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Plasma Physics

TONUS team:

O Objectives: construct new models (PDE) and numerical methods for problems in
Nuclear fusion (Plasma physics).

L Plasma: gas at very large temperature which is electrically charged. Coupling between
compressible fluid dynamic and electromagnetic.

B Kinetic models:
O

B 1
Of +v-VF+ (E4vx —) Vof = =Q(f, f)
€ T

with f(t, x,v) the seven dimensional particles distribution and E, B the electric and
magpnetic fields given by the Maxwell equations.

U Large dimensionnal multiscale PDEs with admit geometric structures to preserve
and few diffusion process (less stable). So we need reduced models and adapted
numerical methods.

B Fluid models:
a
U+ V- -F(U) =eV - (G(U)VU)
with U(t,x) € R" the macroscopic quantities (density, velocity etc).
O Strongly nonlinear, multiscale PDE with admit discontinuous solutions in the low
diffusion regime. So we need adapted numerical methods. Tricky point: stabilityr\
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ANN for numerical methods applied to hyperbolic PDE
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______________________________________________________________________________________
Hyperbolic equations and shocks

In plasma physics and gas dynamics (our applications) we use conservation laws:
0:U+ 0xF(U) =0
with U(x) : Q — R".

Specificity: no regularization effect. Worse: discontinuous solution appears in time
with a continuous initial data.

Example: Burgers equation used for trafic flow:

2
Bep + Oy (%) =0

Example of simulation. Left: initial data, Right solution at T = 0.4

-100

This property generate lot of difficulties at numerical level.
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==
Finite volumes |

Finite volumes:

B Natural method to treat conservation laws with piecewise constant approximations.

B Conservation law (Green theorem):

Bt /b Udx = — /baxF(U)dx = — (F(U)(b) — F(U)(2)) =0

if no information enters the domain.

B We define a mesh with N + 1 nodes and N cells. We call x; th cell center and Xyl
2

the left and right interface of the cell ;.
B We integrate on the cell Q;:

it 3 j+3
at/ de+/ AF(U)dx =0
X in

-3

[N

i+l
B \We define as unknown the average value in the cell: U;(t) = ﬁ f){+21 Udx and we
G %1

have

aU;(t) + (F(U)0g ) — F(U)(g_)) =0

B To close the problem, the scheme make the following approximation:

F(U)G,1) = G(U;, Vi) ﬁ/‘\
24
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Finite volumes I

® Main problem in FV: How to choose G(Uj, Uj;1) (the flux) ?

O Central flux: G(Uj,Uj41) = % (Uj + Uj41). Accurate but unstable. Finite time
blow-up of the solution.
U Rusanov flux:

G(Uj,UJurl)— (U +UJ+1) + = (U —UJ+1)

Stable with condition on . Addlng large numerical dissipation so not accurate.
U Viscosity-form flux:
A(U)

G(U;,Uj) = ( +Uj+1)+T(Uj*UJ‘+1)-

l\.)\r—-

Potentially stable and accurate scheme with the good A(U). A(U) difficult to find.
B Multiscale problem like Euler equations (gas dynamics):

B simulation with 200 cells. ’8/ \
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DG code and dispersion

Discontinuous Galerkin method:

B Same principle but polymonial approximation of degre g and not g = 0.

g+l

play (t.x) = At)di(x)

i=1

B We use the weak form of the equation:
o [ o0+ [ 0upo(x)dk =0
Q Q

B We plug the polynomial extension of the unknowns, choose ¢ = ¢;(x) integrate by
part to obtain the scheme.

B |ntegration by part and discontinuity between cells — boundary terms at interface and
we need numerical flux.

B Remark: since the method is more accurate the choice of the flux is less important.
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B Drawback: polynomial reconstruction= Gibbs phenomenon. ,9 \
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Artificial viscosity

Aim:

To limit the spurious oscillations in DG scheme: limiter, artificial viscosity etc.

Artificial viscosity: we solve

2
Dep + O (%) — h99.(D(p)oxp)

with h the step mesh. The diffusion term is here to add regularization effect on the
solution.

Aim: design D(p) to dissipate mainly the numerical oscillations.

Exemple: derivative-based viscosity
a=2, D(p)=Amax | Vp]|

Efficient in short time, too dissipative for long time computation.

Design good finite volumes fluxes or DG artificial viscosity (AV) with neural networks:

Go(U;, Ur), Dg(p(.))

‘10/2
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Supervised approach

B A first approach is the supervised approach.

B There is many fluxes and artificial viscosities in the litterature.

Idea: build a flux that interpolates between the known flows by choosing the best flux
as the learning output.

For some test cases, we compute the best flux Gpest(U;, U;) testing all the fluxes and
we solve

0" = argming Y _ || Go(U), U) — Gpest (U], V) |2
j
B Drawbacks:

U which metrics to determinate the best flux,
O perhaps not able to learn new type of fluxes,
U difficult to assure long time accuracy and stability.

B Approach tested for artificial viscosity (J. Hesthaven and al, JCP 2020)

lll/
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Our problem like an RL/optimal control problem

B To avoid the two last drawbacks we can use Reinforcement learning.

B RL: closed-loop optimal control interacting with an environment (unknown model).

B Framework:
U State and action:

st = p", ar = flux values or AV value

O Policy (to determine):

peo(st) = flux or AV functions
0 The environment
re41, St=1 = Env(st, ar) = time scheme

0 Reward:
rev1 =[ o™ — prit lle A2 || ac |13

B Solving this reinforcement problem is equivalent to solve an inverse problem with
closed-loop optimal control where we want to fit a reference trajectory in time.

B The reference trajectory is computed with a Finite Volumes code on very fine grids for

example.
\12/24
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DDPG and defaults

B Flux case: the state space S and action space are subspaces of R™ with n, the
number of variables (Y. Wang and al 2019),

B DG case: the state space S and action space are subspaces of RN with N the number
of cells.

DDPG: \

B Most common algorithm for Reinforcement in continuous action and state space is
DDPG.

B DDPG: actor-critic algorithm, with Q function construct using Bellamn + policy
gradient. Deterministic policy.

B Exploration: add random process to the action obtained by the policy or add random
process in the weights of the ANN policy.

Drawback:

B The exploration in the high dimensional continuous action space is very hard. How to
explore a space of discrete spatial functions like in the DG case ?

4

B The reinforcement learning is made for the case where the model is unknown (contrary
to dynamic programming).

B DDPG is a model-free approach. Alternative: model-based approach. /\
13/
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Model-based RL approach

Model based approach: back-propagation I

B \We learn the model with random exploration and compute the policy using
back-propagation. We want maximize:

-
V(s0) = Z’thtﬂ
t=1
If rey1 = r(se, ar) and sep1 = f(st, at) and ar = pg(st) then

V(s0) = r(so, to(sy) + r(f(S0. to(sy) ) o (F (S0, o(sp)))) + ---
B The gradient can be computed if f and r differentiable.

B For our problems f, r are known.

Our algorithm

B Wee choose randomly pg.
B We compute two trajectories (p°, ..., pT) and (p(r)ef, prcf).
B \We update the weights:

0=6—nVeJ(0)

with J(0) =|| p” — p]; lle +X || a¢ ||3 and the gradient computed by back-propagati
(model is known).

o]
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Preliminary results for DG case

B We propose to learn an artificial viscosity for
Oru + adxu = Ox(Dg(u)(0xu))

B QOscillations are not critical unlike in the nonlinear case.

B We compare with " derivative-based (DB)” and "MDH" (J. Hestaven papers).

B Error Ly:
0.250 -
— DGNo I
0225 DG-DB —
—— DG-MDH —
EERL f— DG-initial —
5 0175 { — DG-WithoutPenalisation

E DG-WithPenalisation
¥, 0150 —

0125

0100
0075 7

B Qur viscosity is a compromise between "MDH" (few dissipation but small oscillations)
and "DB" (too dissipative). Parameters perhaps non optimal.

B Difficulties: the loss does not "see sufficiently the oscillations” compare to diffusion
error.

‘15/
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Preliminary results for DG case

B We propose to learn an artificial viscosity for

Otu+ adxu = Ox(Dy(u)(Oxu))

B Qscillations are not critical unlike in the nonlinear case.
B We compare with "derivative-based (DB)" and "MDH" (J. Hestaven papers).
B Time Ty =1:

1000

B Qur viscosity is a compromise between "MDH" (few dissipation but small oscillations)
and "DB" (too dissipative). Parameters perhaps non optimal.

B Difficulties: the loss does not "see sufficiently the oscillations” compare to diffusion

error.
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Preliminary results for DG case

B We propose to learn an artificial viscosity for
Oru + adxu = Ox(Dy(u)(dxu))
B Oscillations are not critical unlike in the nonlinear case.

B We compare with "derivative-based (DB)" and "MDH" (J. Hestaven papers).
B Time Tf = 1.5:

1500

B Qur viscosity is a compromise between "MDH" (few dissipation but small oscillations)
and "DB" (too dissipative). Parameters perhaps non optimal.

B Difficulties: the loss does not "see sufficiently the oscillations” compare to diffusion
error. r-\
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Preliminary results for Finite volumes case

B We propose to learn a correction to the classical HLL flux.

B Results on general test cases:

B Pressure:
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B Conclusion: very good results on non-trivial solutions and bad results on Sod-like
problems. Is a physical prior needed ?
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problems. Is a physical prior needed ?
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Preliminary results for Finite volumes case
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We propose a simple method based on back-propagation and optimal control view to

de5|gn or modify numerical schemes.

B Compared to the supervised approach, we can learn new type of terms with good long
time behavior.

B Remark: to perform better results, we must add additional knownledge. How ?

With the back-propagation we can reach only local minimum. Not global mechanics
like in DDPG.

B We cannot solve the problem on large time (max around 1000 time step) since the
back-propagation becomes instable or to heavy.

Next: propose something between DDPG and back-propagation.

B Next: find better metric to detect oscillations.

Other investigation

Extension on unstructured grids with GNN's and geometric deep learning theory.

B Very premilinary results are positives.

B Missing in librairies: lot of codes for graphs in Spektral and Geometric Pytorch, less
for meshes. An engineer to implement the tools for meshes (interesting for different
teams) ?

")

E. Franck



Reduced models for kinetic equations
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Vlasov and PIC code

B We consider the 1Dx1D nonlinear Vlasov-Poisson equation for plasma:
Otf(t, x, v) + vOxf + (Eext(x) + E(x))Ovf =0
with

—Ad(x) = / Ft,x vV )dv —1,  E(x) = —Vo(x)
4
B f(t,x,v) is a probability density of the particles.

B Solver PIC (Particle In Cells). We approximate the distribution by macro-particles

N
f(t, x,v) = fu(x(t), v(t)) = Z wid(x — x;(t))d(v — vi(t))

i=1

where
dx;
— =V
dt
dv; (1)
e T(E + Eext)(xi(t)),

B To compute the electric field, we compute fv f(t, x, vl)dvl on the mesh, solve the

Poisson equation on the mesh, interpolate E(x) at the position of macro-particles. h
E. Franck
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ROM and POD

B After PIC discretization, we have a large ODE (d2N with d the dimension and N the

number of particles) to solve.

B PIC method converge in O(%) so d?N >> 1 (like MC methods).

ROM method

Design reduced models of size K << N for a subset of initial data and parameters.

Assumption:
Y(t) ~ AZ(t)

with Y(t) € R®N, Z(t) € R?K.

B Here we consider f(t =0, x,v) = fy(a, 8)M(v) with (e, 8) the parameters.

B (Classical approach: POD (see J. Hestaveen papers)

O We collect some snapshots: S = [(x(t1), v(t1)), ........ L (x(tn), v(tn))]-

O By the SVD method, we compute the K dominant mods (associated to the K
largest eigenvalues) and construct: A € M n (encoder) et AT € My k
(decoder).

U Reduction:

0:Y(t) = F(Y(t)) — 0:Z(t) = AF(ATZ(t)), with Z(t) = AY(t)

O The term AF(ATZ(t)) can be computed and stored in the linear case and
approximated in the nonlinear case. (20/ \
24
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Nonlinear reduction and Auto-encoder
B Phase-space: PIC code (left), Reduction of PIC (middle), Reduced model (right)

B |t doesn’t work. Why ?

Nonlinear assumption

For nonlinear transport equation, we can assume that

Y(t) ~ G(Z(t)), Y(t) e RV, Z(t) e R¥

B |dea: replace SVD by Deep - Auto encoder.
B |n practice: light Multi-Percetron architecture (fully connected by packets).

{ Ej, (x)=x { Dj, (X)=x

Eé/ev (V) = Dge,/ (V) =V h
21
/24
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==
Hamiltonian reduced model

B How to construct the reduced model:
U Projection: as in the linear case. Drawbacks: use the Jacobian of E, D which can
be larges. We must construct the reduced flux by approximation.
U Learning: we learn the reduce model using reduced trajectories.

B Two ways proposed:

U Baseline:
g+l _ gn—1 gl _gn—1 2
. _F —n’ -n _F —n’ =n
mine,.0, || ——5x; (X7, 8") + ——Ar V(X" .
O Hamiltonian form (S. Greydanus and al 2019):
gl g1 9H, (v1) WL — 1 OH (x) |1
_— R, L 9o, ()
2At ov 2At Ox P

B Advantage: with good numerical schemes (symplectic integrators) we can assure
some stability with Hamiltonian ODE.

vsE
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Results

B Results for the reduced model for one trajectory:

B | earning with different initial conditions (varying a):

—— encoder" identity
—— decompressed HNN prediction

B Current step: varying randomly 8 and « in the learning step.
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Conclusion

Conclusion I

B Auto-encoders gives promizing results to construct reduced models for nonlinear

transport equation (R Maulik and al 2020, K. Lee and K. Calberg JCP 2022)

B | ight Auto-encoder allows to apply reduction for PIC code.

B HNN reduced models allows to ensure some stability.

B General methods for PIC codes.

.

Next step

B Extend the results on large data set.

B |nvestigate permutation-invariant neural networks like Transformers or DeepSets.

Project

PRCI ANR project with Max Planck of Plasma Physics + one INRIA PhD on reduced
models for Vlasov equation using deep learning:

B ROM approach for more complex problems,

B new reduced models in collisional limit (Léo talk) and strong oscillatory limit,
B space time adaptive modeling.

Two positions of post-docs (two years) in 2022-2023.
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