russo, L. Scandurra, 2017.
- [JX95]: The relaxation schemes for systems of conservation laws in arbitrary space dimensions, S. Jin, Z. Xin, 1995.
- [Nat96]: Convergence to equilibrium for the relaxation approximations of conservation laws, R. Natalini, 1996.
- [ADN00]: Discrete kinetic schemes for multidimensional systems of conservation laws, D Aregba-Driollet, R Natalini, 2000
- [Jin95]: A Convex Entropy for a Hyperbolic System with Relaxation, S. Jin 1995.
- [PaRu15]: ImplicitExplicit RungeKutta Schemes and Applications to Hyperbolic Systems with Relaxation, L.
 Pareschi, G. Russo, 2015
- [Bou09]: Entropy satisfying flux vector splittings and kinetic BGK models, F. Bouchut, 2009.
- [CGS11]: Relaxation of fluid systems, F. Coquel, E. Godlewski, N. Seguin, 2011.
- [CC12]: Modified Suliciu relaxation system and exact resolution of isolated shock waves, 2012.
- [IDG18]: A low-diffusion self-adaptive flux-vector splitting approach for compressible flows, D. lampietro, F. Daude, P. Galon, 2018.
- [BCG19]: An entropy satisfying two-speed relaxation system for the barotropic Euler equations. Application to the numerical approximation of low Mach number flows, F. Bouchut, C; Chalons, S. Guisset 2019.

(nría-

(39/39)