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Hyperbolic systems et time integration

B We consider a general hyperbolic system with source term:
0:U + 0«F(U) = R(U)

B Speeds propagation: are given by the eigenvalues A1, , of dyF(U).

Hyperbolic system and time integration

B Classic scheme: explicit scheme with a CFL A < AA—X.
max

B Problem: it's very penalizing when

L somes cells are very small,
O the velocity is locally very high,
O there is multi-scale problems with slow/fast scales.

B Solution: implicit/semi-implicit scheme.

B |mplicit time scheme:

M;U™Y = (I + AtA(ly)) U™ = u”
B We must solve a nonlinear system and after linearization solve some linear systems.
B Conditioning:

k(M) ~1+0 ( Sl )

AXP)\,T,,',-,
B The implicit schemes for hyperbolic system as Euler/MHD are ill-conditioned. ﬁ-\
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Relaxation method

Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations.
Used to design new schemes.

Idea: Approximate the model
1
8:U + O,F(U) =0,by O:f + A(f) = g(Q(f) —f)

where the structure of the flux A(f) is more simple.
At the limit and taking Pf = U, PA(f) = F(U), we obtain

B:U + 8xF(U) = edx(D(U)8xU) + O(£?)

Time scheme:

U we solve —

At

U and after we approximate the stiff source term by

+AF") =0

£ = £ 4 w(Q(FY) — )

with w €]0,2]. The case w =1 corresponds to the projection.
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Relaxation method Il

Application I: Godunov scheme

B The relaxation system is chosen such that it will be easy/possible to write a Godunov
scheme for the PDE:

O:f + OxA(f) =0
B Applying direclty after, the projection w = 1 we obtain a scheme for the original
system.

B Ref: many papers of F. Coquel, F. Bouchut, C. Klingenberg, C. Berthon, C. Chalons,
S. Jin etc...

Application II: Implicit/semi-implicit integrator

B The relaxation system allows to decouple/linearize the waves. It is also interesting to
design simpler implicit schemes.

B Principle: write a semi-implicit/implicit time scheme for
fr—fn

——— +3A(f*) =0
ap T OA)

is simpler that for the original system.

Ref: few papers: 2 paper of C. Kligenberg and al, 2 paper of G. Puppo and al and 3
papers of our groups. -\
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Xin-Jin relaxation and implicit

B 1D hyperbolic system:
0:U+ 0xF(U) =0

B Approximation:

HU+ V=0 (1)
=F(U) -V (2

U +0xV =0 (3)
am+&@u:3ﬂw—w (4)

B The Xin-Jin relaxation system is stable only if o > Amax.
B After splitting, we have, as hyperbolic part:

U+ V=0
OV + o?9,U =0

B We obtain N linear and independant systems of two variables.
B Implicit scheme: we must invert N linear systems of the form

Iy Atox
AtOé28X Id
B |nvert the discreitzation of this matrix is easy using a Schur complement method. (5 \
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Kinetic relaxation and implicit |

Kinetic relaxation system

Considered model:
o:U+ 0«F(U)=0
Lattice: W = {)\q, ...., An, } a set of velocities.

Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".

Kinetic relaxation system:

Bef + NOxf = ;(fe"(U) —f)

Consistence condition:

c{ PFI(U) =U

PAFI(U)=F(U)

In 1D : same property of stability that the classical relaxation method.

Limit of the system:
AU + 0xF(U) = ey ((PN*0yfeI(U)— | DF(U) |*) 9<U) + O(e?)

Natural extension in 2D/3D.

General scheme: [D1Q2]", one D1Q2 by macroscopic equation.
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Kinetic relaxation and implicit Il

B Property of Kinetic relaxation: we have n, independent transport equations to solve
the implicit step.

B Advantages:
L the implicit step can be easily parallelized. One MPI process by transport equation
for example.
) We can use method without CFL and matrix invertion: the Semi Lagrangien
method.
B SL Principle: We use the characteristic method and where the foot is not a mesh
point we use an interpolation:

f(t" + At, x;) = Nu(F(t", x; — AAt))

B SEE NOTEBOOK

Avdantage

B Very simple methof to obtain a CFLless scheme. Possibility to extend to High-Order.

B All the waves are linearized with the same constant velocity : the maximal one. So the
coefficient error for all the waves is Amax.

B Not good for multi-scale problem.

E. Franck \ /16‘




Gas dynamic: Euler equations

B Context: Plasma simulation with Euler/MHD equations.
B Euler equation:
Otp+ V- (pu)=0
Or(pu) +V - (pu®@u+ply) =0
OHE+ V- (Eu+ pu)=0
B with p(t, x) > 0 the density, u(t, x) the velocity and E(t,x) > 0 the total energy.
B The pressure p is defined by p = pT (perfect gas law) with T the temperature.

B Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u,n) and
(u, n) £ ¢ with the sound speed ¢ = 7%.
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Gas dynamic: Euler equations

B Context: Plasma simulation with Euler/MHD equations.
B Euler equation:

Or(pu) +V - (pu@u+ply) =0  —  B(pu)+V - (pu @ u) +
OE+V - -(Eu+pu)=0

wE VP =0

{ Otp+V-(pu)=0 Otp+V-(pu)=0
HE+V - -(Eu+pu)=0

B with p(t,x) > 0 the density, u(t, x) the velocity and E(t,x) > 0 the total energy.
B The pressure p is defined by p = pT (perfect gas law) with T the temperature.

B Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u, n) and
(u, n) £ ¢ with the sound speed ¢ = 'y%.

Physic interpretation:

B Two important velocity scales: u and c and the ratio (Mach number) M = %
B When M tends to zero, we obtain incompressible Euler equation:
Otp+u-Vp=0
potu+pu-Vu+Vp =0
V.-u=0

In 1D we have just advection of p.

B Aim: contruct an Scheme (Ap) valid at the limit with a uniform cost. ,-\
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Numerical difficulties in space: Finite volume

B VF method + Rusanov flux. Equivalent equation:

SA
Bep+ V- (pu) = 225 Ap

SA
potu+ pu -Vu+ —Vp = 22X Au

M2
SAx
op+u-Vp+pV -u= TAP

B Problem: S must be larger that ﬁ for stability. Huge diffusion.

B Example: isolated contact p =1, V- up = 0 and ugp constant in time.

B Rusanov scheme T = 2 | ug |~ 0.001 and 100*100 cells.

density, t=2.0 norm2 u,t=2.0
|
7.6x10°®
5.0%10°®

1 I/ N\ 25%10°°

B Red: exact solution, Blue: numerical solution. (9 \
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Relaxation method

Problem: the nonlinearity of the implicit acoustic step generates difficulties.
Non conservative form and acoustic term:

{ Orp + Ox(pu) =0

Otp + udxp + pc?xu =0
Oru + udxu + %Dxp =0

Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
D1p+ Ox(pv) = 0
Ot(pu) + Ox(puv +M) =0
OtE + Ox(Ev+Tv)=0
DM+ vOxN + ¢pA%0,v = L(p — M)
Orv + vOxv + %OXI_I = é(u —v)
Limit:

Oep + Ox(pu) = 0« [Adxp]
Ot(pu) + Ox(pu? + p) = €0« [(Audxp) + B?Xu]
O¢E + Ox(Eu + pu) = €0y [AEBXp +ALE + BBX“;}

® with A=1 (g - 1) and B = (ppA? — p2c?).
B Stability: ¢\ > pc? and p > ¢.

Avdantage
|

We keep the conservative form for the original variables and obtain a fully linear
acoustic.
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Splitting

Dynamical splitting

Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time
depending for low-mach [IDGH2018]

B For large acoustic waves (Mach number not small) we want capture all the
phenomena. Consequently use an explicit scheme.

B For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

Otp+ Ox(pv) =0 Op=0

de(pu) + Bx(puv + M?(t)N) = 0 dt(pu) + (1 — M?(1))0N =0
OE + O (Ev+ M2 (D)) =0 BeE + (1 — M2(£))8x(Nv) =0
8tn+v8xn+¢A2§8Xv:0 OeM + (1 — M2(1))A280,v = 0
Bev +voev + 2o n=0 Bev + (1 - M3() 38N =0

with M(t) ~ max (Mm,,,, min (maxx lul 4 )

B FEigenvalues of Explicit part: v, v & M(t) Ac . Implicit part 0, (1 — M?(t)) A,
~~ ~~
~c ~c

B At the end: we make the projection 1 = p and v = u (can be viewed as a

discretization of the stiff source term). m
\ /16
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Implicit time scheme
B \We introduce the implicit scheme for the "acoustic part”:
pn+1 — pn
(pu)™1 + At(1— M(t,))0N™ = (pu)”
Entl 4+ At(1 — M3(t,))0x(Mv)"+t = E"
Nl 4+ At(1 — M2(ty))pA20xv™Ht ="
VI £ A1 — M3 (tn)) $ 0N = v

B We plug the equation on v in the equation on 1. We obtain the following algorithm:
O Step 1: we solve

(lg = (1 = M%(£0))? A2 A20,6)N™L = N7 — At(1 — M?(tn))pA20xv"
O Step 2: we compute
vl = v A1 — M2(tn))éaxﬂ"+1

O Step 3: we compute

(o)™ = (pu)" — At(1 — M(£,))0xN"+
L) Step 4: we compute

En+1 — EN — At(l _ M2(tn))ax(nn+1vn+l)

Advantage

B \We solve only a constant Laplacian. We can assembly matrix one time.
B No problem of conditioning, which comes from to the strong gradient of p

¥y12
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Results 1D |: contact

B Smooth contact :
p(t,x) = Xx<xo 1 0-1xx>x

u(t, x) =0.01
B Error p(t.x) =1
cells Ex Rusanov Ex LR Old relax Rusanov Relax Rus Relax PC-FVS
250 0.042 3.6E~ 4 1.4E3 7.8E~ 4 41E-*
500 0.024 1.8E— % 6.9E—* 39E—* 2.0E 1%
1000 0.013 9.0E—® 34E° 2.0E* 1.0E—°
2000 0.007 45E° 1.7E—* 9.8E° 49E°

B Old relax: other relaxation scheme where the implicit Laplacian is not constant and
depend of p".
B Comparison time scheme:
Scheme A At
Explicit max(|u—c|,|u+c]) 22E—*
SI Old relax max(| u — M(tn))% N u+/\/l(tn))% ) | 0.0075
Sl new relaxation | max(| v — M(tn))A |, | v+ M(tn))X]) 0.04

B Conditioning:

Schemes At conditioning
Si old relax | 0.00757 3000
Si new relax 0.041 9800
Si new relax 0.0208 2400

si new relax 0.0075 320 h
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Results in 2D: Gresho vortex

B Gresho vortex: V- u
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000 0z 050 075 100 000 025 050 075 100

B Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and
final (blue) time .From left to right: My = 0.5 (At = 1.4E—3), My = 0.1
(At =35E~*%), Mo = 0.01 (At = 3.5E-5), Mo = 0.001 (At = 3.5EF).

\‘ 14/16

E. Franck 4




Results in 2D: Gresho vortex

B Gresho vortex: V-u=0and p= ﬁ + p2(x)

B Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue)
times. From left to right: M = 0.5, At =25E73, M =0.1, At = 2.5E3,
M =0.01, At =25E73, M =0.001, At =25E73.
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Results in 2D: Kelvin helmholtz

B kelvin-Helmholtz instability. Density:

[Py E S B S B
o b— 00
00 02 04 06 08 10 00 02 04 08 08 10 00 0z 04 05 08 10 o0 0z 04 05 08 10

B Density at time Tr =3, k =1, My = 0.1. Explicit Lagrange-Remap scheme with
120 x 120 (left) and 360 x 360 cells (middle left), SI two-speed relaxation scheme
(Ac =18, A\; = 15, ¢ = 0.98) with 42 x 42 (middle right) and 120 x 120 cells (right).
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Results in 2D: Kelvin helmholtz

B kelvin-Helmholtz instability. Density:

zZw

178

125

B Density at time T = 3, k =2, My = 0.01 with S| two-speed relaxation scheme
(Ac =180, A\; =150, ¢ = 0.98). Left: 120 x 120 cells. Right: 240 x 240 cells.

E. Franck
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Conclusion

Resume

B Using the Xin-Jin relaxation we obtain a implicit scheme with only N linear elliptic
problems to solve and N matrix vector products.

B Using the kinetic relaxation we obtain a implicit scheme with n, > 2N transport
equations solved without matrix using a SL scheme.
B Using the modified Suliciu relaxation we obtain a semi-implicit scheme with a

linear/constant epllitpic problem to invert and 3 matrix-vector products. The scheme
is AP in the low-Mach limit.

Conclusion

| A

B The relaxation is a good tools to construct simpler implicit solvers: smaller, with good
conditoning, without nonlinear iterator and sometimes with matrix invertion.

B Other application: Ripa model and WB semi-implicit scheme.
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