
Relaxation Schemes for low-Mach Problems

F. Bouchut3, D. Coulette4, E. Franck12, P.Helluy12, L. Navoret12

Workshop Cloture ANR MOHYCON, Pornichet,
9 - 11 mars 2022

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France
3Marne la Vallée, university, France
4ENS Lyon, France

E. Franck 1/30

1/30



Outline

Physical and mathematical context

Full-Implicit relaxation method

Semi-Implicit relaxation method

Well-balanced extension for Ripa model

E. Franck 2/30

2/30



Physical and mathematical context

E. Franck 3/30

3/30



Gas dynamic: Euler equations

� Context: Plasma simulation with Euler/MHD equations.

� Euler equation:  ∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu ⊗ u + pId ) = 0
∂tE +∇ · (Eu + pu) = 0

� with ρ(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

� The pressure p is defined by p = ρT (perfect gas law) with T the temperature.

� Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u, n) and
(u, n)± c with the sound speed c2 = γ p

ρ
.

Physic interpretation:

� Two important velocity scales: u and c and the ratio (Mach number) M = |u|
c

.
� When M tends to zero, we obtain incompressible Euler equation: ∂tρ+ u · ∇ρ = 0

ρ∂tu + ρu · ∇u +∇p2 = 0
∇ · u = 0

In 1D we have just advection of ρ.

� Aim: construct an scheme (AP) valid at the limit with a uniform cost.
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Numerical difficulties in space: VF in 1D
� Second method: Finite volume and DG method

� VF method + Rusanov flux. Equivalent equation:
∂tρ+ ∂x (ρu) =

S∆x

2
∂xxρ

∂t(ρu) + ∂x (ρu2) +
1

M2
∂xp =

S∆x

2
∂xx (ρu)

∂tE + ∂x (Eu) + ∂x (pu) =
S∆x

2
∂xxE

� Problem: S must be larger than 1
M

for stability. Huge diffusion.

� Example: isolated contact p = 1 and
u = 0.1.

� Exact. solution:

∂tρ+ u0∂xρ = 0

� Rusanov scheme:

∂tρ+ u0∂xρ =
S∆x

2
∂xxρ

with S > u0 + c ≈ 1.5

� Upwind scheme for limit:

∂tρ+ u0∂xρ =
u0∆x

2
∂xxρ

� Rusanov scheme Tf = 2 u0 = 0.05
and 1000 cells
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Numerical difficulties in space: VF in 2D
� Same analysis in 2D.

� VF method + Rusanov flux. Equivalent equation:
∂tρ+∇ · (ρu) =

S∆x

2
∆ρ

∂t(ρu) +∇ · (ρu ⊗ u) +
1

M2
∇p =

S∆x

2
∆(ρu)

∂tE +∇ · (Eu) +∇ · (pu) =
S∆x

2
∆E

� Problem: S must be larger that 1
M

for stability. Huge diffusion.

� Example: isolated contact p = 1, ∇ · u0 = 0 and u0 constant in time.

� Rusanov scheme Tf = 2 | u0 |≈ 0.001 and 100*100 cells.

� Red: exact solution, Blue: numerical solution.
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Numerical problem I: time discretization.
� Explicit scheme: the CFL condition for low mach flow:

� The fast phenomena: acoustic waves at velocity c
� The important phenomena: transport at velocity u
� Expected CFL: ∆t < ∆x

|u| , CFL in practice ∆t < ∆x
|c|

� At the end, we use a ∆t divided by M compared to the expected ∆t

First solution
Implicit time scheme. No CFL condition. Taking a larger time step, it allows to ”filter”
the fast acoustic waves which are not useful in the low-Mach regime.

� Implicit time scheme:

MiUn+1 = (Id + ∆tA(Id ))Un+1 = Un

� We must solve a nonlinear system and after linearization solve some linear systems.

Problem
� Direct solver too costly. Approximative conditioning for the iterative solvers:

k(Mi ) ≈ 1 + O

(
∆t

∆xpM

)
� We recover the two scales in the conditioning number. The full implicit schemes are

difficult to use for this reason.
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Numerical problem II: time discretization.

First idea: Semi implicit scheme
� We explicit the slow scale (transport) and implicit the fast scale (acoustic)

[CDK12]-[DLVD19]


∂tρ+ ∂x (ρu) = 0

∂t(ρu) + ∂x (ρu2) + ∂xp = 0
∂tE + ∂x (Eu) + ∂x (pu) = 0

Implicit acoustic step: ρn+1 = ρn

(ρu)n+1 = ρnun −∆t∂xpn+1 + Rhsu
En+1 = En −∆t∂x (pn+1un+1) = RhsE

Plugging this in the second equation, we obtain

En+1 −∆t2∂x

(
pn+1

ρn
∂xp

n+1

)
= Rhs(En, un, ρ)

�� Matrix-vector product to compute un+1.

Conclusion
� Semi implicit: only one scale in the implicit symmetric positive operator.
� Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
� Nonlinear solver can have bad convergence for if ∆t >> 1 and ∂xp not so small.
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Relaxation method
� Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations.

Used to design new schemes.
� Idea: Approximate the model

∂tU + ∂xF(U) = 0, by ∂t f + A(f) =
1

ε
(Q(f)− f)

� At the limit and taking Pf = U we obtain

∂tU + ∂xF(U) = ε∂x (D(U)∂xU) + O(ε2)

� Time scheme:
� we solve

f∗ − fn

∆t
+ A(f∗,n) = 0

� and after we approximate the stiff source term by

fn+1 = f∗ + ω(Q(f∗)− f∗)

with ω ∈]0, 2].

Why ?
� In general, we construct A with a simpler structure than F to design numerical flux in

FV.

� Here, we construct A with a simpler structure to design simple implicit scheme.
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Full-Implicit relaxation method
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Xin-Jin relaxation method
� We consider the following nonlinear hyperbolic system

∂tU + ∂xF (U) = 0

� with U a vector of N functions.

� Aim: Find a way to approximate this system with a sequence of simple systems.

� Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADN00].

{
∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

Limit of the hyperbolic relaxation scheme

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = ε∂x ((λ2− | A(U) |2)∂xU) + o(ε2)

� with A(U) the Jacobian of F (U).

� Conclusion: the relaxation system is an approximation of the original hyperbolic
system (error in ε).
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Xin-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non-locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation.

Ü Key point: the ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

� Relaxation step:{
Un+1 = Un

V n+1 = θ∆t
ε

(F (Un+1)− VN+1) + (1− θ) ∆t
ε

(F (Un)− V n)

� Transport step (order 1) :

Id +

(
0 1
α2 0

)
∂x

(
Un+1

V n+1

)
=

(
Un

V n

)
� We plug the equation on V in the equation on U.
� We obtain the implicit part:

(Id −∆t2λ2∂xx )Un+1 = Un −∆t∂xV n

� We apply a matrix-vector product

V n+1 = −∆tλ2∂xUn+1

� Natural extension at the second order in time. In space: FV (used here) or DG/FE.
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Advantages and defauts

Advantages
� If we have N equations, we obtain N independent wave systems.

� Each substep can be solved implicitly with one inversion of constant elliptic problem
and one matrix-vector product.

� Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error
� Error for the first order splitting scheme:

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id− | A(U) |2)∂xU) + O(∆t2)

� In Low Mach regime ∂xu ≈ M, ∂xp ≈ M and c ≈ 1
M

consequently

∂tρ+ ∂x (ρu) ≈ ∆t

(
2− ω
ω

)(
∂x (c2 − u2)∂xρ

)
+ O(∆t2)

� Conclusion: Huge diffusion for the contact wave.

� In a 2D case:

∂tu + u · ∇u +∇p ≈
(

2− ω
ω

)
∆t

2M2
| u |2 ∆u + O(∆t2)

� Conclusion: Huge diffusion for the shear wave.
E. Franck 13/30
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Results: low Mach regime for Euler isothermal
� Gresho vortex: The initial data are given by ρ(t = 0, x) = 1 + M2ρ2(x),

u(t = 0, x) = u0(x), with ∇ · u0 = 0,

‖ u0 ‖≈ 1 and ρ(t, x) = ρ0 + M2ρ2(x) and p(t, x) = 1
γM2 .

Figure: Norm of the spatial Mach number for the first order implicit Xin-Jin
relaxation scheme. Top: M = 0.9, middle: M = 0.5, bottom: M = 0.1.
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Results: AP correction for isothermal case
� Error:

∂tu + u · ∇u +∇p ≈ ∆t

(
2− ω
ω

)
∆t

2M2
∆u + O(∆t2)

� Idea: take ω = 2−M2

Figure: Norm of the spatial Mach number for the first order adaptive implicit Xin-Jin
relaxation scheme. Top: M = 0.9, middle top: M = 0.1, middle bottom: M = 0.03
bottom: M = 0.005.
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Results: AP correction for the full case
� This correction is sufficient ?
� Contact wave in 1D for ω = 2:

Figure: Density given by second order implicit scheme varying u0 in the
relaxation.

� Results for u0 = 0.1 (M ≈ 1
10

) and u0 = 0.05 (M ≈ 1
20

) are quite convincing.
� Not for smaller Mach number. Too much dispersive effects.
� Conclusion: The correction modify the diffusion to avoid the Mach number

dependency but it is not the case in the dispersion (of the splitting and/or time
scheme).
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Semi-Implicit relaxation method
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Suliciu-type Relaxation method
� Problem: the nonlinearity of the implicit acoustic step generates difficulties.
� Non-conservative form and acoustic term:

∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

� Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

� Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
� with A = 1

ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

� Stability: φλ > ρc2 and ρ > φ.

Avdantage
� We keep the conservative form for the original variables and obtain a fully linear

acoustic.
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Splitting

Dynamical splitting
� Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time

depending for low-Mach [IDGH2018]

� For large acoustic waves (Mach number not small) we want capture to all the
phenomena. Consequently use an explicit scheme.

� For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
φ

∂xΠ = 0

,


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ + φ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

φ
∂xΠ = 0

with M(t) ≈ max
(
Mmin,min

(
maxx

|u|
c

, 1
))

� Eigenvalues of Explicit part: v , v ±M(t) λc︸︷︷︸
≈c

. Implicit part 0, ±(1−M2(t)) λa︸︷︷︸
≈c

� At the end: we make the projection Π = p and v = u (can be viewed as a
discretization of the stiff source term).
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Implicit time scheme
� We introduce the implicit scheme for the ”acoustic part”:

ρn+1 = ρn

(ρu)n+1 + ∆t(1−M2(tn))∂xΠn+1 = (ρu)n

En+1 + ∆t(1−M2(tn))∂x (Πv)n+1 = En

Πn+1 + ∆t(1−M2(tn))φλ2
a∂xv

n+1 = Πn

vn+1 + ∆t(1−M2(tn)) 1
φ
∂xΠn+1 = vn

� We plug the equation on v in the equation on Π. We obtain the following algorithm:
� Step 1: we solve

(Id − (1−M2(tn))2∆t2λ2
a∂xx )Πn+1 = Πn −∆t(1−M2(tn))φλ2

a∂xv
n

� Step 2: we compute

vn+1 = vn −∆t(1−M2(tn))
1

φ
∂xΠn+1

� Step 3: we compute

(ρu)n+1 = (ρu)n −∆t(1−M2(tn))∂xΠn+1

� Step 4: we compute

En+1 = En −∆t(1−M2(tn))∂x (Πn+1vn+1)

Advantage
� We solve only a constant Laplacian. We can assembly matrix once.
� No problem of conditioning, which comes from to the strong gradient of ρ
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Spatial scheme in 1D
� Idea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
� Main problem of the explicit part: design numerical flux.
� First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.

� Other solution: construct a Godunov scheme for the relaxation system. Principle:

� eigenvalues: v − E(t)λc , v(x3), v + E(t)λc
� Strong invariants of external waves:

∂t(v ± φλcπ) + (v ± E(t)λc )∂x (v ± φλcπ) = 0

� Strong invariants of central waves:

∂t

(
1

ρ
+

π

ρφλ2

)
+ v∂x

(
1

ρ
+

π

ρφλ2

)
= 0

∂t

(
u −

φ

ρ
v

)
+ v∂x

(
u −

φ

ρ
v

)
= 0

∂t

(
ρe +

π2

2ρφλ2
c

+
(v − u)2

2( ρ
φ
− 1)

)
+ v∂x

(
ρe +

π2

2ρφλ2
c

+
(v − u)2

2( ρ
φ
− 1)

)
= 0

� Important: strong invariant are weak invariant (conserved) on the other waves.
Exemple: (π, v) preserved on central wave.

� We obtain all the intermediary states using these previous results.
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Results 1D I: contact
� Smooth contact :  ρ(t, x) = χx<x0 + 0.1χx>x0

u(t, x) = 0.01
p(t, x) = 1

� Error

cells Ex Rusanov Ex LR Old relax Rusanov Relax Rus Relax PC-FVS
250 0.042 3.6E−4 1.4E−3 7.8E−4 4.1E−4

500 0.024 1.8E−4 6.9E−4 3.9E−4 2.0E−4

1000 0.013 9.0E−5 3.4E−4 2.0E−4 1.0E−5

2000 0.007 4.5E−5 1.7E−4 9.8E−5 4.9E−5

� Old relax: other relaxation scheme where the implicit Laplacian is not constant and
depend of ρn.

� Comparison time scheme:

Scheme λ ∆t
Explicit max(| u − c |, | u + c |) 2.2E−4

SI Old relax max(| u −M(tn))λ
ρ
|, | u +M(tn))λ

ρ
|) 0.0075

SI new relaxation max(| v −M(tn))λ |, | v +M(tn))λ |) 0.04

� Conditioning:

Schemes ∆t conditioning
Si old relax 0.00757 3000
Si new relax 0.041 9800
Si new relax 0.0208 2400
si new relax 0.0075 320
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Results in 2D: Gresho vortex

� Gresho vortex: ∇ · u = 0 and p = 1
M2 + p2(x)

� Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and
final (blue) time .From left to right: M0 = 0.5 (∆t = 1.4E−3), M0 = 0.1
(∆t = 3.5E−4), M0 = 0.01 (∆t = 3.5E−5), M0 = 0.001 (∆t = 3.5E−6).
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Results in 2D: Gresho vortex

� Gresho vortex: ∇ · u = 0 and p = 1
M2 + p2(x)

� Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue)
times. From left to right: M = 0.5, ∆t = 2.5E−3, M = 0.1, ∆t = 2.5E−3,
M = 0.01, ∆t = 2.5E−3, M = 0.001, ∆t = 2.5E−3.
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Results in 2D: Kelvin helmholtz

� Kelvin-Helmholtz instability. Density:

� Density at time Tf = 3, k = 1, M0 = 0.1. Explicit Lagrange-Remap scheme with
120× 120 (left) and 360× 360 cells (middle left), SI two-speed relaxation scheme
(λc = 18, λa = 15, φ = 0.98) with 42× 42 (middle right) and 120× 120 cells (right).
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Results in 2D: Kelvin helmholtz

� Kelvin-Helmholtz instability. Density:

� Density at time Tf = 3, k = 2, M0 = 0.01 with SI two-speed relaxation scheme
(λc = 180, λa = 150, φ = 0.98). Left: 120× 120 cells. Right: 240× 240 cells.
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Well-balanced extension for Ripa model
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Ripal model and steady states
� To finish we propose to see if the method can be combined with WB property to solve

flow around equilibrium.

� Ripa equation: 
∂th + ∂x (hu) = 0,

∂t(hu) + ∂x (hu2 + p(h,Θ))

F2
r

= − gh
F2

r
Θ∂xz,

∂t(hΘ) + ∂x (hΘu) = 0,

(1)

� where h(x , t) is the water height, u(x , t) the velocity, Θ(x , t) the temperature and
z(x) the topography, the pressure law is given by: p(h, Θ) = gΘ 1

2
h2 and the Froud

number Fr = u/
√
gh.

� Steady state: u = 0,
Θ = Cst,
h + z = Cst,


u = 0,
z = Cst,

Θ h2

2
= Cst,


u = 0,
h = Cst,

z + h
2

ln(Θ) = Cst.
(2)

� Aim: solve flows like

u = O(Fr ), Θ = Cst + O(Fr ), h + z = Cst + O(Fr ), (3)

with Fr � 1. In that case, the perturbation has a small amplitude but moves with a
large propagation speed of order O(1/Fr ).
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Splitting scheme
� Idea: use the same scheme as for Euler equation coupling with WB approach.

Splitting:

(C)


∂th + ∂x (hv) = 0,
∂t(hu) + ∂x (huv + F2Π) = −F2 ghΘ∂xz,
∂t(hΘ) + ∂x (hΘv) = 0,
∂tΠ + v∂xΠ + hmλ2∂xv = 0

∂tv + v∂xv + F2

hm
∂xΠ = −F2 h

hm
gΘ∂xz

(W )


∂th = 0,
∂t(hu) + (1−F2) (∂xΠ + hg∂xz) = 0,
∂thΘ = 0
∂tΠ + (1−F2)hmλ2∂xv = 0

∂tv + (1−F2)
hm

(∂xΠ + hg∂xz) = 0

(R)

{
∂tΠ =

1

ε
(p(h, Θ)− Π) , ∂tv =

1

ε
(u − v) ,

where F = max
(
Fmin, min

(
u√
hΘg

, 1
))

and

(
h

hm
− 1

)
> 0, γ =

(
hmλ

2 − hc2
)
> 0.
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Well-balanced property
� Explicit part: we plug the source term into the flux (Jin Levermore technic).
� Specific discretization of the steady states at the interface: centered gradient for ∂xz,

average mean for h, entropic mean for Θ.

� Implicit part: The final algorithm writes:
� Step 1: solve(

Πn+1
j − (1−F2)2∆t2λ2

Πn+1
j+1 − 2Πn+1

j + Πn+1
j−1

∆x2

)
=

Πn
j −∆t(1−F2)λ2

vn
j+1 − vn

j−1

2∆x
+ (1−F2)2∆t2λ2 1

∆x

(
Sn
j+ 1

2

− Sn
j− 1

2

)
,

with

Sn
j+ 1

2

= hn
j+ 1

2

Θn
j+ 1

2

zj+1 − zj

∆x
,

computed as for the explicit.
� Step 2: compute

vn+1
j = vn

j − (1−F2)
∆t

hm

Πn+1
j+1 − Πn+1

j−1

2∆x
− (1−F2)

∆t

hm

g

2

(
Sn
j+ 1

2

− Sn
j− 1

2

)
,

(hu)n+1
j = (hu)nj −∆t(1−F2)

Πn+1
j+1 − Πn+1

j−1

2∆x
−

g∆t

2
(1−F2)

(
Sn
j+ 1

2

− Sn
j− 1

2

)
.

� If the steady state is preserved at time n it still be preserved after an implicit step.
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Numerical results

WB property

(ST1) z(x) = 0.1 + Gx0,σ(x), h0(x) = 8.0− z(x), Θ0(x) = 1,
(ST2) z(x) = 1, h0(x) = 1.0 + 0.2Gx0,σ(x), Θ0(x) = 1

gh0(x)2 ,

(ST3) z(x) = x(1− x), h0(x) = 1, Θ0(x) = 2e−x(1−x).

∆t/Error Tests Rusanov SI WB Ex SI two-speed WB Imp

ST1

Error h 1.5E−2 1.5E−17 3.6E−13

Error u 5.9E−3 1.5E−15 6.7E−13

Error Θ 0.0 0.0 0.0
∆t 8.1E−4 7.1E−4 1.42E−1

ST2

Error h 9.3E−2 0.0 8.4E−12

Error u 7.3E−9 0.0 1.3E−13

Error Θ 0.13 1.8E−17 6.0E−12

∆t 2.5E−3 2.3E−3 4.7E−1

ST3

Error h 0.59 0.0 1.38E−12

Error u 0.65 1.6E−15 4.4E−14

Error Θ 0.19 0.0 1.4E−12

∆t 2.4E−3 1.8E−3 0.49
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Numerical results

Wave perturbation:

Figure: Left: explicit Rusanov scheme; In green the initial data. In red the solution on a
semi-coarse grid (1200 cells), in blue the solution on a fine grid (12000 cells). Right: SI
two-speed WB; in green the initial data. In red the solution on a coarse grid (600 cells), in
blue the solution on a semi-coarse grid (4800 cells).
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Conclusion

Resume
� Introducing Dynamic splitting scheme we separate the scales.
� Introducing implicit scheme for the acoustic wave we can filter these waves.
� Introducing relaxation we simplify at the maximum the implicit scheme.
� A well-adapted spatial scheme is also very important.

� At the end: we capture the incompressible limit.

Perspectives:
� To avoid some spurious mods: Use compatible discretization for the linear wave part

(mimetic/staggered DF, compatible finite element).

� Extension to High Order, MUSCL firstly and after DG and HDG schemes.
� Extension to MHD (main goal). For MHD the relaxation it is ok but the splitting is

less clear.
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