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Kinetic models

B We begin by introduce the mesoscopic model to describe two species ( ion, electron)
plasma.

B £(t,x,v) is the density of particles (ion, electon) at time t, space x and velocity v

Vlasov-Maxwell 2 species

8tfs+v Vx(fs)+—(E+v><B) ' fs—*cs+cs,s’

BtE V x B = —/J,QJ

58— -vxE

V-B=0

v.E=Z
€0

with o =¢q; [fi+qe [feand J =q; [vfi+ qe [ vfe

B ¢ is homogeneous to the collisional frequency.

B Collisional limit: we take f; = f0 4+ <f} + O(<?).
[

[

Keeping only zero order terms we obtain two fluid Euler-Maxwell equations.
Keeping only zero and first order terms we obtain two fluid Viscous Euler-Maxwell

equations. r-\
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Two fluid Euler-Maxwell equations

Euler-Maxwell 2 species

B Final equations:

Orpi +V - (piuj) =0

at'Pe‘f’V' (Peus) =0 .

Ot(piui) +V - (piu; ® u;) + Vp; = ciE+J; x B=V - T; + R;

8t(PeUe) + V- (peue ® Ue) + Vpe = UeE+ Je Xx B—V - ﬁe + Re

Oepici + V - (piciuj + piu;) + V - (Cli +0n;- Ui) =oiu;- E+R; - u; + Qp,
8tPeEe +V. (PeEeUe + Peue) +V. (Qe + ﬁe . Ue) =0ele - E+ Re - ue + QAe
SP2HE—-VxB=—-J

BtB + VXxE=0

V-B=0

£V -E = n; — ne

u with5z¥<<1.

B Quasi neutral limit: ¢ — 0
The generalized Ohm law is obtain using electron momentum equation:

E+uxB:nJ—ﬂvﬁe+ﬂJxB—ﬂvpﬁo(ﬁ).
pe pe pe i

mj

B Taking % — 0 and quai neutral limit we will obtain Extended MHD. r-\
4
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Extended MHD equations

B \We take the two limits introduced previously.
B We define global quantities:
m;nju; + Menele

p=minj+ Mene, U= ——"—"""——, P=p+pPe
m;in; + Mene

Extended MHD

Orp+V - (pu) =0 _ _
patu+pu-u+Vp:J><B+—V~ﬁgv—V~ﬁH

Btp,—i-u Vp,-i—'yp,V u+n;V-q,~+ﬁ” :Vu+ﬁgv:Vu
=3(y *1) (T Te)

Otpe + U - Vpe +vpeV - 4 + KV - qe
m; \Y%

=—J. (VPe _’YPEJ> —3(v-1) Pe
pe P Tem

(Ti = Te) +nlJI?

m;j mj
9B = -V x (—u X B+nd——Vpe+ —(J x B))
pe (e
,LL()VXBZJ, V-B=0

B Additionally we can assume that T; < T, such that p; = pe. r-\
5
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Velocity approximation (D. Schnack)

B We introduce the Spatial ratio: § = ’ with p? the ion Larmor radius.
B Time ratio assumption: € = ﬂ ~ 62 (|dem for collisional frequency).

B Velocity small parameter: £ = ﬁ ~0
Firstly we take the ion velocity equatlon to obtain:
m;n;Otu; + minju; - Vu; + Vp; = en,-(E —+ u; X B) -V ﬁ,‘ + R;

After small computations we obtain which gives

E B
x + B X(Bful—’_ul VU:)"F

Vpi+V-0,—R;
BEtBE * 8 meigp < (VP )

=(ui-B)zs

After the Ordering we obtain

(ui-B)B _ExB B NN

du = ) 6 (Oru; i+ Vu; 6Vpi +6°V-N; — —R;
N T TR T T R AL
7 ——

52

Final velocity

B ExB B
u = (u;- B) +

x Vp;
B [BE niBE P
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Viscous tensor approximation |

Final velocity

ExB B

B
~ x Vp;
BT BE TarBRE < VP

u

B (lassical decomposition of viscous tensor:

n= ﬁ” +ﬁc +ﬁj_ ~ ﬁ” +ﬁgyro
B Proposition of simplification by A. Zeiler (IPP report):
U Viscosity:
= 1
Vv-n :Gb~Vb—§VG+VHG
U Viscous heating:
1 G2

Vu=——
310

=l

with G = _770(2b . VV“ — ((b . Vb) . UL) and b = %

B We can neglect the viscous heating and in this we obtain a dissipation linked to G2.
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Viscous tensor approximation |l

Final velocity

B +E><B+ B <V
~ V| i
IR

u

B Proposition of simplification by A. Zeiler (IPP report):
U Viscosity

m;b
V Mg = —pu’ -V iV x — -V
S "*"’( e||B||) !

m; p; mipi
+V ('7V~b><u)+b><v(7vl~u)
2e || B 2e || B ||

O Principle of the Gyro-viscous cancelation: neglect the three last terms and kill the
first one with a part of the advection part.
U No Gyro viscous heating.

0 Proposition simple: no simplification or energy conserving simplification.

B \We can prove that
/V ‘Mgu=0

B |t is also true for the two first terms. We can keep only the two first terms.
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Final model
Otp+ V- (pu) =0
patu—l-pu Vu+Vp=JxB-V- I'I”—V I'Igv
1 =
i+ u- Vp,-i-ip,v u+V- q,—H‘I” Vu+ Mg : Vu
’y )1 v—1 1
=32 (T - To)
TeMmj
1 0
Ot Pe + u-Vpe+ ——pV -u+V-qe
*y—l v—1 v—1
= 2520 (Vpe —9pe T2 ) = 3222 (Ti — Te) + nlJP?
0B=-VXxE
E= —u><B+nJ—ﬂVpe+ﬂ(J><B))
pe pe
wVxB=J V-B=0
with
{ n 4t . m; B x Vp; Ex B B
u—=uj u, u, = ug u;, u = ———, Uurp = s u) = Vv,
I ! ! ep |B|2 |B‘2 I H‘B‘
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Reduction assumption

B To obtain a reduced model we write the equation as a potential decomposition and we
write the equation on the potential.

Jorek Reduction

B For B = 1
0
B:ﬁed’—i—ﬁvwxe‘ﬁ

B For u

iR
u:—RVUXqu-f—VHB-i-Z;TerXVp
0

M3DC1 Reduction
B For B

| A

F
BZEG¢+V’¢)XE¢,

B For u 1
u = RQVLIX E¢+Rw8¢+ﬁle

B The first term to u seems equivalent to say that E = FyVu.
B The diamagnetic term are not explicitly put in the M3DC1 velocity. The velocity in
M3DC1 is linear compare to the scalar variables not the case in JOREK.
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R R R R RRRRRERERRERERRREEEE==S=————————
Projection assumption

B As say before we need projection to conclude the reduction

Jorek Projection

B for 1) we take the equation on A = ¢ey and multiply by ey ?

B for u to obtain poloidal velocity we apply
E¢V X (Rz..)

and to obtain parallel velocity we apply B - ()
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Compute the reduce model

Principle

B We put the reduction u# and B in the full equation, put the projections and neglect
some small terms.

B Problem: make that keeping the momentum and the energy conservation.

B Simplify some terms and keep the energy is difficult (for me).

Possible ways (for me)

B Write all the terms in pressure/velocity/B/p equations and hope that the projection
does not broke the energy conservation.

B Take the conservation energy momentum and energy and after apply the reduction.
After that compute the equations on pressure and potential.

B New model proposed by Nikulsin talk’s correspond of these possibilities ?

B Work in the full variables and project with the weak form ( B. Nkonga proposition) +
no simplification.

112/15
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Third way |

B. Nkonga way to derivate the equation.
We consider
potu+Vp=0

on the weak form

/pat(u,v)dW + /(u,Vp)dW =0
with v a test function and dW = RdV
We choose the test function as
v=—RVv; X ey
with v; a scalar basis function. We obtain

/pat(u, v)dw = /R2(qu,Vv,-)dW
and

/(U,Vp)=/(7RVV,-><e¢,Vp)RdV=/%ed,-VX(RQp)v;RdV:/%[Rz,p]vdW

We obtain the weak form of JOREK.

The choice of v can be view as the choice of projection.

This way allow to derive the the model with the same way (only choice of velocity and
projection can change)

Without simplification we should be obtain a energy conserving weak for the previous

full model.
13/
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Remarks for all models

B To finish: property that i understand for the other models.
B Model 303 (no diamagnetic terms)
' No conservation in energy for the model: missign some small cross between the
velocities.
[ Conservation in energy for time scheme if it is the case for the model.
O No conservation in the linearization: we need to converge Newton/picard process
for that.
B Model 199

[ Conservation in energy for the model.
U Conservation in energy for time scheme.

0 No conservation in the linearization: we need to converge Newton/picard process
for that.
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Conclusion

B The full model introduced before seems a good candidate to begin all the reduction

B Construction of reduced using Boniface method seems good to obtain the different
reduced models with energy conservation (it is depend of the simplification)

B With simplification we will obtain model in JOREK. Without we will obtain additional
terms.

B Other possible advantage: To derivate all the models we begin with the full MHD. A
interesting point will be to write the time scheme for full MHD (Crank-Nicolson, Semi

implicit closed M3DC1, splitting scheme etc) which is more simple and reduced after.

B | can help Boniface, Guido, Javier, Matthias etc for the derivation of these models
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