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Plasma Physics

TONUS team:

� Objectives: construct new models (PDE) and numerical methods for problems in
Nuclear fusion (Plasma physics).

� Plasma: gas at very large temperature which is electrically charged. Coupling between
compressible fluid dynamic and electromagnetic.

� Kinetic models:

�

∂t f + v · ∇f + (E + v ×
B

ε
) · ∇vf =

1

τ
Q(f , f )

with f (t, x, v) the seven dimensional particles distribution and E, B the electric and
magnetic fields given by the Maxwell equations.

� Large dimensionnal multiscale PDEs with admit geometric structures to preserve
and few diffusion process (less stable). So we need reduced models and adapted
numerical methods.

� Fluid models:

�

∂tU +∇ · F(U) = ε∇ · (G(U)∇U)
with U(t, x) ∈ Rn the macroscopic quantities (density, velocity etc).

� Strongly nonlinear, multiscale PDE with admit discontinuous solutions in the low
diffusion regime. So we need adapted numerical methods. Tricky point: stability.
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ANN for numerical methods applied to hyperbolic PDE
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Hyperbolic equations and shocks

� In plasma physics and gas dynamics (our applications) we use conservation laws:

∂tU + ∂xF(U) = 0

with U(x) : Ω→ Rn.

� Specificity: no regularization effect. Worse: discontinuous solution appears in time
with a continuous initial data.

� Example: Burgers equation used for trafic flow:

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Example of simulation. Left: initial data, Right solution at T = 0.4

� This property generate lot of difficulties at numerical level.
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Finite volumes I

Finite volumes:
� Natural method to treat conservation laws with piecewise constant approximations.
� Conservation law (Green theorem):

∂t

∫ b

a
Udx = −

∫ b

a
∂xF(U)dx = − (F(U)(b)− F(U)(a)) = 0

if no information enters the domain.

� We define a mesh with N + 1 nodes and N cells. We call xj th cell center and xj± 1
2

the left and right interface of the cell j .
� We integrate on the cell Ωj :

∂t

∫ j+ 1
2

x
j− 1

2

Udx +

∫ j+ 1
2

x
j− 1

2

∂xF(U)dx = 0

� We define as unknown the average value in the cell: Uj (t) = 1
∆xj

∫ j+ 1
2

x
j− 1

2

Udx and we

have
∂tUj (t) +

(
F(U)(xj+ 1

2
)− F(U)(xj− 1

2
)
)

= 0

� To close the problem, the scheme make the following approximation:

F(U)(xj+ 1
2

) ≈ G(Uj , Uj+1)

such that F(U) = G(U, U).
� Main problem in FV: How choose G(Uj , Uj+1) ?
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Finite volumes II
� Main problem in FV: How to choose G(Uj , Uj+1) (the flux) ?

� Central flux : G(Uj , Uj+1) = 1
2

(
Uj + Uj+1

)
. Accurate but unstable. Finite time

blow-up of the solution.
� Rusanov flux :

G(Uj , Uj+1) =
1

2

(
Uj + Uj+1

)
+
λ

2

(
Uj − Uj+1

)
.

Stable with condition on λ. Adding large numerical dissipation so not accurate.
� Viscosity-form flux :

G(Uj , Uj+1) =
1

2

(
Uj + Uj+1

)
+

A(U)

2

(
Uj − Uj+1

)
.

Potentially stable and accurate scheme with the good A(U). A(U) difficult to find.
� Multiscale problem like Euler equations (gas dynamics):

� simulation with 200 cells.

E. Franck 8/24

8/24



DG code and dispersion

Discontinuous Galerkin method:
� Same principle but polymonial approximation of degre q and not q = 0.

ρ |Ωj
(t, x) =

q+1∑
i=1

ρji (t)φi (x)

� We use the weak form of the equation:

∂t

∫
Ωj

ρφ(x) +

∫
Ωj

∂xρφ(x)dx = 0

� We plug the polynomial extension of the unknowns, choose φ = φj (x) integrate by
part to obtain the scheme.

� Integration by part and discontinuity between cells → boundary terms at interface and
we need numerical flux.

� Remark: since the method is more accurate the choice of the flux is less important.

� Drawback: polynomial reconstruction= Gibbs phenomenon.
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Artificial viscosity

� To limit the spurious oscillations in DG scheme: limiter, artificial viscosity etc.

� Artificial viscosity: we solve

∂tρ+ ∂x

(
ρ2

2

)
= hq∂x (D(ρ)∂xρ)

with h the step mesh. The diffusion term is here to add regularization effect on the
solution.

� Aim: design D(ρ) to dissipate mainly the numerical oscillations.

� Exemple: derivative-based viscosity

q = 2, D(ρ) = λmax | ∇ρ |

� Efficient in short time, too dissipative for long time computation.

Aim:
� Design good finite volumes fluxes or DG artificial viscosity (AV) with neural networks:

Gθ(Ul , Ur ), Dθ(ρ(.))
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Supervised approach

� A first approach is the supervised approach.

� There is many fluxes and artificial viscosities in the litterature.

� Idea: build a flux that interpolates between the known flows by choosing the best flux
as the learning output.

� For some test cases, we compute the best flux Gbest(Ul , Ur ) testing all the fluxes and
we solve

θ∗ = argminθ

∑
j

‖ Gθ(Uj
l , Uj

r )− Gbest(Uj
l , Uj

r ) ‖2

� Drawbacks:

� which metrics to determinate the best flux,
� perhaps not able to learn new type of fluxes,
� difficult to assure long time accuracy and stability.

� Approach tested for artificial viscosity (J. Hesthaven and al, JCP 2020)
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Our problem like an RL/optimal control problem

� To avoid the two last drawbacks we can use Reinforcement learning.

� RL: closed-loop optimal control interacting with an environment (unknown model).

� Framework:

� State and action:

st = ρn, at = flux values or AV value

� Policy (to determine):

µθ(st) = flux or AV functions

� The environment
rt+1, st=1 = Env(st , at) = time scheme

� Reward:
rt+1 =‖ ρn+1 − ρn+1

ref ‖E +λ ‖ at ‖2
2

� Solving this reinforcement problem is equivalent to solve an inverse problem with
closed-loop optimal control where we want to fit a reference trajectory in time.

� The reference trajectory is computed with a Finite Volumes code on very fine grids for
example.
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DDPG and defaults
� Flux case: the state space S and action space are subspaces of Rnv with nv the

number of variables (Y. Wang and al 2019),

� DG case: the state space S and action space are subspaces of RN with N the number
of cells.

DDPG:
� Most common algorithm for Reinforcement in continuous action and state space is

DDPG.

� DDPG: actor-critic algorithm, with Q function construct using Bellamn + policy
gradient. Deterministic policy.

� Exploration: add random process to the action obtained by the policy or add random
process in the weights of the ANN policy.

Drawback:
� The exploration in the high dimensional continuous action space is very hard. How to

explore a space of discrete spatial functions like in the DG case ?

� The reinforcement learning is made for the case where the model is unknown (contrary
to dynamic programming).

� DDPG is a model-free approach. Alternative: model-based approach.
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Model-based RL approach

Model based approach: back-propagation
� We learn the model with random exploration and compute the policy using

back-propagation. We want maximize:

V (s0) =
T∑
t=1

γt rt+1

If rt+1 = r(st , at) and st+1 = f (st , at) and at = µθ(st) then

V (s0) = r(s0,µθ(s0) + r(f (s0,µθ(s0)),µθ(f (s0,µθ(s0)))) + ...

� The gradient can be computed if f and r differentiable.

� For our problems f , r are known.

Our algorithm
� Wee choose randomly ρ0.

� We compute two trajectories (ρ0, ..., ρT ) and (ρ0
ref , ..., ρTref ).

� We update the weights:
θ = θ − η∇θJ(θ)

with J(θ) =‖ ρT − ρTref ‖E +λ ‖ at ‖2
2 and the gradient computed by back-propagation

(model is known).
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Preliminary results for DG case

� We propose to learn an artificial viscosity for

∂tu + a∂xu = ∂x (Dθ(u)(∂xu))

� Oscillations are not critical unlike in the nonlinear case.

� We compare with ”derivative-based (DB)” and ”MDH” (J. Hestaven papers).

� Error L2:

� Our viscosity is a compromise between ”MDH” (few dissipation but small oscillations)
and ”DB” (too dissipative). Parameters perhaps non optimal.

� Difficulties: the loss does not ”see sufficiently the oscillations” compare to diffusion
error.
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Preliminary results for DG case
� We propose to learn an artificial viscosity for

∂tu + a∂xu = ∂x (Dθ(u)(∂xu))

� Oscillations are not critical unlike in the nonlinear case.

� We compare with ”derivative-based (DB)” and ”MDH” (J. Hestaven papers).
� Time Tf = 1:

� Our viscosity is a compromise between ”MDH” (few dissipation but small oscillations)
and ”DB” (too dissipative). Parameters perhaps non optimal.

� Difficulties: the loss does not ”see sufficiently the oscillations” compare to diffusion
error.
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Preliminary results for DG case
� We propose to learn an artificial viscosity for

∂tu + a∂xu = ∂x (Dθ(u)(∂xu))

� Oscillations are not critical unlike in the nonlinear case.

� We compare with ”derivative-based (DB)” and ”MDH” (J. Hestaven papers).
� Time Tf = 1.5:

� Our viscosity is a compromise between ”MDH” (few dissipation but small oscillations)
and ”DB” (too dissipative). Parameters perhaps non optimal.

� Difficulties: the loss does not ”see sufficiently the oscillations” compare to diffusion
error.
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Preliminary results for Finite volumes case

� We propose to learn a correction to the classical HLL flux.

� Results on general test cases:

� Pressure:

� Conclusion: very good results on non-trivial solutions and bad results on Sod-like
problems. Is a physical prior needed ?
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� We propose to learn a correction to the classical HLL flux.

� Results on general test cases:

� Densité:

� Conclusion: very good results on non-trivial solutions and bad results on Sod-like
problems. Is a physical prior needed ?
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Preliminary results for Finite volumes case

� We propose to learn a correction to the classical HLL flux.

� Results on classical Sod test cases:

� densité:

� Conclusion: very good results on non-trivial solutions and bad results on Sod-like
problems. Is a physical prior needed ?
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Conclusion
� We propose a simple method based on back-propagation and optimal control view to

design or modify numerical schemes.

� Compared to the supervised approach, we can learn new type of terms with good long
time behavior.

� Remark: to perform better results, we must add additional knownledge. How ?

Limit
� With the back-propagation we can reach only local minimum. Not global mechanics

like in DDPG.

� We cannot solve the problem on large time (max around 1000 time step) since the
back-propagation becomes instable or to heavy.

� Next: propose something between DDPG and back-propagation.

� Next: find better metric to detect oscillations.

Other investigation
� Extension on unstructured grids with GNN’s and geometric deep learning theory.

� Very premilinary results are positives.

� Missing in librairies: lot of codes for graphs in Spektral and Geometric Pytorch, less
for meshes. An engineer to implement the tools for meshes (interesting for different
teams) ?
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Reduced models for kinetic equations
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Vlasov and PIC code

� We consider the 1Dx1D nonlinear Vlasov-Poisson equation for plasma:

∂t f (t, x , v) + v∂x f + (Eext(x) + E(x))∂v f = 0

with

−∆φ(x) =

∫
v
f (t, x , v

′
)dv
′
− 1, E(x) = −∇φ(x)

� f (t, x , v) is a probability density of the particles.

� Solver PIC (Particle In Cells). We approximate the distribution by macro-particles

f (t, x , v) ≈ fN(x(t), v(t)) =
N∑
i=1

wiδ(x − xi (t))δ(v − vi (t))

where 
dxi

dt
= vi ,

dvi

dt
= q

m
(E + Eext)(xi (t)),

(1)

� To compute the electric field, we compute
∫
v f (t, x , v

′
)dv
′

on the mesh, solve the
Poisson equation on the mesh, interpolate E(x) at the position of macro-particles.
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ROM and POD
� After PIC discretization, we have a large ODE (d2N with d the dimension and N the

number of particles) to solve.

� PIC method converge in O(C(f )√
N

) so d2N >> 1 (like MC methods).

ROM method
Design reduced models of size K << N for a subset of initial data and parameters.
Assumption:

Y(t) ≈ AZ(t)

with Y(t) ∈ Rd2N , Z(t) ∈ R2K .

� Here we consider f (t = 0, x , v) = fγ(α,β)M(v) with (α,β) the parameters.

� Classical approach: POD (see J. Hestaveen papers)
� We collect some snapshots: S = [(x(t1), v(t1)), ........, (x(tn), v(tn))].
� By the SVD method, we compute the K dominant mods (associated to the K

largest eigenvalues) and construct: A ∈MK ,N (encoder) et A+ ∈MN,K

(decoder).
� Reduction:

∂tY(t) = F(Y(t))→ ∂tZ(t) = AF(A+Z(t)), with Z(t) = AY(t)

� The term AF(A+Z(t)) can be computed and stored in the linear case and
approximated in the nonlinear case.
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Nonlinear reduction and Auto-encoder
� Phase-space: PIC code (left), Reduction of PIC (middle), Reduced model (right)

� It doesn’t work. Why ?

Nonlinear assumption
For nonlinear transport equation, we can assume that

Y(t) ≈ G(Z(t)), Y(t) ∈ RN , Z(t) ∈ RK

� Idea: replace SVD by Deep - Auto encoder.
� In practice: light Multi-Percetron architecture (fully connected by packets).{

E x
θex

(x) = x

E v
θev

(v) = v
,

{
Dx

θex
(x) = x

Dv
θev

(v) = v
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Hamiltonian reduced model
� How to construct the reduced model:

� Projection: as in the linear case. Drawbacks: use the Jacobian of E , D which can
be larges. We must construct the reduced flux by approximation.

� Learning: we learn the reduce model using reduced trajectories.

� Two ways proposed:
� Baseline:

minθx ,θv

∥∥∥∥ x̄n+1 − x̄n−1

2∆t
− Fx (x̄n, v̄n) +

v̄n+1 − v̄n−1

2∆t
− Fv (x̄n, v̄n)

∥∥∥∥2

2

� Hamiltonian form (S. Greydanus and al 2019):

minθx ,θv

∥∥∥∥ x̄n+1 − x̄n−1

2∆t
−
∂Hθv (vn)

∂v
+

v̄n+1 − v̄n−1

2∆t
+
∂Hθx (xn)

∂x

∥∥∥∥2

2

� Advantage: with good numerical schemes (symplectic integrators) we can assure
some stability with Hamiltonian ODE.
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Results

� Results for the reduced model for one trajectory:

� Learning with different initial conditions (varying α):

� Current step: varying randomly β and α in the learning step.
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Conclusion

Conclusion
� Auto-encoders gives promizing results to construct reduced models for nonlinear

transport equation (R Maulik and al 2020, K. Lee and K. Calberg JCP 2022)

� Light Auto-encoder allows to apply reduction for PIC code.

� HNN reduced models allows to ensure some stability.

� General methods for PIC codes.

Next step
� Extend the results on large data set.

� Investigate permutation-invariant neural networks like Transformers or DeepSets.

Project
PRCI ANR project with Max Planck of Plasma Physics + one INRIA PhD on reduced
models for Vlasov equation using deep learning:

� ROM approach for more complex problems,

� new reduced models in collisional limit (Léo talk) and strong oscillatory limit,

� space time adaptive modeling.

Two positions of post-docs (two years) in 2022-2023.
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