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Models in plasma physics

� Plasma: gas at very large temperature which is electrically charged. Coupling between
compressible fluid dynamic and electromagnetic.

� Kinetic models:

∂t f + v · ∇f + (E + v ×
B

ε
) · ∇vf =

1

ε
Q(f , f )

with f (t, x, v) the seven dimensional particles distribution and E, B the electric and
magnetic fields given by the Maxwell equations.

� Large dimensional multiscale PDEs with admit geometric structures to preserve and
few diffusion process (less stable). So we need reduced models and adapted numerical
methods.

Fluid models:

�

∂tU +∇ · F(U) = ε∇ · (G(U)∇U)

with U(t, x) ∈ Rn the macroscopic quantities (density, velocity etc).

� Strongly nonlinear, multiscale PDE which admits discontinuous solutions in the low
diffusion regime. So we need adapted numerical methods. Tricky point: stability.
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Problem of closure
� Simple case:

∂t f + v∂x f + ∂xφ∂v f =
1

ε
(M(ρ, u,T )− f )

with
∆φ = ρ− 1

and the moment ρ =
∫
fdv , ρu =

∫
vfdv and p =

∫
(v − u)2fdv .

� When ε tends to zero we are close to the equilibrium M(ρ, u,T ).

� When we take the three first moment in velocity we obtain the Euler equation. ∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) + ∂xq = 0

with E = 1
2
ρu2 + 1

2
p, q = 1

2

∫
v (v − u)3fdv .

� How to compute the reduced model: we don’t know q.

� Solution: closure:
q ≈ C(ρ(.), u(.),T (.), ε)

� Classical closure: asymptotic analysis gives q = 0 + O(ε) (Euler),
q = −ε 3

2
p∂xT + O(ε2). Harmett-Perkins nonlocal in space.

� How construct a closure for moderate ε ?
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Supervised learning and CNN

Closure by supervised learning
� Using kinetic simulation we are able to collect data:

D = {ρ(.), u(.),T (.), ε)i , q(.)i , i = 1, ..., n}

� We can construct closure by supervised learning where we solve

minθ

n∑
i

‖ Cθ(ρi (.), ui (.),Ti (.), εi )− qi (.) ‖2
2

� The function Cθ can be in large dimension (if nonlocal in space) and strongly
nonlinear. For this regression problem we use a neural network.

� Neural-network:
Cθ(x) = Lm ◦ N ◦ ..... ◦ L2 ◦ N ◦ L1(x)

with Lθi (y) = My with M ∈Mni×ni+1 (R), y ∈ Rni+1 and N(y) a nonlinear function
apply at each component of y .

� The weights θ of the neural network are the coefficients of the matrix Li ..
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Supervised learning and CNN II

� Fully connected neural network: the matrices Li are dense.

� 1D convolutional neural network: the matrices Li are sparse Toeplitz matrices.

A =


a c 0 0
b a c 0
0 b a c
0 0 b a


� This is equivalent to applying a small convolution kernel to the signal 1D.

� Apply convolution kernel = apply a filter on signal (operation of the spectrum of the
signal).

� Often we apply some convolution at the signal on each layer to create several new
signals.
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Supervised learning and CNN III

� Important properties for a convolutional layer:

� Filters localized in space,
� Anisotropic filter,
� Multiple layers,
� O(1) parameters per filter (independent of input image size n),
� O(n) complexity per layer (filtering done in the spatial domain),

� The convolutional network takes into account to 2D structure of the data. Essential
for good performance for signal problems.
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Result for closure problem I
� Average results for the prediction of q:

pred-eps.pdf

� Average results for the prediction of electric energy for simulation with different
closure:
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Result for closure problem II
� Examples of simulation:

� Paper: A neural network closure for the Euler-Poisson system based on kinetic
simulations , L. Bois, E. Franck, L. Navoret, V. Vigon.

� ANR Milk (2022-2025) with Max-Planck institute of Plasma-Physics on reduced
models with deep-learning.

� Two years of post-doc position on the closure for more complex problems.
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Reduced problem for plasma physics

E. Franck 11/39

11/39



Vlasov and PIC code

� We consider the 1Dx1D nonlinear Vlasov-Poisson equation for plasma:

∂t f (t, x , v) + v∂x f + (Eext(x) + E(x))∂v f = 0

with

−∆φ(x) =

∫
v
f (t, x , v

′
)dv

′
− 1, E(x) = −∇φ(x)

� f (t, x , v) is a probability density of the particles.

� Solver PIC (Particle In Cells). We approximate the distribution by macro-particles

f (t, x , v) ≈ fN(x(t), v(t)) =
N∑
i=1

wiδ(x − xi (t))δ(v − vi (t))

where 
dxi

dt
= vi ,

dvi

dt
= q

m
(E + Eext)(xi (t)),

(1)

� To compute the electric field, we compute
∫
v f (t, x , v

′
)dv

′
on the mesh, solve the

Poisson equation on the mesh, interpolate E(x) at the position of macro-particles.
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Reduced order modeling
� After PIC discretization, we have a large ODE (d2N with d the dimension and N the

number of particles) to solve.

� PIC method converges in O(C(f )√
N

) so d2N >> 1 (like MC methods).

ROM method
Design reduced models of size K << N for a subset of initial data and parameters.
Assumption:

Y(t) ≈ AZ(t)

with Y(t) ∈ Rd2N , Z(t) ∈ R2K .

� Here we consider f (t = 0, x , v) = fγ(α,β)M(v) with (α,β) the parameters.

� Classical approach: POD (see J. Hestaveen papers)
� We collect some snapshots: S = [(x(t1), v(t1)), ........, (x(tn), v(tn))].
� By the SVD method, we compute the K dominant mods (associated to the K

largest eigenvalues) and construct: A ∈MK ,N (encoder) et A+ ∈MN,K

(decoder).
� Reduction:

∂tY(t) = F(Y(t))→ ∂tZ(t) = AF(A+Z(t)), with Z(t) = AY(t)

� The term AF(A+Z(t)) can be computed and stored in the linear case and
approximated in the nonlinear case.
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Nonlinear reduction and Auto-encoder
� Phase-space: PIC code (left), Reduction of PIC (middle), Reduced model (right)

� It doesn’t work. Why ?

Nonlinear assumption
For nonlinear transport equation, we can assume that

Y(t) ≈ G(Z(t)), Y(t) ∈ RN , Z(t) ∈ RK

� Idea: replace SVD by Deep - Auto encoder.
� In practice: Partial fully connected neural network.{

E x
θex

(x) = x

E v
θev

(v) = v
,

{
Dx

θex
(x) = x

Dv
θev

(v) = v

E. Franck 14/39

14/39



Results

� Results for the reduced model for one trajectory:

� Learning with different initial conditions (varying α):

� Current step: varying randomly β and α in the learning step.
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Next: structure-preserving reduced model
� Question: how do you learn time models ?

dx(t)

dt
= Fθ(x(t))

� We can learn the flow Fθ using data to approximate time derivatives.

� Physical model: In general the physic admits specific structure (conservative,
dissipative ...)

� Example:
dx

dt
= J(x)∇H(x) + G(x)∇S(x)

with J skew-symmetric, G symmetric and J(x)∇S(x) = G(x)∇H(x) = 0

� We call H(.) an Hamiltonian which is conserved by structure and S(.) an entropy
which is dissipative by structure.

� The ODE’s solved in the PIC code are generated by an Hamiltonian.

Next step
� Keep an Hamiltonian structure on the reduced model learning the Hamiltonian and

not the ODE flow.

� Advantage: Hamiltonian structure + specific time integrator (symplectic scheme)
allows to assure some stability for the reduced model.
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Deep learning and geometry

E. Franck 17/39

17/39



Unstructured data and non-euclidian domain

� Many possible applications of deep-learning for PDE’s:

� Modeling some terms: closure, turbulence models, reduced models,
� Solve PDE,
� Compute coefficients of numerical schemes: stabilization viscosity, flux limiter,

dynamic splitting coefficient
� Adaptive solving: shocks/interface detection, error prediction, meshes refinement.

� For these applications we need neural networks on unstructured data (cloud point,
meshes ...) and non euclidean geometry (surface of Torus or sphere ....)

Figure: Picture from google image.
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Unstructured data and non-euclidian domain II

� We consider a Graph (Mesh are include inside)

� Graph G = (V, E)
� Vertices V = {1, ... , n}
� Edges E ⊆ V × V
� Edge weights wij ≥ 0 for (i , j) ∈ E
� Vertex fields L2(V) =

{
f : V → Rh

}
, represented as f = (f1, ... , fn)

� How to define/generalize the convolution on graph/mesh ?

� No natural answer.

Figure: Picture from google.
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Convolution and Fourier transform

� Spatial definition of convolution: Given two functions f , g : [−π,π]→ R their
convolution is a function

(f ? g)(x) =

∫ π

−π
f
(
x ′
)
g
(
x − x ′

)
dx ′

� Spectral definition of convolution:

(f ? g)(x) = F−1(Fg ∗ F f )

with F the Fourier transform.

� Discrete case:
(f ? g)(x) = Φ(Φtg ◦ Φt f)

with Φ the fourier matrix. Each column corresponds to one eigenvector of the
Laplacian.

� To apply filter/define convolution we use a Fourier basis (basis function with
increasing frequency).

� Example: how to apply this on a function/signal defined on the sphere ?
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Differential geometry and Laplace Beltrami

Differential geometry
� Application of differential calculus tools to the geometry.

� allows to study differential function defined on curve/surface/manifold etc ...

Riemannian geometry
� differential geometry with the notion of distance and angle.

� Important tools: Laplace-Beltrami

∆f =
1√
|g |
∂i

(√
|g |g ij∂j f

)
with g the Riemanian metric tensor (manifold-dependent).

� Key point: the eigenvectors of ∆ give a basis of function defined on the manifold with
increasing frequency. Fourier basis on each Riemannian manifold.
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Example: manifold harmonics

Figure: Google images

Figure: Issue to B. Vallet and B. Lévy. Spectral Geometry Processing with
Manifold Harmonics
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Graph Laplacian

Question
Can we construct the same theory for graph/mesh to design specific Fourier basis and
filters ? yes

� The derivative operator d : H(V ) = (R|V |,<,>V )→ (R|E |,<,>E ) = H(E) can ben
defined

∀eij ∈ E, d(eij ) = γ(wij )(f (j)− f (i))

with f (i), f (j) the value of the function f at the vertex i and j and

< f , g >V =
1

| V |

|V |∑
i=1

figiχi , < f , g >E=
1

2 | V |

|V |∑
i ,j

fijgijwij

� We can define the dual operator with the relation

< df , g >V =< f , d∗g >E , ∀f ∈ H(V ), g ∈ H(E)

� As in the exterior calculuss theory (differential geometry), the graph Laplacian
∆ : H(V )→H(V ) is given by

∆(i) = d∗d
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Graph Laplacian II
� Explicit formula.

∆(i) =

f (i)
1

n

n∑
j=1

wij

di
−

1

n

n∑
j=1

f (j)
wij

di


� for specific choice of γ(.) and χ(.).

Question
Can we link this graph Laplacian to Laplace-Beltrami operator ? yes

Result
We take M a Riemanian manifold of dimension m in Rd . X = (x1, ...xn) are points of the
manifold distributed with a probability law p(x) on M.
We construct a graph of nearest neighbors (close to mesh). On some technical
assumption we have:

∆→n→∞ C
1

ps
∇ · (ps∇f )

If s = 0 and p(x) an uniform law, we obtain the Laplace-Beltrami operator.

� So, if the graph is ”a discrete version of a manifold”, the graph Laplacian can be an
approximation of the Laplace-Beltrami operator.
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Spectral convolution and Graph-signal process
� We consider a Graph G and the Graph Laplacian matrix L.
� We call Φ the eigenvectors of L.
� We obtain a natural definition of convolution on graph:

f ? g = Φ( Φtg︸︷︷︸
K∈Dn,n(R)

◦Φt f))

with n signal size and K the filter

� Defaults for Convolution layer of neural-network:
� No guarantee of spatial localization of filters,
� O(n) parameters per layer,
� O(n2) computation of forward and inverse Fourier transforms,
� Filters are basis-dependent do not generalize across graphs.
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Spectral convolution and Graph-signal process II

� Key reference: Geometric deep learning: going beyond Euclidean data. M. Bronstein
an al (2016).

� Example (picture come from to the reference):
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First GCNN: Chebnet
� First problem: O(n) parameters per layer. Solution:

f ? g ≈ Φk ( Φt
kg︸︷︷︸

K∈Dk,k (R)

◦Φt
k f))

with k << n a cut-off frequency. So Φk is the k first eigenvectors. K contains the
trainable parameters.

� Second problem: the filter can be non-local in space. Remark: duality
smoothness-locality in fourier/spatial domain. Solution:

Kii =
k∑

j=1

θjBs(λi )

with Bs a smooth B-Splines function and λi eigenvalues of graph Laplacian.
� Using this we obtain a localized spatial filter with r parameters.
� Third problem: Computation of φ with complexity O(n). Idea:

Kii =
k∑

j=1

θjλ
i = Pθ(Λ)

� We remark
ΦtPθ(Λ)Φt f = Pθ(L)f

So a polynomial of graph Laplacian gives a good candidate for convolutional layer.
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Second GCNN: GCN

ChebNet (X. Bresson and al 2016)

We define the normalized graph laplacian L̃ = 2 L
λmax

− Id and propose

Pθ(L̃)f =
k∑

j=1

θjTj (L̃)f

with Tj a recurrent Tchebychev polynomial. So

Tj (L̃)f = 2L̃Tj−1(L̃)− Tj−2(L̃), with T0 = f and T1 = L̃f

� Simple convolution layer:
� Using another definition of graph laplacian and choosing k = 2:

Pθ = θ0 + θ1(L− Id ) = θ0 − θ1D
− 1

2 WD−
1
2

with D degree matrix and a W weight matrix. We choose θ = θ0 = −θ1.
� Eigenvalues are in [0, 2]. Lot of composition can generate instabilities. To finish

we apply a transformation to have a spectrum in [−1, 1].

Vanilla GCN (Kipf, Welling 2016)

G = θ(Id + D̃−
1
2 W̃ D̃−

1
2 )

avec W̃ = W + Id et D̃ = diag(
∑

i 6=j w̃ij ).
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Recents GCNN

� Lot of difference convolutional layers based on spectral approach.

� Some spatial approachs have also been designed:

� Geodesic CNN (G. Maskic and al 2015): based on local coordinate on tangent
space. Mainly for mesh of manifold.

� Monet (F. Monti and al 2017): generalization of GCNN based on local coordinate.
Mainly for mesh of manifold.

� GRAND (M. Bronstein and al 2022): the convolution layer is a spatial and time
discretization of:

∂tρ = ∇ · (A(x , t)∇ρ)

with A a matrix. Use the theory which link ANN and ODE discretization (Neural
ODE R. T. Cheng 2018).

� Beltrami-flow(M. Bronstein and al 2021): the convolution layer is a spatial and
time discretization of:

∂tρ =
1√

DetG(x , t)
∇ ·
(

∇ρ
DetG(x , t)

∇ρ
)

with the Riemannaian metric G = Id + α(∇xρ)t(∇xρ). Low diffusion in direction
of high gradient.
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Application to mesh and PDE I

� Train a neural network to make some task on varying meshes. Difficulty:
Chebnet/GCN valid when we change the mesh. Not possible for general graph.

� Refinement/moving mesh cannot change the topology of the mesh and the manifold
associated.

� We can hope that networks based on a spectral approach of convolution will continue
to work.

� Examples: number detected on meshes.

Figure: accuracy results compare to the mesh deformation or mesh
refinement
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Application to mesh and PDE II
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Application to mesh and PDE III
A first application: discontinuity/shock detection and mesh refinement.

Case 1: constant by part function. Localization of discontinuity by GCN and iterative
refinement.
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Application to mesh and PDE IV
� Case 2: Detection of discontinuity for non piecewise constant function. Unet

architecture with Chebnet and geometric pooling layers.
� Training on a single mesh (for informatic reason)
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Application to mesh and PDE V
� Case 3: Detection of discontinuity in Burgers simulation using previous training

� A first refinement approach

� After refinement the discontinuity is always detected. Less after four refinements but
training on a single mesh.
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Theory of geometric deep learning
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Neural Network architecture and symmetry I

Curse of dimensionality
The space generated by the neural-network function with RELU activation is dense in the
C0(Ω) functional space for the L∞(Ω) norm with Ω ⊂ Rd . If f ∈ Hs(Ω) then

supx∈Ω | f (x)− ANN(x) |≈ O(n−
s
d )

with n the number of neurals.

� How to explain the good performance of neural networks for some problems in high
dimension (vision, translation problem).

Possible answer

� For some problems on structure data the neural network ”encodes” some priors on the
problems which allows it to break the curse of dimensionality.

� Mallat 2016, Bronstein and al, 2020

� Which structured data ? which prior. Theory of Geometric Deep Learning (Bronstein
and al, 2020).
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Neural Network architecture and symmetry II

Which data
� Grids and sequence (time series and vision problem)
� Homogeneous non-euclidean space (vision problem on sphere etc)
� General manifold and meshes (vision problem, form analysis, ...)
� Graphs and set/point cloud (many applications)

Which prior I
g ∈ G wth G a group of symetry, x ∈ X (Ω) a signal on Ω. f is the target function on Ω.

� G -Invariance: f (g .x) = f (x), ∀g ∈ G , ∀x ∈ X (Ω)

� G -Equivariance: f (g .x) = ρ(g)f (x), ∀g ∈ G , ∀x ∈ X (Ω)

with ρ the representation of g ( group representation theory).
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Neural Network architecture and symmetry III

Which priors II
� Stability compared to signal local deformation . We consider f (x) the target function

with x the signal. It is equivalent to say that f is locally invariant compared to the
group of diffeomorphism G :

‖ f (g .x)− f (x) ‖≤ c(g) ‖ x ‖

with g .x an action group.

� Stability compared to domain local deformation. We consider f (x , Ω) the target
function with x signal and Ω the domain. It is equivalent to say that f is locally
invariant compared to the group of isomorphism G :

‖ f (x , Ω)− f (x2, Ω2) ‖≤ dD(Ω, Ω2) ‖ x ‖

with x2 = η−1 ◦ x and η invertible mapping between the domains.

Which priors III
� Scale separation. We define a coarsering operator: P : x ∈ X (Ω)→ x2 ∈ X (Ω2) with

x2 the signal on the coarse domain (less degrees of freedom). We assume that

f ≈ f2 ◦ P

with f the target function, and f2 the target function on the coarse domain.
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Neural Network architecture and symmetry IV

Geometric prior II
� Grids/sequence: translation invariance/equivariance,

� Homogeneous non-euclidean space: associated symmetry group. Rotation for sphere,

� Graph and set: permutation invariance/equivariance,

� Manifold and mesh: isometry or local gauge invariance/equivariance.

Geometric Deep Learning blueprint
A ”good” neural network chain:

� Convolutional layers which encode G -equivariance and stability to local deformation,

� local Pooling/un-pooling layers which encode scale separation,

� global pooling layer for classification which encodes G -invariance.

E. Franck 39/39

39/39


	Deep learning for closure PDE problem
	Reduced problem for plasma physics
	Deep learning and geometry
	Theory of geometric deep learning

