Learning, geometry and PDEs, a promising
interaction ?

ITI Seminar, Strasbourg

Inria Nancy Grand Est, France

2JRMA, Strasbourg university, France ’1/ \
&’L,;‘a’_ E. Franck \ 39‘




Outline

Deep learning for closure PDE problem

Reduced problem for plasma physics

Deep learning and geometry

Theory of geometric deep learning

( ?/39

E. Franck \ 4




Deep learning for closure PDE problem
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Models in plasma physics

B Plasma: gas at very large temperature which is electrically charged. Coupling between
compressible fluid dynamic and electromagnetic.

B Kinetic models:

B 1
Oef +v-VF+ (E4+vx —) Vf = =Q(F, )
€ g

with f(t, x,v) the seven dimensional particles distribution and E, B the electric and
magnetic fields given by the Maxwell equations.

B | arge dimensional multiscale PDEs with admit geometric structures to preserve and
few diffusion process (less stable). So we need reduced models and adapted numerical
methods.

Fluid models:
[ ]
U+ V- -F(U) =€V - (G(U)VU)
with U(t, x) € R" the macroscopic quantities (density, velocity etc).

B Strongly nonlinear, multiscale PDE which admits discontinuous solutions in the low
diffusion regime. So we need adapted numerical methods. Tricky point: stability.
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Problem of closure

B Simple case:
1
Ouf + VO + OxOuf = ~(M(p, u, T) — )
€
with
Ap=p—1
and the moment p = [ fdv, pu = [ vfdv and p = [(v — u)?fdv.

B When ¢ tends to zero we are close to the equilibrium M(p, u, T).

When we take the three first moment in velocity we obtain the Euler equation.

Orp + Ox(pu) =0
depu + Ox(pu® + p) =0
OtE 4+ Ox(Eu+ pu) + 0xg =0

with E = Jpu?+ 1p, g=1 [ (v — u)’fdv.
B How to compute the reduced model: we don't know g.

B Solution: closure:
a7~ C(p(), u(). T().€)

B (Classical closure: asymptotic analysis gives g = 0 + O(e) (Euler),
q= —e%pBXT + O(€?). Harmett-Perkins nonlocal in space.

B How construct a closure for moderate ¢ ?
>/
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Supervised learning and CNN

Closure by supervised learning I

B Using kinetic simulation we are able to collect data:

D=1{p()u), T().)ia() i=1..n}

B We can construct closure by supervised learning where we solve

ming Z I Co(pi(.), ui(.), Ti(.). &) — qil.) II3

B The function Cy can be in large dimension (if nonlocal in space) and strongly
nonlinear. For this regression problem we use a neural network.

B Neural-network:
Co(x) =LmoNo...olLyoNolLij(x)
with Lg,(y) = My with M € My, xn.., (R), y € R"+1 and N(y) a nonlinear function
apply at each component of y.

B The weights 6 of the neural network are the coefficients of the matrix L; ..
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Supervised learning and CNN ||

B Fully connected neural network: the matrices L; are dense.

sAAS

=

B 1D convolutional neural network: the matrices L; are sparse Toeplitz matrices.

OO T W
ST L 0
oL 0N O
L N OO

B This is equivalent to applying a small convolution kernel to the signal 1D.

B Apply convolution kernel = apply a filter on signal (operation of the spectrum of the
signal).

B Often we apply some convolution at the signal on each layer to create several new
signals.
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Supervised learning and CNN Il

B |mportant properties for a convolutional layer:
U Filters localized in space,
Anisotropic filter,
Multiple layers,
O(1) parameters per filter (independent of input image size n),
O(n) complexity per layer (filtering done in the spatial domain),

Ooooo

©3:1. maps 16@10x10
03 160 41,

G1: feature maps
INPUT
3232 B@28x28

Gaussian

B The convolutional network takes into account to 2D structure of the data. Essential
for good performance for signal problems.
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Result for closure problem |

B Average results for the prediction of g:

pred-eps.pdf
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Result for closure problem Il

B Examples of simulation:

— Kinetic

- - - Fluid+Kinetic
- - = Navier-Stokes

- == Fluid+Network

£ =10.349

£ =0.904
L L

L
0 1 2 3 4 5 6 7 8

B Paper: A neural network closure for the Euler-Poisson system based on kinetic
simulations , L. Bois, E. Franck, L. Navoret, V. Vigon.
B ANR Milk (2022-2025) with Max-Planck institute of Plasma-Physics on reduced
models with deep-learning.
B Two years of post-doc position on the closure for more complex problems. m
/39
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Reduced problem for plasma physics
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Vlasov and PIC code

B We consider the 1Dx1D nonlinear Vlasov-Poisson equation for plasma:
Otf(t, x, v) + vOxf + (Eext(x) + E(x))Ovf =0
with

—Ad(x) = / Ft,x vV )dv —1,  E(x) = —Vo(x)
4
B f(t,x,v) is a probability density of the particles.

B Solver PIC (Particle In Cells). We approximate the distribution by macro-particles

N
f(t, x,v) = fu(x(t), v(t)) = Z wid(x — x;(t))d(v — vi(t))

i=1

where
dx;
— =V
dt
dv; (1)
e T(E + Eext)(xi(t)),

B To compute the electric field, we compute fv f(t, x, vl)dvl on the mesh, solve the

Poisson equation on the mesh, interpolate E(x) at the position of macro-particles. h
E. Franck
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Reduced order modeling

B After PIC discretization, we have a large ODE (d2N with d the dimension and N the
number of particles) to solve.

B PIC method converges in O(%) so d?N >> 1 (like MC methods).

ROM method

Design reduced models of size K << N for a subset of initial data and parameters.

Assumption:
Y(t) ~ AZ(t)

with Y(t) € R®N, Z(t) € R?K.

B Here we consider f(t =0, x,v) = fy(a, 8)M(v) with (e, 8) the parameters.

B (Classical approach: POD (see J. Hestaveen papers)

O We collect some snapshots: S = [(x(t1), v(t1)), ........ L (x(tn), v(tn))]-

O By the SVD method, we compute the K dominant mods (associated to the K
largest eigenvalues) and construct: A € M n (encoder) et AT € My k
(decoder).

U Reduction:

0:Y(t) = F(Y(t)) — 0:Z(t) = AF(ATZ(t)), with Z(t) = AY(t)

O The term AF(ATZ(t)) can be computed and stored in the linear case and
approximated in the nonlinear case. (13/ \
39
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Nonlinear reduction and Auto-encoder
B Phase-space: PIC code (left), Reduction of PIC (middle), Reduced model (right)

B |t doesn’t work. Why ?

Nonlinear assumption

For nonlinear transport equation, we can assume that

Y(t) ~ G(Z(t)), Y(t) e RV, Z(t) e R¥

B |dea: replace SVD by Deep - Auto encoder.
B |n practice: Partial fully connected neural network.

{ Ej, (x) =% { D, (%) =x

EVEV (v) = Dve., W)y=v
0 0 \A14/39
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Results

B Results for the reduced model for one trajectory:

B | earning with different initial conditions (varying a):
— encoder identity
—— decompressed HNN prediction
- o :
.
8
g
1073
T T R B R

B Current step: varying randomly 8 and « in the learning step.
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Next: structure-preserving reduced model

Next step

Question: how do you learn time models ?

dx(t)
dt

= Fo(x(1))

We can learn the flow Fy using data to approximate time derivatives.

Physical model: In general the physic admits specific structure (conservative,
dissipative ...)

Example:
d
7: = J(x)VH(x) + G(x)VS(x)
with J skew-symmetric, G symmetric and J(x)VS(x) = G(x)VH(x) =0

We call H(.) an Hamiltonian which is conserved by structure and S(.) an entropy
which is dissipative by structure.

The ODE's solved in the PIC code are generated by an Hamiltonian.

Keep an Hamiltonian structure on the reduced model learning the Hamiltonian and
not the ODE flow.

Advantage: Hamiltonian structure + specific time integrator (symplectic scheme)
allows to assure some stability for the reduced model.

| £
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Deep learning and geometry
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==
Unstructured data and non-euclidian domain

B Many possible applications of deep-learning for PDE's:
0 Modeling some terms: closure, turbulence models, reduced models,
O Solve PDE,
[0 Compute coefficients of numerical schemes: stabilization viscosity, flux limiter,
dynamic splitting coefficient
O Adaptive solving: shocks/interface detection, error prediction, meshes refinement.
B For these applications we need neural networks on unstructured data (cloud point,
meshes ...) and non euclidean geometry (surface of Torus or sphere ....)

Figure: Picture from google image.
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Unstructured data and non-euclidian domain [l

B We consider a Graph (Mesh are include inside)

0 Graph
O Vertices V = {1, ...
U Edges

[ Edge weights
Vertex fields L2(V)

[m]

G=,¢)

,n}

ECY XV

wj > 0 for (i,j) € €

= {f V= ]Rh}, represented as

B How to define/generalize the convolution on graph/mesh ?

B No natural answer.

X AN
XTI RSN
XTI ——)

Figure: Picture from google.

f=(fi ..

fn)
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\‘ 19/39



Convolution and Fourier transform

B Spatial definition of convolution: Given two functions f, g : [—m, 7] — R their
convolution is a function

™

(o)) = [ F () el x) o

B Spectral definition of convolution:
(Fxg)(x) = F~H(Fg * Ff)

with F the Fourier transform.
B Discrete case:
(f * g)(x) = d(d'g o d'F)

with ® the fourier matrix. Each column corresponds to one eigenvector of the
Laplacian.

B To apply filter/define convolution we use a Fourier basis (basis function with
increasing frequency).

B Example: how to apply this on a function/signal defined on the sphere ?

‘ 20/39
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Differential geometry and Laplace Beltrami

Differential geometry

B Application of differential calculus tools to the geometry.

B allows to study differential function defined on curve/surface/manifold etc ...

Riemannian geometry

B differential geometry with the notion of distance and angle.

T

B |mportant tools: Laplace-Beltrami

Af = \/%a,- (Vielgair)

with g the Riemanian metric tensor (manifold-dependent).
B Key point: the eigenvectors of A give a basis of function defined on the manifold with
increasing frequency. Fourier basis on each Riemannian manifold. 21/
\ 39
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Example: manifold harmonics

Y Spherical
0 E’l Harmonics
-~ @© @
- N
@ © 0 ® @
3 5:-/‘ e\ !9 W et
10 Leete... ke etc

e
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. p
N m——

Figure: Issue to B. Vallet and B. Lévy. Spectral Geometry Processing with
Manifold Harmonics
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Graph Laplacian

Can we construct the same theory for graph/mesh to design specific Fourier basis and
filters ? yes

B The derivative operator d : H(V) = (RIY], <, >) — (RIFl, <, >g) = H(E) can ben
defined
Vej e & d(ej) = v(wy)(F() — (1))
with f(7), f(j) the value of the function f at the vertex i and j and
VI V|

<f.g>v= | V | & ng:xn <f.g>e= Wzﬁjgﬁwﬁ
ij

B We can define the dual operator with the relation
< df g >y=<f d*g>g, VfeH(V) geH(E)
B As in the exterior calculuss theory (differential geometry), the graph Laplacian

A H(V) — H(V) is given by
A(i) = d*d

\‘ 23 /39‘
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Graph Laplacian Il

B Explicit formula.
i 1< wij 1< .\ Wi
A= |f(D)=-> == -> fl)—
n“ d n%& di
j=1 j=1
B for specific choice of v(.) and x(.).

Can we link this graph Laplacian to Laplace-Beltrami operator ? yes

(Result .|

We take M a Riemanian manifold of dimension m in RY. X = (x1, .--xn) are points of the
manifold distributed with a probability law p(x) on M.

We construct a graph of nearest neighbors (close to mesh). On some technical
assumption we have:

1
A~y 00 C—=V - (p°VF)
p

If s =0 and p(x) an uniform law, we obtain the Laplace-Beltrami operator.

B So, if the graph is "a discrete version of a manifold”, the graph Laplacian can be an
approximation of the Laplace-Beltrami operator.

E. Franck \24/39
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Spectral convolution and Graph-signal process

B \We consider a Graph G and the Graph Laplacian matrix L.
B We call ® the eigenvectors of L.
B \We obtain a natural definition of convolution on graph:

frxg=d( o'g ood'f))
-

K€D n(R)
with n signal size and K the filter
iy oy
G.N=100 nodes, G.Ne=100 edges G.N=100 nodes, G.Ne=100 edges
10 10 02
010 y
o
os -
-05 00 s -01
10
o o
. wy
6N=100 nodes, & He=100 edges GN100 nodes, & Ne=100 edges
10 10 oo
010
0 o
.
o
o
o1
-10 -10 003
T F w w o o R RV

B Defaults for Convolution layer of neural-network:
U No guarantee of spatial localization of filters,
O O(n) parameters per layer,
O O(n?) computation of forward and inverse Fourier transforms,
a

Filters are basis-dependent do not generalize across graphs. ’25 \
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Spectral convolution and Graph-signal process |l

B Key reference: Geometric deep learning: going beyond Euclidean data.
an al (2016).

B Example (picture come from to the reference):

&2

Manifold

M. Bronstein
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First GCNN: Chebnet

B First problem: O(n) parameters per layer. Solution:
frgr dp( Pig odLf))
~~
K€Dy k(R)

with k << n a cut-off frequency. So @ is the k first eigenvectors. K contains the
trainable parameters.

B Second problem: the filter can be non-local in space. Remark: duality
smoothness-locality in fourier/spatial domain. Solution:

k
Kii =>_ 0;Bs(\i)
j=1
with Bs a smooth B-Splines function and \; eigenvalues of graph Laplacian.
B Using this we obtain a localized spatial filter with r parameters.
B Third problem: Computation of ¢ with complexity O(n). ldea:

K
Kii = _ 0N = Py(A)
j=1
B We remark
¢'tP9(/\)¢’tf = Py(L)f

So a polynomial of graph Laplacian gives a good candidate for convolutional layer. f \

27
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Second GCNN: GCN
ChebNet (X. Bresson and al 2016)

We define the normalized graph laplacian [ = 2

— Iy and propose

Amax
~ k ~
Po(L)f = > 6; Ti(D)f
j=1

with T; a recurrent Tchebychev polynomial. So

Ti(L)f = 2LT;_1(L) — Tj_o(L), with To =f and Ty = Lf

B Simple convolution layer:
O Using another definition of graph laplacian and choosing k = 2:

Py =00+ 01(L — I4) = 6 —91D7%WD7%

with D degree matrix and a W weight matrix. We choose § = 6y = —6;.
O Eigenvalues are in [0, 2]. Lot of composition can generate instabilities. To finish
we apply a transformation to have a spectrum in [—1, 1].

Vanilla GCN (Kipf, Welling 2016)
G=6(ly+ B3 WD 3)

avec W =W +lget D= diag (3, 4 Wi).
E. Franck




Recents GCNN

B | ot of difference convolutional layers based on spectral approach.

B Some spatial approachs have also been designed:

O

O

Geodesic CNN (G. Maskic and al 2015): based on local coordinate on tangent
space. Mainly for mesh of manifold.
Monet (F. Monti and al 2017): generalization of GCNN based on local coordinate.
Mainly for mesh of manifold.
GRAND (M. Bronstein and al 2022): the convolution layer is a spatial and time
discretization of:

Bep =V - (A(x, £)Vp)

with A a matrix. Use the theory which link ANN and ODE discretization (Neural
ODE R. T. Cheng 2018).

Beltrami-flow(M. Bronstein and al 2021): the convolution layer is a spatial and
time discretization of:

6tp =

1 Vp
/DetG(x, r)v ' (DetG(x, t) V”)

with the Riemannaian metric G = Iy + a(Vxp)t(Vxp). Low diffusion in direction

of high gradient.
‘29/39
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Application to mesh and PDE |

B Train a neural network to make some task on varying meshes. Difficulty:
Chebnet/GCN valid when we change the mesh. Not possible for general graph.

B Refinement/moving mesh cannot change the topology of the mesh and the manifold
associated.

B We can hope that networks based on a spectral approach of convolution will continue
to work.

B Examples: number detected on meshes.

PP 10 N .
il Suigiigiid = random meshes model B T S B S s

09 Pt - picked meshes' model

accuracy
accuracy

04 & 04 -

/ = random meshes’ model s
02{ 4 « picked meshes' model 0z

Figure: accuracy results compare to the mesh deformation or mesh
refinement

E. Franck y



Application to mesh and PDE Il

e
iEe

N

Figure 12: The 20 random meshes
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Application to mesh and PDE Il

A first application: discontinuity/shock detection and mesh refinement.

Case 1: constant by part function. Localization of discontinuity by GCN and iterative
refinement.

input output expected output

[ates

input expected output
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Application to mesh and PDE IV

B Case 2: Detection of discontinuity for non piecewise constant function. Unet
architecture with Chebnet and geometric pooling layers.
B Training on a single mesh (for informatic reason)

E N
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Application to mesh and PDE V

B Case 3: Detection of discontinuity in Burgers simulation using previous training

B After refinement the discontinuity is always detected. Less after four refinements but

training on a single mesh. r-\
34
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Theory of geometric deep learning
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Neural Network architecture and symmetry |

Curse of dimensionality

The space generated by the neural-network function with RELU activation is dense in the
Co(R) functional space for the L>°(Q) norm with Q C RY. If f € H*(Q) then

supyeq | F(x) — ANN(x) |~ O(n~4)

with n the number of neurals.

B How to explain the good performance of neural networks for some problems in high
dimension (vision, translation problem).

Possible answer

0 For some problems on structure data the neural network "encodes” some priors on the
problems which allows it to break the curse of dimensionality.

[0 Mallat 2016, Bronstein and al, 2020

B Which structured data ? which prior. Theory of Geometric Deep Learning (Bronstein

and al, 2020).
(:
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Neural Network architecture and symmetry Il

Which data I

B Grids and sequence (time series and vision problem)
Homogeneous non-euclidean space (vision problem on sphere etc)
General manifold and meshes (vision problem, form analysis, ...)
Graphs and set/point cloud (many applications) )

Which prior |

g € G wth G a group of symetry, x € X () a signal on Q. f is the target function on Q.

S G-lavariance: flg.x) = f(x), Vg€ G,Vx € X(Q)
T .
G Equwarlance. f(gX) _ p(g)f(X), vg € G,Vxe X(Q)
with p the representation of g ( group representation theory). )
Invariance vs equivariance
gy e 4
Il Il
‘cat’ ‘cat’ JLJ
e — 37/39
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Neural Network architecture and symmetry Ill

Which priors Il I

B Stability compared to signal local deformation . We consider f(x) the target function
with x the signal. It is equivalent to say that f is locally invariant compared to the
group of diffeomorphism G:

[ f(g-x) = F() 1< e(g) I x|l

with g.x an action group.

B Stability compared to domain local deformation. We consider f(x, 2) the target
function with x signal and Q the domain. It is equivalent to say that f is locally
invariant compared to the group of isomorphism G:

[l £0x Q) = f(x2, Q2) [I< dp(,Q22) || x ||

1

with x, = 77~ o x and 7 invertible mapping between the domains.

4

Which priors Ill

B Scale separation. We define a coarsering operator: P : x € X(2) — x2 € X(£2) with
X2 the signal on the coarse domain (less degrees of freedom). We assume that

fxfhoP

with f the target function, and f; the target function on the coarse domain.

2\
")
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Neural Network architecture and symmetry IV

Geometric prior |l

B Grids/sequence: translation invariance/equivariance,

B Homogeneous non-euclidean space: associated symmetry group. Rotation for sphere,
B Graph and set: permutation invariance/equivariance,

B Manifold and mesh: isometry or local gauge invariance/equivariance.

Geometric Deep Learning blueprint

A "good"” neural network chain:
B Convolutional layers which encode G-equivariance and stability to local deformation,

B |ocal Pooling/un-pooling layers which encode scale separation,

B global pooling layer for classification which encodes G-invariance.

‘39/39
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