
Scientific machine learning: some methods and
applications

J. Aghili2, L. Bois12, E. Franck12, V. Michel Dansac12,
L. Navoret12, V. Vigon12

Numerical Analysis and Optimization Seminar of Coimbra University

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France

E. Franck 1/44

1/44

Outline

Introduction

Physics-based learning

Applications of Physic-based learning

Differentiable physics

Applications of differentiable physics

Conclusion

Bonus: Unstructured meshes

E. Franck 2/44

2/44

Introduction

E. Franck 3/44

3/44

Maching learning: principle
� Set of methods to build models from data.
� In general, approaches use parametric functions fθ where the parameters are chosen by

optimization

� Three main types of ML problems:
� Supervised learning: construct models like

y = f (x) + ε, or P(y |x)

with ε some noise, using inputs and outputs examples. We solve:

minθ

n∑
i

L(f (xi), yi),

with L a loss function.
� Unsupervised learning: construct models like

P(x), or P(x |z),

which explain data structure/probability data with some examples (z potential
latent variables), where ε is some noise, and using inputs and outputs examples.

� Reinforcement learning which considers time control problems like:

sn+1 = f (sn, an)

with sn a state and an an action, and constructs the model π(an|sn) which decides
the best action to maximize some criterion.

E. Franck 4/44

4/44

Deep learning: neural networks
� Which parametetric functions? Polynomial? (not in high dimension problems).
� Current choice: kernel approximation or neural network.

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

� Fully connected neural network (FCNN): the matrices Al ,l+1 are dense.

E. Franck 5/44

5/44

Deep learning: neural networks II

Neural network
For structured data like pictures, time signals or functions on structured grids, there exist
more powerful NN: convolutional neural networks.

� 1D convolutional neural network: the matrices Li are sparse Toeplitz matrices.

A =


a c 0 0
b a c 0
0 b a c
0 0 b a


� This is equivalent to applying a small convolution kernel to the 1D signal.
� We often apply some convolutions to the signal on each layer, to create several new

signals.
� 2D convolutional networks:

� Ingredients: translation equivariance/invariance, scale separation, deformation
stability (Mallat 2016).

E. Franck 6/44

6/44

Our objectives

Limit of ML for PDE
� We can directly solve or approximate PDEs with ML (next section) but without

convergence/stability or other guarantees.

Objective I
� Structure- and property-preserving reduced models with ML (ANR with IPP Garching).

Objective II
� Construct new hybrid numerical methods with ML, conserving the classical properties

of PDE approximations.

Objective III
� Construct a ML framework to tend towards self-adapting simulation codes.

E. Franck 7/44

7/44

Physics-based learning

E. Franck 8/44

8/44

PINN’s
� How to directly solve PDEs with NNs? Physics-Informed neural network (M. Raissi, G.

E. Karniadakis et al, 2017).

� Problem:  ∂tU = N (U, ∂xU, ∂xxU,β)
Uh(t, x) = g(x), ∀x ∈ ∂Ω
U(0, x) = U0(x ,α)

with α, β some parameters.

� Idea I: represent/approximate solutions of PDEs by a NN. So we define a FCNN:
Uθ(t, x).

� Idea II: Neural networks are Cp(Rd) functions so we can exactly compute the
derivative appearing in the PDE.

Optimization problem of PINN’s

minθ Jr (θ) + Jb(θ) + Ji (θ)

with
Jr (θ) =

∫ T

0

∫
Ω
‖ ∂tUθ(t, x)− L(Uθ, ∂xUθ, ∂xxUθ,µ)(t, x) ‖2

2 dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω
‖ Uθ(t, x)− g(x) ‖2

2 dxdt, Ji (θ) =

∫
Ω
‖ Uθ(0, x)− U0(x) ‖2

2 dx

E. Franck 9/44

9/44

PINN’s II
� How to approximate the previous problem? Using the Monte-Carlo method.

� We randomly choose collocation points: (t1, x1,tN , xN). Thanks to these points,
we approximate the loss function as follows:

Jr (θ) ≈
1

N

N∑
i=1

‖ ∂tUθ(ti , xi)− L(Uθ, ∂xUθ, ∂xxUθ,β)(ti , xi) ‖2
2

� General PINNs behavior:

� PINNs variants: add data, BC/initial condition strongly imposed, causal training (time
sub-interval by time sub-interval), variational PINNs, entropic PINNs, preferential
sampling using residuals, . . .

E. Franck 10/44

10/44

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ

E. Franck 11/44

11/44

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ

� Training for viscosity 10−4: 2h.

E. Franck 11/44

11/44

Example: Reduced MHD
� Application: reduced MHD equations

dω
dt

+ [φ,ω] = [ψ, j] + ν∆ω,
dψ
dt

+ [φ,ψ] = η∆η,
ω = −∆φ,
j = −∆ψ

� Test case: Tilt instability.

� ω prediction (left), energy evolution (right)

� Since it is a multi-scale problem, the training is complicated, and requires 10 data
points in time to get an accurate description of the instability.

E. Franck 12/44

12/44

PINN’s and parametric PDEs
� Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
� Drawbacks of PINNs: they are not competitive with classical methods.
� Interesting possibility: use the strengths of PINNs to solve parametric PDEs.

� The neural network becomes Uθ(t, x ,α,β).

New Optimization problem of PINN’s

minθ Jr (θ) + ...

with
Jr (θ) =

∫
V

∫ T

0

∫
Ω
‖ ∂tUθ(t, x)− L(Uθ, ∂xUθ, ∂xxUθ,µ)(t, x) ‖2

2 dxdt

with V a subspace of the parameters (α,β).

� Application for the Burgers equations with many viscosities [10−2, 10−4]:

� Training for the viscosity subset: 2h.E. Franck 13/44

13/44

Operator learning
� We consider the following problem: Gµ(u(x)) = ∂tu(x) + Lµ(u(x)) = 0 on Ω,

u(x) = g(x) on ∂Ω,
u(t = 0, x) = u0(x)

� Formally, there exists a pseudo inverse operator G+, such that G+(u0, g ,µ) = u(x).

Operator learning

Approximate G+ by a neural network on a subspace of the data, to quickly compute an
approximation of the solution.

First approach: discrete approach
We discretize the data on a mesh u0,h, gh,µh, and we construct a neural network
G+
θ (u0,h, gh,µh) (in general, a CNN) which minimizes J (θ) = J1(θ) + J2(θ), with

J1(θ) =

∫
G

∫
U0

∫
µ

nT∑
n=1

‖ G+
θ (gh, un

h,µh)− un+1
h ‖2

2 dgdU0µ

and
J2(θ) =

∫
G

∫
U0

∫
µ

nT∑
n=1

‖ Gµ,∆t(G
+
θ (gh, un

h,µh), un
h) ‖2

2 dgdU0µdxdt,

with Gµ,∆t(un+1
h , un

h) a scheme, and where integrals are approximated by MC.

E. Franck 14/44

14/44

Neural operator

Second approach: continuous approach

We construct a neural network G+
θ (u0,h, gh,µh), which minimizes J (θ) = J1(θ) + J2(θ),

with

J1(θ) =

∫
G

∫
U0

∫
µ

∫
Ω

∫ T

0
‖ G+

θ (t, x , g(x), u0(x),µh(x , t))− u(x , t) ‖2
2 dgdU0dµdxdt

and

J2(θ) =

∫
G

∫
U0

∫
µ

∫
Ω

∫ T

0
‖ Gµ(G+

θ (t, x , g(x), u0(x),µh(x , t))) ‖2
2 dgdU0dµdxdt,

where the integrals are approximated by MC.

� This approach leads to so-called neural operators (N. Kovachki, Z. Li et al 2021).

� Which neural network to use?

� Example: {
−∇ · (a(x)∇u) = f (x), ∀x ∈ Ω
u = 0, ∀x ∈ ∂Ω

� The solution is given by

u(x) =

∫
Ω
Ga(x , y)f (y)dy

with Ga a Green kernel. Important: the operator in non-local.

E. Franck 15/44

15/44

Neural operator: Fourier NN I

Integral kernel

We call integral kernel applied to a function v(y) ∈ C0(Dt ;Rnt) the quantity

K(v)(x) =

∫
Dt

k(x , y)v(y)dν(y),

with k(x , y) ∈ Cp(Dt+1 × Dt ;Rnt+1 × Rnt) and ν a measure.

Neural operator layer
We call a integral kernel layer an operator which transforms vl (x) into a function vl+1(x),
and which has the form:

∀x ∈ Dl+1, vl+1(x) = σl+1

(
Wlvl (πl (x)) + b(x) +Kt(v)(x)

)
where Wt ∈ Rdl+1, dl is a weight matrix and where Πl is a mapping between Dl+1 and Dl .

� It requires computing the integral kernel many times.

E. Franck 16/44

16/44

Neural operator: Fourier NN II

Fourier Neural Network
The FNOs use neural operator layers with an integral kernel:

K(v)(x) ≈ F−1(RθF(v(x)),

with Rθ the learnable filters in the Fourier space. In practice it is computed with an FFT.

� Principle:

� Contrary to the discrete CNN case, we can change the mesh resolution (it is also
possible with CNNs, provided interpolation is used), and we could adapt the approach
to unstructured grids.

E. Franck 17/44

17/44

Physics-based Learning

Summary of the main goal
Here, the neural network takes the parameters and predicts the solution. The NN
approximates the map from data or parameters to solutions.

E. Franck 18/44

18/44

Application of Physics-based learning

E. Franck 19/44

19/44

Nonlinear elliptic problems and Newton’s method
� We want to solve the following elliptic problem:

u − α0∇ · (A(x , y)k(u)∇u) = f (x , y).

� It also corresponds to the implicit part of a diffusion equation.

Solver

� Finite difference or Finite element (here on structured meshes)

� Newton-Krylov method (Jacobian-free approximation + GMRES for linear part)

� After discretisation, we solve the problem:

GAh ,fh ,α0
(uh) = 0

with uh a discretization of u(x).

Difficulties

� The more the equation is non-linear, the more the Newton convergence is difficult.

� The more A(x , y) is anisotropic and α0 � 1, the more the condition number is large
and the convergence (linear/nonlinear) is hard.

E. Franck 20/44

20/44

Initial guess and FNO

Convergence of Newton’s method
The convergence depends on the initial guess. If the initial guess is too far from the
solution, Newton’s method converges slowly, or even does not converge.

Idea
Train a Fourier Neural Operator (FNO) to approximate the solution of the elliptic
equation and use it as an initial guess.

� We keep the convergence properties of the scheme, and we hope to accelerate
Newton’s method.

� Algorithm:

1. Fix a mesh, fix α0 and k(·),
2. Randomly generate many data uih, Ai

h (random Fourier coefficients, sum of
random Gaussian functions),

3. Compute the right-hand side associated with f ih ,

4. Train the neural network G+
θ (Ai

h, f ih), by minimizing

J(θ) = ω
n∑

i=1

‖G+
θ (Ai

h, f ih)− uih‖+ (1− ω)
n∑

i=1

‖GAi
h

,f i
h

,α0
(G+
θ (Ai

h, f ih))‖.

E. Franck 21/44

21/44

Results I
� We consider the equation

u(x)− ∂x (2α(x)u4∂u) = f

� We learn only with the data loss and the residue loss.
� Ratio number of iterations (top) and CPU time (bottom) for classical/NN on 100 cells

E. Franck 22/44

22/44

Results I
� We consider the equation

u(x)− ∂x (2α(x)u4∂u) = f

� We learn only with the data loss and the residue loss.
� Ratio number of iterations (top) and CPU time (bottom) for classical/NN on 200 cells

E. Franck 22/44

22/44

Results I
� We consider the equation

u(x)− ∂x (2α(x)u4∂u) = f

� We learn only with the data loss and the residue loss.
� Ratio number of iterations (top) and CPU time (bottom) for classical/NN on 400 cells

E. Franck 22/44

22/44

Results I
� We consider the equation

u(x)− ∂x (2α(x)u4∂u) = f

� We learn only with the data loss and the residue loss.
� Ratio (nb iter Newton/nb iter Newton +NN) on 600 cells

E. Franck 22/44

22/44

Results II

� What happens when we increase α0 to get a stronger non-linearity?

� We only compare the average results:

mesh α0 = 2 (40 sim) α0 = 5 (25 sim) α0 = 8 (25 sim)
100 cells +500% +1800% +5000%
200 cells +88% +230% +620%
400 cells +82% +150% +220%
600 cells +92% +220% +250%

Table: Comparison of the mean “gain” for different values of α0.

� Fails: on all the tests, we have 0% of fail (our method being less efficient than the
classical one) for the iteration criterion, and around 2% of fail on the CPU time
criterion.

� On more refined meshes, the gain is smaller (the network acts only at the beginning of
the convergence).

� More the system is nonlinear more the method is efficient.

E. Franck 23/44

23/44

Differentiable physics

E. Franck 24/44

24/44

Principle I
� At the beginning, PINNs/neural operators are used to solve PDEs.

� Other approach: supervised learning, Hesthaven et al 2017, 2018, 2020, 2022, B.
Desprès and H. Joudren 2020, R. Loubère et al 2020, etc.

� Differentiable physics, Michael P. Brenner et al 2018, 2020, “Physics-based deep
learning”, Nils Thuerey et al, 2021.

Coming back to neural networks
� The neural networks are trained with stochastic gradient descent.

� How is the gradient computed? Back-propagation.

Back-propagation and automatic differentiation

� Function: fθ(x) = f1 ◦ ◦ fn
� Automatic differentiation methods are able to deal with deep function composition.

E. Franck 25/44

25/44

Principle II

Differentiable physics
Write the scheme such that we can apply automatic differentiation and back-propagation
to compute the gradient of each function of the scheme in the code, and each
composition of these functions.

� Using that, we can compute the gradient with respect to all inputs of the solver, or of
sub-parts of the solver.

� Consequences: We can put a NN anywhere in the solver and optimize it with respect
to a criterion on the simulation result.

Link with optimal control
In optimal control we compute the gradient of the loss with respect to the input with an
adjoint method. It is another use of automatic differentiation methods.

Drawback
With back-propagation, stability problems (vanishing or exploding gradient) can arise
when composing too many functions.

E. Franck 26/44

26/44

Differentiable physics learning

Summary of the main goal
Here, the neural network approximates one subpart of the global map between
data/parameters and solution. This subpart can be: the full operator, a sub-function, just
one or two parameters, . . .

E. Franck 27/44

27/44

Application of differentiable physics

E. Franck 28/44

28/44

General problem

� We want to solve general hyperbolic PDEs:

∂tU + ∂xF(U) = 0

� High order method (MUSCL, HO finite volumes or DG) generate oscillations around
areas with strong gradients or shock waves: Gibbs phenomenon.

� Example on the Burgers equation:

� Solutions: slope limiting, artificial viscosity, filtering, etc.

Goal
Design slope limiting for MUSCL or artificial viscosity for DG using neural networks.

E. Franck 29/44

29/44

Artificial viscosity problem for DG
� We have a DG scheme, written under the form

∂rkt Uh + ∂DG
x F(Uh) = 0.

� The idea of the artificial viscosity method is to add a diffusion operator, which acts on
the oscillations.

� Modified scheme:

∂rkt Uh + ∂DG
x F(Uh) = ∂DG

x (D(Uh)∂DG
x Uh).

� How to construct D?
� Derivative-based approach:

D(Uh) = λmaxh|∂DG
x Uh)|

� MDH approach: we reconstruct the modes within the cells, and apply viscosity to
decrease the highest modes.

� Other approaches: MDA, entropy-based, etc.

� How to use neural networks? Approach from J. Hesthaven: compute the best viscosity
on many test cases, and learn this viscosity with a NN.

� The NN interpolates between known viscosities.
� There is no new viscosity model,
� and we cannot use this method to tune a scheme where we do not have a prior

viscosity model.

E. Franck 30/44

30/44

Differentiable physics approach I

Tool
We propose to use differentiable physics (control optimal approach) to design new types
of viscosity model.

� Formalism of optimal control and RL.

� We define a NN Dθ(Uh(t)) with Uh(t) the discrete solution.

� We define a value function:

VT
θ (U0) =

∫ T

0
C(Uh(t))dt,

with C a cost function and U0 = Uh(0) an initial condition.

Goal
Our objective to find a solution of the minimization problem:

min
θ

∫
U0

Vθ(U0)dp(U0)dU0 (1)

with p(U0) a probability law of initial data on U0.

E. Franck 31/44

31/44

Differentiable physics approach II
� After Monte-Carlo discretization, we obtain the minimization problem:

min
θ

J(θ) = min
θ

ndata∑
i=1

VT
θ (Ui ,0).

� We provide an approximation in time of the value function:

VT
θ (U0) = ∆t

T∑
t=1

C(Ut
h)

� The transition between two time steps is given by Un+1
h = Sh(Un

h,Dθ(Un
h)) with our

scheme. As a consequence, we have:

VT
θ (U0) = C(U0)+C(Sh(U0,Dθ(U0)))+C(Sh(Sh(U0,Dθ(U0)),Dθ(Sh(U0,Dθ(U0)))))+... ,

� As previously mentioned in the paradigm of differential physics, we can compute by
automatic differentiation:

∇θVT
θ (U0)

� We solve the minimization problem on J(θ) using a gradient method, with

∇θJ(θ) =
m∑
i=1

∇θVT
θ (Ui ,0)

E. Franck 32/44

32/44

Differentiable physics approach III
� To complete the algorithm, the NN and loss function still have to be defined.

Neural network
A ResNet convolution neural network (without coarsening operator) with q channels
(polynomial order q); once trained, it can be used on arbitrary uniform grids, by sliding
the convolution window.

Loss function
The cost function C() is composed of three parts:

� L2 error compared to a MUSCL solution on a fine grid:

Cerror(Un
h) = hFV

n∑
i=1

‖ΠFV (Un
h)i − Ui ,ref ‖2

2 ,

� L1 error on the Laplacian compared to the Laplacian of the reference solution

Cosc(Un
h) = hfv

n∑
i=1

∥∥∥D fv
xx (Πfv (Un

h))i − D fv
xxUj ,ref

∥∥∥
1

.

� L2 norm of Dθ:
Cvis(Un

h) = ‖Dθ(Un
h)‖2

2 .

E. Franck 33/44

33/44

Results I

� We consider two losses: Cvis and Cosc.

� Loss evolution:

E. Franck 34/44

34/44

Results I

� We consider two losses: Cvis and Cosc.

� Test case after some training epochs:

E. Franck 34/44

34/44

Results II

� We observe the effect of the parameters m (number of time iteration in the gradient)
on the viscosity:

� If m is too small the effect of viscosity is not visible and the model does not learn to
modify the viscosity.

E. Franck 35/44

35/44

Results II

� We compare the solution on 32 cells (training on 32)

� Results depend of the balance between the two losses.

E. Franck 35/44

35/44

Results II

� We compare the solution on 64 cells (training on 32)

� Results depend of the balance between the two losses.

E. Franck 35/44

35/44

Results III

� We consider two loss: Cerror and Cosc. We consider the grids: 32 cells, 64 cells and
128 cells.

� 32 cells

E. Franck 36/44

36/44

Results III

� We consider two loss: Cerror and Cosc. We consider the grids: 32 cells, 64 cells and
128 cells.

� 64 cells

E. Franck 36/44

36/44

Results III

� We consider two loss: Cerror and Cosc. We consider the grids: 32 cells, 64 cells and
128 cells.

� 128 cells

E. Franck 36/44

36/44

Results IV

� Euler equations, viscosity model: Dθ(ρ,U,E) on the three equations.

� Sod problem (zoom on contact and shock wave):

� 100 cells

E. Franck 37/44

37/44

Results IV

� Euler equations, viscosity model: Dθ(ρ,U,E) on the three equations.

� Sod problem (zoom on contact and shock wave):

� 200 cells

E. Franck 37/44

37/44

Results IV

� Euler equations, viscosity model: Dθ(ρ,U,E) on the three equations.

� Shu-Osher problem:

� 200 cells

E. Franck 37/44

37/44

Conclusion

E. Franck 38/44

38/44

Conclusion

Physics-Informed neural networks
The PINNs/neural operator approach allows to approximatively solve a family of
problems. This framework is interesting to improve numerical methods.

Next steps
� Finish implementing Newton in 2D and apply this to more complex, time-dependent

problems like the reduced MHD. Go towards self-optimizing code?

� Use PINNs/Neural operator to improve spatial numerical methods like FE or DG.

Differential physics
The DF approach allows optimizing some part of a numerical solver using NNs and
training with complex losses, depending on the output of the solver. A supervised part can
be added.

Next steps
� Finish implementing the viscosity for the Euler equations,

� Find better loss to detect the oscillations, find a loss which does not require a fine
solution,

� Use DF to improve spatial numerical methods like FE or DG.

E. Franck 39/44

39/44

Bonus: Unstructured meshes

E. Franck 40/44

40/44

Graph neural networks

CNN and signal processus
Convolutional neural networks are very useful to analyze pictures and detect patterns
(segmentation, . . .). For PDEs, they can be useful for discontinuity or front tracking.

� How to use them on unstructured meshes?

� CNN have been made for pictures, and for regular grids.

GNN
In the last five years, many Graph convolutional neural network have been proposed and
can be used on general meshes.

Important
Choose the network type such that the performance is not impacted when changing the
mesh but not the topology.

E. Franck 41/44

41/44

Discontinuity Tracking I

� A first application: discontinuity/shock detection and mesh refinement.

� Case 1: constant by part function. Localization of discontinuity by GCN and iterative
refinement.

E. Franck 42/44

42/44

Discontinuity Tracking II
� Case 2: Discontinuity detection for non piecewise constant function. Unet

architecture with Chebnet and geometric pooling layers.
� Training on a single mesh (for computational reasons)

E. Franck 43/44

43/44

Discontinuity Tracking III
� Case 3: Discontinuity detection in Burgers simulation using previous training

� A first refinement approach

� After refining the mesh, the discontinuity remains detected. This effect dampens after
four refinements, possibly due to training on a single mesh.

E. Franck 44/44

44/44

	Introduction
	Physics-based learning
	Applications of Physic-based learning
	Differentiable physics
	Applications of differentiable physics
	Conclusion
	Bonus: Unstructured meshes

