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Gas dynamic: Euler equations

� Multiscale fluid problem: Low-Mach regime in for compressible equations:
Euler/Navier-Stokes, MHD ideal/resistive, multi-fluid models etc, quasi-neutral limit
for plasma, collisional limit for kinetic equations etc.

� Euler equation:  ∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu ⊗ u + pId ) = 0
∂tE +∇ · (Eu + pu) = 0

� with ρ(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

� The pressure p(t, x) is defined by p = ρT (perfect gas law) with T (t, x) the
temperature.

� Hyperbolic system which propagate some nonlinear waves.

� Waves speed: three eigenvalues: (u, n) and (u, n)± c with the sound speed c2 = γ p
ρ

.

Physic interpretation:
� the isotropic acoustic waves due to the pressure and normal velocity perturbations,
� the fluid motion at the velocity u.

� Two important velocity scales: u and c
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Low mach limit

� We propose to obtain dimensionless equations. We rewrite the equation on the form: ∂tρ+∇ · (ρu) = 0
ρ∂tu + ρu · ∇u +∇p = 0
∂tp +∇ · (pu) + (γ − 1)p∇ · u = 0

� Normalization:

� we introduce characteristic time t0, velocity V , length L.
� the characteristic velocity u0 and pressure γp0. The sound velocity is c2 = γp0

ρ0
.

Low Mach limit
When M tends to zero, we obtain incompressible Euler equation: ∂tρ+ u · ∇ρ = 0

ρ∂tu + ρu · ∇u +∇p2 = 0
∇ · u = 0

In 1D we have just advection of ρ.
Classical incompressible Euler equation if p = p(ρ) or ρ(t = 0) = cts.
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Numerical difficulties in space: Finite volume I

Finite Volumes
The Finite Volumes is the natural method to solve hyperbolic systems. The constant by
cell approximation is very useful to preserve the maximum principle to capture shock
waves.

� Default of FV scheme. Consistency :

∂tU + ∂xF (U) = ∆x(∂xD(U)∂xU) + O(∆x2)

� We consider UM the solution at the low mach limit.
� The scheme can be considered as not adapted/adapted for this regime if

limM→0 | D(UM) |≈ M−p , limM→0 | D(UM) |< C

� The simpler schemes are not adapted in general (following slide) [GV97].
� Other problem. At the limit we have ∇ · uM = 0 and ∇p2,M the Lagrange multiply

associated. At the continuous level

Ker(∇·) = Span
{
u = ∇⊥φ

}
, Ker(∇) = Span {p = cts}

� It is not always true at the discrete level [DJOR16]-[BDJP19]. Example:

∂xp ≈
pj+1 − pj−1

∆x
admit in the kernel (1,−1, 1,−1, ...., 1,−1)

Difficulties
Design a scheme with a good viscosity, stable and avoiding spurious mods.
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Numerical difficulties in space: Finite volume II
� VF method + Rusanov flux. Equivalent equation:

∂tρ+∇ · (ρu) =
S∆x

2
∆ρ

ρ∂tu + ρu · ∇u +
1

M2
∇p =

S∆x

2
∆u

∂tp + u · ∇p + γp∇ · u =
S∆x

2
∆p

� Problem: S must be larger that 1
M

for stability. Huge diffusion.

� Example: isolated contact p = 1, ∇ · u0 = 0 and u0 constant in time.

� Rusanov scheme Tf = 2 | u0 |≈ 0.001 and 100*100 cells.

� Red: exact solution, Blue: numerical solution.
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Numerical problem I: time discretization.
� Explicit scheme: the CFL condition ∆t < ∆x

λ
with λ the maximal speed of the

system. For low mach flow:
� The fast phenomena: acoustic waves at velocity c
� The important phenomena: transport at velocity u
� Expected CFL: ∆t < ∆x

|u| , CFL in practice ∆t < ∆x
|c|

� At the end, we use a ∆t divised by M compare to the expected ∆t

First solution
Implicit time scheme. No CFL condition. Taking a larger time step, it allows to ”filter”
the fast acoustic waves which are not useful in the low-Mach regime.

� Implicit time scheme:

MiU
n+1 = (Id + ∆tA(Id ))Un+1 = U

n

� We must solve a nonlinear system and after linearization solve some linear systems.

Problem
� Direct solver too costly. Approximative conditioning for iterative solver:

k(Mi ) ≈ 1 + O

(
∆t

∆xpM

)
� We recover the two scales in the conditioning number. The full implicit schemes are

difficult to use for this reason.
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Numerical problem II: time discretization.

First idea: Semi implicit scheme
� We explicit the slow scale (transport) and implicit the fast scale (acoustic)

[CDK12]-[DLVD19] 
∂tρ+ ∂x (ρu) = 0

∂t(ρu) + ∂x (ρu2) + ∂xp = 0
∂tE + ∂x (Eu) + ∂x (pu) = 0

Implicit acoustic step: ρn+1 = ρn

(ρu)n+1 = ρnun −∆t∂xpn+1 + Rhsu
En+1 = En −∆t∂x (pn+1un+1) = RhsE

Plugging this in the second equation, we obtain

En+1 −∆t2∂x

(
pn+1

ρn
∂xp

n+1

)
= Rhs(En, un, ρ)

�� Matrix-vector product to compute un+1.

Conclusion
� Semi implicit: only one scale in the implicit symmetric positive operator.
� Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
� Nonlinear solver can have bad convergence for if ∆t >> 1 and ∂xp not so small.
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Relaxation method
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Relaxation method I
� Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations.

Used to design new schemes.
� Idea: Approximate the model

∂tU + ∂xF(U) = 0, by ∂t f + A(f) =
1

ε
(Q(f)− f)

� At the limit and taking Pf = U we obtain

∂tU + ∂xF(U) = ε∂x (D(U)∂xU) + O(ε2)

� Time scheme:
� we solve

f∗ − fn

∆t
+ A(f∗,n) = 0

� and after we approximate the stiff source term by

f n+1 = f∗ + ω(Q(f∗)− f∗)

with ω ∈]0, 2].

Why ?
� In general, we construct A with a simpler structure than F to design numerical flux in

FV.

� Here, we construct A with a simpler structure to design simple implicit scheme.
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Relaxation method II
� Problem: the nonlinearity of the implicit acoustic step generates difficulties.
� Non conservative form and acoustic term:{

∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0∂tu + u∂xu + 1

ρ
∂xp = 0

� Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

� Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
� with A = 1

ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

� Stability: φλ > ρc2 and ρ > φ.

Avdantage
� We keep the conservative form for the original variables and obtain a fully linear

acoustic.
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Splitting

Dynamical splitting
� Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time

depending for low-mach [IDGH2018]

� For large acoustic waves (Mach number not small) we want capture all the
phenomena. Consequently use an explicit scheme.

� For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
φ

∂xΠ = 0

,


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ + φ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

φ
∂xΠ = 0

with M(t) ≈ max
(
Mmin,min

(
maxx

|u|
c

, 1
))

� Eigenvalues of Explicit part: v , v ±M(t) λc︸︷︷︸
≈c

. Implicit part v0, ±(1−M2(t)) λa︸︷︷︸
≈c

� At the end: we make the projection Π = p and v = u (can be viewed as a
discretization of the stiff source term).
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Implicit time scheme
� We introduce the implicit scheme for the ”acoustic part”:

ρn+1 = ρn

(ρu)n+1 + ∆t(1−M2(tn))∂xΠn+1 = (ρu)n

En+1 + ∆t(1−M2(tn))∂x (Πv)n+1 = En

Πn+1 + ∆tφ(1−M2(tn))λ2
a∂xv

n+1 = Πn

vn+1 + ∆t(1−M2(tn)) 1
φ
∂xΠn+1 = vn

� We plug the equation on v in the equation on Π. We obtain the following algorithm:
� Step 1: we solve

(Id − (1−M2(tn))2∆t2λ2
c∂xx )Πn+1 = Πn −∆t(1−M2(tn))φλ2

c∂xv
n

� Step 2: we compute

vn+1 = vn −∆t(1−M2(tn))
1

φ
∂xΠn+1

� Step 3: we compute
(ρu)n+1 = (ρu)n −∆t(1−M2(tn))∂xΠn+1

� Step 4: we compute
En+1 = En −∆t(1−M2(tn))∂x (Πn+1vn+1)

Advantage
� We solve only a constant Laplacian. We can assembly matrix one time.
� No problem of conditioning, which comes from to the strong gradient of ρ
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Spatial scheme in 1D
� Idea: FV upwind fluxes for the explicit part + Central fluxes for the implicit part.
� Main problem of the explicit part: design numerical flux.
� First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.
� Other solution more efficient ”pressure-convection” splittign scheme. The flux is given

by 
ρv
ρuv +M2(t)Π
Ev +M2(t)(vΠ)
φv
M2(t)
φ

Π

 =


ρv
ρuv +M2(t)Π
Ev +M2(t)(vΠ)
0
0

+


0
0
0
φv
M2(t)
φ

Π


� The new variables v and Π can be solved independently. We propose a numerical flux

G = Gρ,ρu,E + GΠ,v .
� For the equations on Π, v we have a linear flux, so we apply an upwind fluxes on the

eigenvectors to obtain: vj+ 1
2

= 1
2

(
vj+1 + vj

)
− M(t)

2λcφ

(
Πj+1 − Πj

)
Πj+ 1

2
= 1

2

(
Πj+1 + Πj

)
− λcφ

2M(t)

(
vj+1 − vj

)
� We use this flux for GΠ,v part but also for the Π,v in the other part. For the transport

of the conservative variables at velocity v we use:

ρj+ 1
2

=
vj+ 1

2

2

(
ρj + ρj+1

)
−
| vj+ 1

2
|

2

(
ρj+1 − ρj

)
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Viscosity and spurious mods
� Here, we propose to study the viscosity to understand the Low-Mach Behavior.
� Relaxation (first order in time) + Euler implicit with central FV + Euler explicit with

new flux (1D fluxes in the normal direction).
� Viscosity 2D for two first equations (we neglect viscosity due to Euler time scheme):{
∂tρ+ .. ≈ ∇ · [(∆tA + ∆xρ)∇p + ∆x | v |∇ρ]

∂t(ρu) + .. ≈ ∇ · [(∆tAu + ∆xρu)⊗∇p + ∆x | v |∇(ρu)] +∇(∆tB)∇ · u + ∆x
2
M(t)λcφ∆u

with M(t)λc ≈ maxx | v |=≈ maxx | u |.

Conclusion
� At low Mach we have:

� slow transport of ρ,
� ∇ · u = 0 and p = p0 + M2p2 with p0 =cst and M the Mach number.

� The viscosities which destabilize these solutions are small, homegeneous to O(Mach).

Mods
� The implicit central fluxes for acoustic does not add viscosity but add spurious mods.
� The 5 points implicit Laplacian allows to stabilization this. Perhaps it is not sufficient.
� We can use any good scheme for linear acoustic. Possible example: work’s of W.

Barsukow, C Klingenberg or J. Jung, V. Perrier.
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Results 1D I: contact
� Smooth contact :  ρ(t, x) = χx<x0 + 0.1χx>x0

u(t, x) = 0.01
p(t, x) = 1

� Error

cells Ex Rusanov Ex LR SI Rusanov New SI Rus New SI LR
250 0.042 3.6E−4 1.4E−3 7.8E−4 4.1E−4

500 0.024 1.8E−4 6.9E−4 3.9E−4 2.0E−4

1000 0.013 9.0E−5 3.4E−4 2.0E−4 1.0E−5

2000 0.007 4.5E−5 1.7E−4 9.8E−5 4.9E−5

� Suliciu: relaxation scheme different. The implicit Laplacian is not constant and
depend of ρn.

� Comparison time scheme:

Scheme λ ∆t
Explicit max(| u − c |, | u + c |) 2.2E−4

SI Suliciu max(| u −M(tn))λ
ρ
|, | u +M(tn))λ

ρ
|) 0.0075

SI new relaxation max(| v −M(tn))λ |, | v +M(tn))λ |) 0.04

� Conditioning:

Schemes ∆t conditioning
Si suliciu 0.00757 3000

Si new relax 0.041 9800
Si new relax 0.0208 2400
si new relax 0.0075 320
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Results in 2D I: contact
� We take 100*100 cells Tf = 1 and ρ(t, x) = G(x− u0t)

u(t, x) = u0, such that ∇ · u0 = 0 and | u0 |≈ 10−3

p(t, x) = 1

� Results:

Vars Ex Rusanov Ex LR SI Rusanov New SI LR
ρ 0.39 1.9E−4 8.4E−4 7.5E−5

u 0.87 0.51 5.3E−3 2.7E−3

p 9.6E−8 5.5E−7 1.8E−6 7.2E−7

∆t 4.2E−4 4.4E−4 0.8 1(max 9)

Figure: Explicit Rusanov scheme, Ex LR-Like, Semi Implicit relax
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Results in 2D II: Gresho vortex
� Gresho vortex: ∇ · u = 0 and p = 1

M2 + p2(x)
� We plot the norm of u

� Ex scheme: M = 0.5 (∆t = 1.4E−3), M = 0.1 (∆t = 3.5E−4), M = 0.01
(∆t = 3.5E−5), M = 0.001 (∆t = 3.5E−6)

� New scheme: M = 0.5 (∆t = 2.5E−3), M = 0.1 (∆t = 2.5E−3), M = 0.01
(∆t = 2.5E−3), M = 0.001 (∆t = 2.5E−3)
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Results in 2D II: Gresho vortex
� Gresho vortex: ∇ · u = 0 and p = 1

M2 + p2(x)

� Convergence for u and p

� Results with New-relax. Left: 120*120 cells, Right: 240*240 cells
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Conclusion

Resume
� Introducing Dynamic splitting scheme we separate the scales.
� Introducing implicit scheme for the acoustic wave we can filter these waves.
� Introducing relaxation we simplify at the maximum the implicit scheme.
� A well-adapted spatial scheme is also very important.

Perspectives:
� Understand stability of the splitting + relaxation scheme. Not fully clear. Many

option, what is the best ?
� Extension to High Order, MUSCL firstly and after DG and HDG schemes.
� Extension to Shallow-Water/Ripa models and MHD (main goal).
� Extension to second and third order terms. Example: visco-resistive extended MHD or

compressible NS.

Announcement
� With some colleges we organize the summer school ”Cemracs 2020”.

� Theme: ”Models and simulation of many passive/active particles”. Physics particles,
cells, population dynamic, crowd movement, smart city.
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