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Gas dynamic: Euler equations

B Context: Plasma simulation with Euler/MHD equations.
B Euler equation:
Otp+ V- (pu)=0
Or(pu) +V - (pu®@u+ply) =0
OHE+ V- (Eu+ pu)=0
B with p(t, x) > 0 the density, u(t, x) the velocity and E(t,x) > 0 the total energy.
B The pressure p is defined by p = pT (perfect gas law) with T the temperature.

B Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u,n) and
(u, n) £ ¢ with the sound speed ¢ = 7%.
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Gas dynamic: Euler equations

Physic interpretation:

Context: Plasma simulation with Euler/MHD equations.
Euler equation:

Or(pu) +V - (pu@u+ply) =0  —  B(pu)+V - (pu @ u) +
OE+V - -(Eu+pu)=0

Otp+V-(pu)=0 Otp+V-(pu)=0
eV P=0
HE+V - -(Eu+pu)=0
with p(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

The pressure p is defined by p = pT (perfect gas law) with T the temperature.

Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u,n) and
(u, n) £ ¢ with the sound speed ¢ = 'y%.

Two important velocity scales: v and c and the ratio (Mach number) M = %
When M tends to zero, we obtain incompressible Euler equation:
Otp+u-Vp=0
potu+pu-Vu+Vp =0
V.-u=0

In 1D we have just advection of p.

Aim: construct an scheme (AP) valid at the limit with a uniform cost. ,\
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Numerical difficulties in space: VF in 1D

B Second method: Finite volume and DG method
U VF method + Rusanov flux. Equivalent equation:

Bep + Ox(pu) = Taxxp
1 SA
Br(pu) + Ox(pt?) + 7 50:p = 22 Bx(pu)

O:E + O«(Eu) + 8X(pu) = STHXXE

O Problem: S must be larger than ﬁ for stability. Huge diffusion.

B Example: isolated contact p =1 and
u=0.1. B Rusanov scheme T = 2 g = 0.05

B Exact. solution: and 1000 cells

Otp + updxp =0
B Rusanov scheme:

SAx
Otp + updxp = Taxxp s
with S > ug+c=1.5

B Upwind scheme for limit:

ugAx 00 02 04 06 08 10

Oxxp h
>/30

E. Franck \ 4

Otp + upOxp =




Numerical difficulties in space: VF in 1D

B Second method: Finite volume and DG method
U VF method + Rusanov flux. Equivalent equation:

Bep + Ox(pu) = Taxxp
1 SA
Br(pu) + Ox(pt?) + 7 50:p = 22 Bx(pu)

O:E + O«(Eu) + 8X(pu) = STHXXE

O Problem: S must be larger than ﬁ for stability. Huge diffusion.

B Example: isolated contact p =1 and
u=0.1. B Rusanov scheme T =5 up = 0.02

B Exact. solution: RS

Otp + updxp =0
B Rusanov scheme:

EL

Otp + upOxp = %(’Mﬂ 25
with S > ug+c=1.5
B Upwind scheme for limit:
ugAx

Otp + upOxp =

0o 02 ) U5 o8 10
8><XP ﬁ
5
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Numerical difficulties in space: VF in 1D

B Second method: Finite volume and DG method
U VF method + Rusanov flux. Equivalent equation:

Bep + Ox(pu) = Taxxp
1 SA
Br(pu) + Ox(pt?) + 7 50:p = 22 Bx(pu)

O:E + O«(Eu) + 8X(pu) = STHXXE
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Numerical difficulties in space: VF in 2D

B Same analysis in 2D.

0 VF method + Rusanov flux. Equivalent equation:

SA
Otp+ V- (pu) = TXA,O

SAx

O(pu) + V- (pu @ u) + #Vp = TA(pu)

HE+V - (Eu)+V - (pu) =

SAx
2

AE

O Problem: S must be larger that % for stability. Huge diffusion.

B Example: isolated contact p =1, V - up = 0 and up constant in time.

B Rusanov scheme Ty = 2 | ug |~ 0.001 and 100*100 cells.

density, t=2.0

1.0x10°7

7.5%10°°

5.0x10°°

28x10°8

B Red: exact solution, Blue: numerical solution.

norm2u,t=2.0
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Numerical difficulties in space: VF in 2D

B Same analysis in 2D.
0 VF method + Rusanov flux. Equivalent equation:

SAx

Owp+V - (pu) = Ap

SA
pOtu + pu - Vu + —M2Vp: —2XAu
SA
Otp+u-Vp+pV - -u= TXVP

O Problem: S must be larger that % for stability. Huge diffusion.
B Example: isolated contact p =1, V - up = 0 and up constant in time.

B Rusanov scheme Ty = 2 | ug |~ 0.001 and 100*100 cells.

density, t=2.0 norm2u,t=2.0
Tost07
7.5%10°°
5.0¢10°°

1 74N 25x10° 8

B Red: exact solution, Blue: numerical solution. f6/ \
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Numerical problem I: time discretization.

B Explicit scheme: the CFL condition for low mach flow:
U The fast phenomena: acoustic waves at velocity ¢

The important phenomena: transport at velocity u

Expected CFL: At < |AT’|<, CFL in practice At < %

At the end, we use a At divided by M compared to the expected At

First solution

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to " filter”
the fast acoustic waves which are not useful in the low-Mach regime.

0o oo

B |mplicit time scheme:
M;U™ = (I + AtA(ly)) U™t = u”
B \We must solve a nonlinear system and after linearization solve some linear systems.

Problem

B Direct solver too costly. Approximative conditioning for the iterative solvers:
At
k(M;)~1+ O
(M) * (AXPIVI )

B \We recover the two scales in the conditioning number. The full implicit schemes are
difficult to use for this reason.

|
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Numerical problem Il: time discretization.

First idea: Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scale (acoustic)
[CDK12]-[DLVD19]

de(pu) + 0x(pu?) + Oxp = 0

Orp + Ox(pu) =0
OtE + Ox(Eu) + 0x(pu) = 0

Implicit acoustic step: el

(pu)™ = p"u" — Atdyp"t! + Rhs,
EMtl = E" — Aty (p"ttu"tl) = Rhsg

Plugging this in the second equation, we obtain

pn+1
E™ — At?0, (—naxp"“) = Rhs(E", u", p)
P

B Matrix-vector product to compute u™t1.

( 8/30‘
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Numerical problem Il: time discretization.

First idea: Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scale (acoustic)
[CDK12]-[DLVD19]

e(pu) + 0x(pu?) + Oxp = 0

Oep+ Ox(pu) =0
O:E + O«(Eu) + Ox(pu) =0

Implicit acoustic step:

pn+1 — pn
(pu)n+1 — pnun _ Ataxpn-H + Rhs,
n+1
O+ Lptun = E — Atd(p"t umtY) = Rhsg

Plugging this in the second equation, we obtain

pn+1
— A?0y (—naxp"“) = Rhs(E", u", p")
p

B Matrix-vector product to compute u"*+1.
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Numerical problem Il: time discretization.

First idea: Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scale (acoustic)
[CDK12]-[DLVD19]

Op + Ox(pu) =0
de(pu) + 0x(pu?) + Oxp = 0
O:E + O«(Eu) + Ox(pu) =0

Implicit acoustic step:

pn+1 — pn
(pu1)n+1 — pnun _ Ataxpn-H + Rhs,
n+
P +3p"u" = E" — Atdy(p"Tu™) = Rhsg

Plugging this in the second equation, we obtain

pn+1 pn+1
1 — Atzax (FQXP"H) = RhS(E", u", p")

B Matrix-vector product to compute u"*+1.

Conclusion

B Semi implicit: only one scale in the implicit symmetric positive operator.

B Strong gradient of p generates ill-conditioning. Assembly at each time (costly).

B Nonlinear solver can have bad convergence for if At >> 1 and dxp not so small.

s
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Relaxation method
B Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations.

Used to design new schemes.
B |dea: Approximate the model

0eU + OxF(U) = 0,by  9¢f + A() = %(Q(f) —f)

B At the limit and taking Pf = U we obtain
U 4 0xF(U) = €8x (D(U)dx U) + O(£?)

B Time scheme:

0 we solve ———

At
U and after we approximate the stiff source term by

f"+1 — f* +W(Q(f*) _ f*)

FAFT) =0

with w €]0, 2].

B |n general, we construct A with a simpler structure than F to design numerical flux in
FV.

B Here, we construct A with a simpler structure to design simple implicit scheme.

[ |
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Full-lmplicit relaxation method

E. Franck
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==
Xin-Jin relaxation method

B We consider the following nonlinear hyperbolic system

U+ 0F(U)=0
B with U a vector of N functions.
B Aim: Find a way to approximate this system with a sequence of simple systems.

B |dea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADNOO].

U+ 6V =0
OV + 220U = 1(f-'(u) -vV)
€

Limit of the hyperbolic relaxation scheme
O The limit scheme of the relaxation system is

B8:U + 0xF(U) = 205 ((\2— | A(U) [2)8xU) + o(£?)
O with A(U) the Jacobian of F(U).

B Conclusion: the relaxation system is an approximation of the original hyperbolic

system (error in g). f'\
11
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Xin-Jin implicit scheme

Main property

=> Relaxation system: "the nonlinearity is local and the non-locality is linear”.
=» Main idea: splitting scheme between implicit transport and implicit relaxation.

= Key point: the ;U = 0 during the relaxation step. Therefore F(U) is explicit.

B Relaxation step:
Un+1 ur
{ Ve Z s grumny - vy oy - vy

B Transport step (order 1) :

0 1 yntt ur
w+ (o )o(ve )= (W)

0 We plug the equation on V in the equation on U.
0 We obtain the implicit part:

(lg — A2A20,) U™ = U™ — Atd V"
0 We apply a matrix-vector product
Vn+1 — —At>\28>< Un+1
B Natural extension at the second order in time. In space: FV (used here) or DG/FE./\
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Xin-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non-locality is linear”.
=» Main idea: splitting scheme between implicit transport and implicit relaxation.

=» Key point: the ;U = 0 during the relaxation step. Therefore F(U) is explicit.

B Relaxation step:
Un+1 u"
{ (g +02L) V7l = 9ALF(U) + (1 - ) AL (F(U™) — V™)

B Transport step (order 1) :

0 1 Un+1 un

(o) (v )= (v
U We plug the equation on V in the equation on U.
0 We obtain the implicit part:

(lg — A2A20,) U™ = U™ — Atd V"
U We apply a matrix-vector product
vt = _AraZg, unt!
B Natural extension at the second order in time. In space: FV (used here) or DG/FE./\
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Xin-Jin implicit scheme

Main property
=» Relaxation system: "the nonlinearity is local and the non-locality is linear”.
=» Main idea: splitting scheme between implicit transport and implicit relaxation.

- Key point: the 9:U = 0 during the relaxation step. Therefore F(U) is explicit.

B Relaxation step:

Un+1zun
At
vl —vn 28 (FUn) - vn
+s+9At(( ) )
—

B Transport step (order 1) :

0 1 Un+1 un
(@0 )o (0 )= (%)
' We plug the equation on V in the equation on U.
U We obtain the implicit part:
(lg — A2A20,) U™ = U™ — Atd V"
0 We apply a matrix-vector product
vt = _AeA?o, U
B Natural extension at the second order in time. In space: FV (used here) or DG/FE. (12 \
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Advantages and defauts

Cdvantages ]

B |f we have N equations, we obtain N independent wave systems.

B Each substep can be solved implicitly with one inversion of constant elliptic problem
and one matrix-vector product.

B Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error

B Error for the first order splitting scheme:

8tU+6xF(U)—At< - ) L (M2lg— | A(U) |2)xU) + O(At?)

B |n Low Mach regime dyu =~ M, Oxp ~ M and c =~ ﬁ consequently

dep + Ox(pu) = At (2 ;“) (8x(c? — u?)dxp) + O(AL?)

B Conclusion: Huge diffusion for the contact wave.
B |n a 2D case:

2—w
atquu-Vqusz(i) |u?> Au+ O(AE?)
2M2 \
w ﬁ3
\
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Advantages and defauts

Cdvantages ]

B |f we have N equations, we obtain N independent wave systems.

B Each substep can be solved implicitly with one inversion of constant elliptic problem
and one matrix-vector product.

B Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error

B Error for the first order splitting scheme:

U + 0xF(U) = At ( ) L (M2lg— | A(U) |2)xU) + O(At?)
w
B |n Low Mach regime dyu =~ M, Oxp ~ M and c =~ ﬁ consequently

2 — 1
Bep+ Ox(pu) m At [ Z— L) 2 (0(~= — 1)8ep ) + o(AL2)
w M?2

B Conclusion: Huge diffusion for the contact wave.
B |n a 2D case:

2—w
atquu-Vqusz(i) |u?> Au+ O(AE?)
2M2 \
w ﬁ3
\
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Results: low Mach regime for Euler isothermal

B Gresho vortex: The initial data are given by p(t = 0,x) = 1 + M?pa(x),

u(t =0,x) =up(x), with V-ug =0,
| uo ||~ 1 and p(t,x) = po + M?pa(x) and p(t,x) = 7,%/,2

0.00200 2
A
0.00175 0100
, FR
000150 N
7
000125 %97% 3 /
/ \ /
0.00100 o o0 J \
0.00075 \
0.00050 0.025 2

0.00025 !

Figure: Norm of the spatial Mach number for the first order implicit Xin-Jin
relaxation scheme. Top: M = 0.9, middle: M = 0.5, bottom: M = 0.1.

E. Franck
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==
Results: AP correction for isothermal case

B Error:

2—w)\ At

Otu+u-Vu+ Vp=x At (T) WAU + 0(At?)

B |dea: take w =2 — M?

0100 A P
0100
0.075
0075
0050 5050
0025 o2
0.000
0.00 025 050 075 100
0.006 v
A
0.005
0.005
0.004 0008
0.003 0.003
0.002 0.002
0.001 0.001
0.000
02 04 06 08 0.00 025 0.50 075 1.00

Figure: Norm of the spatial Mach number for the first order adaptive implicit Xin-Jin
relaxation scheme. Top: M = 0.9, middle top: M = 0.1, middle bottom: M = 0.03

bottom: M = 0.005. 115/30
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Results: AP correction for the full case

B This correction is sufficient ?
B Contact wave in 1D for w = 2:

Vayring u0

0.2 0.4 0.6 0.8

Figure: Density given by second order implicit scheme varying ug in the
relaxation.

B Results for uyg = 0.1 (M =~ %) and ug = 0.05 (M ~ %) are quite convincing.

B Not for smaller Mach number. Too much dispersive effects.

B Conclusion: The correction modify the diffusion to avoid the Mach number
dependency but it is not the case in the dispersion (of the splitting and/or time
scheme).

E. Franck
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Semi-Implicit relaxation method

E. Franck
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Suliciu-type Relaxation method

Problem: the nonlinearity of the implicit acoustic step generates difficulties.
Non-conservative form and acoustic term:

{ Orp + Ox(pu) =0

Otp + udxp + pc?xu =0
Oru + udxu + %Dxp =0

Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
D1p+ Ox(pv) = 0
Ot(pu) + Ox(puv +M) =0
OtE + Ox(Ev+Tv)=0
DM+ vOxN + ¢pA%0,v = L(p — M)
Orv + vOxv + %OXI_I = é(u —v)
Limit:

Oep + Ox(pu) = 0« [Adxp]
Ot(pu) + Ox(pu? + p) = €0« [(Audxp) + B?Xu]

O¢E + Ox(Eu + pu) = €0y [AEBXp +ALE + BBX“;}

® with A=1 (g - 1) and B = (ppA? — p2c?).
B Stability: ¢\ > pc? and p > ¢.

We keep the conservative form for the original variables and obtain a fully linear
acoustic.

| 65
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Splitting

Dynamical splitting
|

Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time
depending for low-Mach [IDGH2018]

B For large acoustic waves (Mach number not small) we want capture to all the
phenomena. Consequently use an explicit scheme.

B For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

Otp + Ox(pv) =0 Op=0

de(pu) + dx(puv + M2(t)N) = 0 dt(pu) + (1 — M?(1))0N =0
OE + 0(Ev+ M2 (D)) =0 BeE + (1 — M2(£))8x(Nv) =0
8tn+v8xn+¢A2§8Xv:0 AN + (1 — M2(1))A28,v = 0
Bev +voev + 2o n=0 Bev + (1 - M3(1) 38N =0

with M(t) ~ max (Mm,,,, min (maxx lul 4 )

B FEigenvalues of Explicit part: v, v & M(t) Ac . Implicit part 0, (1 — M?(t)) A,
~~ ~~
~c ~c

B At the end: we make the projection 1 = p and v = u (can be viewed as a

discretization of the stiff source term). m
\ /30
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Implicit time scheme
B \We introduce the implicit scheme for the "acoustic part”:
pn+1 — pn
(pu)™1 + At(1— M(t,))0N™ = (pu)”
Entl 4+ At(1 — M3(t,))0x(Mv)"+t = E"
Nl 4+ At(1 — M2(ty))pA20xv™Ht ="
VI £ A1 — M3 (tn)) $ 0N = v

B We plug the equation on v in the equation on 1. We obtain the following algorithm:
O Step 1: we solve

(lg = (1 = M%(£0))? A2 A20,6)N™L = N7 — At(1 — M?(tn))pA20xv"
O Step 2: we compute
vl = v A1 — M2(tn))éaxﬂ"+1

O Step 3: we compute

(o)™ = (pu)" — At(1 — M(£,))0xN"+
L) Step 4: we compute

En+1 — EN — At(l _ M2(tn))ax(nn+1vn+l)

B \We solve only a constant Laplacian. We can assembly matrix once.
B No problem of conditioning, which comes from to the strong gradient of p

120
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Spatial scheme in 1D

B |dea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
B Main problem of the explicit part: design numerical flux.

B First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.

| |

Other solution: construct a Godunov scheme for the relaxation system. Principle:
O eigenvalues: v — E(t)Ac, v(x3), v + E(t)Ac
O Strong invariants of external waves:

Ae(v £ dpAcr) + (v £ E(D)A)x(v £ pAcm) =0

[ Strong invariants of central waves:
1 ™ 1 s
0 (54555 ) +va (54555 ) =0
p o ppXN? “\p o poN?

Ot (u—?v)—&-vax (u—?v) =0
P p

72 (v —u)? w2 (v —u)?
Bt(pe+2p¢)\%+2(gl) + vOx pe+2p¢)\g+72(gil) =0

O Important: strong invariant are weak invariant (conserved) on the other waves.
Exemple: (7, v) preserved on central wave.
U We obtain all the intermediary states using these previous results. r-\
21/
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==
Results 1D |: contact

B Smooth contact :
p(t,x) = Xx<xo 1 0-1xx>x

u(t, x) =0.01
B Error p(t.x) =1
cells Ex Rusanov Ex LR Old relax Rusanov Relax Rus Relax PC-FVS
250 0.042 3.6E~ 4 1.4E3 7.8E~ 4 41E-*
500 0.024 1.8E— % 6.9E—* 39E—* 2.0E 1%
1000 0.013 9.0E—® 34E° 2.0E* 1.0E—°
2000 0.007 45E° 1.7E—* 9.8E° 49E°

B Old relax: other relaxation scheme where the implicit Laplacian is not constant and
depend of p".
B Comparison time scheme:
Scheme A At
Explicit max(|u—c|,|u+c]) 22E—*
SI Old relax max(| u — M(tn))% N u+/\/l(tn))% ) | 0.0075
Sl new relaxation | max(| v — M(tn))A |, | v+ M(tn))X]) 0.04

B Conditioning:

Schemes At conditioning
Si old relax | 0.00757 3000
Si new relax 0.041 9800
Si new relax 0.0208 2400

si new relax 0.0075 320 h
\22/30
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Results in 2D: Gresho vortex

B Gresho vortex: V- u

00035
ooz
00025
oc00
00015
00010
ocos

00035
o030
00025
oc00
00015
00010
ocxs

000 0z 050 075 100 000 025 050 075 100

B Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and
final (blue) time .From left to right: My = 0.5 (At = 1.4E—3), My = 0.1
(At =35E~*%), Mo = 0.01 (At = 3.5E-5), Mo = 0.001 (At = 3.5EF).

\‘ 23/30
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Results in 2D: Gresho vortex

B Gresho vortex: V-u=0and p= ﬁ + p2(x)

B Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue)
times. From left to right: M = 0.5, At =25E73, M =0.1, At = 2.5E3,
M =0.01, At =25E73, M =0.001, At =25E73.
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Results in 2D: Kelvin helmholtz

B Kelvin-Helmholtz instability. Density:

[Py E S B S B
o b— 00
00 02 04 06 08 10 00 02 04 08 08 10 00 0z 04 05 08 10 o0 0z 04 05 08 10

B Density at time Tr =3, k =1, My = 0.1. Explicit Lagrange-Remap scheme with
120 x 120 (left) and 360 x 360 cells (middle left), SI two-speed relaxation scheme
(Ac =18, A\; = 15, ¢ = 0.98) with 42 x 42 (middle right) and 120 x 120 cells (right).

\l 24/30
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Results in 2D: Kelvin helmholtz

B Kelvin-Helmholtz instability. Density:

zZw

178

125

B Density at time T = 3, k =2, My = 0.01 with S| two-speed relaxation scheme
(Ac =180, A\; =150, ¢ = 0.98). Left: 120 x 120 cells. Right: 240 x 240 cells.

E. Franck

\l 24/30



Well-balanced extension for Ripa model
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Ripal model and steady states

To finish we propose to see if the method can be combined with WB property to solve
flow around equilibrium.
Ripa equation:
Oth + 0«(hu) =0,
Be(hu) + Ox(hu® + P22 — _ £h 05,2, (1)
0:(h®) + dx(h©u) =0,

where h(x, t) is the water height, u(x, t) the velocity, ©(x, t) the temperature and
z(x) the topography, the pressure law is given by: p(h,©) = g@%h2 and the Froud
number F, = u/+/gh.

Steady state:

u=0, u=0, u=0,
© = Cst, z = Cst, h = Cst, )
h+z = Cst, or — cst, z+ 1in(®) = Cst.

Aim: solve flows like
u=O(Fr), ©=Cst+ O(F:), h+z=Cst+ O(F), (3)

with 7, < 1. In that case, the perturbation has a small amplitude but moves with a

large propagation speed of order O(1/F;). h
2
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R R R R R RRERERRERERRREEE——SS———————
Splitting scheme

B |dea: use the same scheme as for Euler equation coupling with WB approach.
Splitting:

Bth+ 8x(hv) =0,
Ot (hu) + Ox(huv + F2M) = —F2 gh®dxz,
(0) 0:(h©®) + O« (h©Vv) =0,
M + vOxM + hp\20xv =0
Bev +vdv + Lo 0N = ~F2 1 g0,z
dh =0,
O¢(hu) + (1 — F2) (0xN + hgdxz) = 0,
(W) 0th© =0
M+ (1 - F2)hmA26Xv =0
dev + 127 (, I'I+hg8xz)70

(R) {atl'l == (p(h,©)—=MN), 0O:v= g (u—v),
where F = max (]—'m;n, min (ﬁ 1)) and

(hi —1> >0, 7= (hmA = hc®) >0.
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Well-balanced property

B Explicit part: we plug the source term into the flux (Jin Levermore technic).
B Specific discretization of the steady states at the interface: centered gradient for dyz,
average mean for h, entropic mean for ©.

B Implicit part: The final algorithm writes:
O Step 1: solve

n+1 n+1 n+1
<n."+1 Ca - pypaeein A nfl) =
J

Ax?
n7 — Ag(1 7]-'2)/\2@ +(1-PPaca L < noo_gn 1) ,
2Ax Ax \ Jt3 i=3
with
Sy =Wy Oy T

computed as for the explicit.
O Step 2: compute

n+1 n+1

AT =10 At
n+1 n 2 Jj+1 Jj—1 2 g n n
ntl o n_ o=l STl g gny—"E (gn _gn ),
i v Vhn 28 ( Vom 2 ( i+ r%)
nl]+1 _nrtt A
n+1 n_ _ o2y _Jtl -1 _ & t 2 n _ cn
(hu); = (hu)] — At(1 - F9) TN > (1-F9) <5j+% Sj_%) .

O If the steady state is preserved at time n it still be preserved after an implicit steﬁ/\
30
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Numerical results

WB property

(ST1) z(x) =0.14 Gx,0(x), ho(x) =8.0— z(x), Oo(x) =1,
(5T2) z(x) =1, ho(x) = 1.0 4 0.2Gx 0 (x), ©o(x) = m
(8T3) z(x) =x(1—x), ho(x) =1, Op(x) = 2ex1=x).
At/Error Tests Rusanov | SI WB Ex | S| two-speed WB Imp
Error h | 1.5E72 | 15T 3.6E 13
ST1 Error u | 5.9E—3 15E-T 6.7TE— 13
Error © 0.0 0.0 0.0
At 8.1E~* 7.1E7* 1.42E71
Error h | 9.3E2 0.0 8.4E~ 12
ST2 Erroru | 7.3E7° 0.0 1.3E~13
Error © 0.13 1.8E- 17 6.0E— 12
At 25E3 2.3E3 47E-T
Error h 0.59 0.0 1.38E— 12
ST3 Error u 0.65 1.6E~T° 4.4E-13
Error © 0.19 0.0 1.4E7 T2
At 2.4E3 1.8E—3 0.49
129
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Numerical results

Wave perturbation:

1.005

1.002

1.0014

1.0011

1.0008

1.0005

1.0002

Figure: Left: explicit Rusanov scheme; In green the initial data. In red the solution on a

semi-coarse grid (1200 cells), in blue the solution on a fine grid (12000 cells). Right: SI

two-speed WB; in green the initial data. In red the solution on a coarse grid (600 cells), in

blue the solution on a semi-coarse grid (4800 cells).
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Conclusion

Resume I

B Introducing Dynamic splitting scheme we separate the scales.

Introducing implicit scheme for the acoustic wave we can filter these waves.
Introducing relaxation we simplify at the maximum the implicit scheme.

A well-adapted spatial scheme is also very important.

At the end: we capture the incompressible limit.

Perspectives:

B To avoid some spurious mods: Use compatible discretization for the linear wave part
(mimetic/staggered DF, compatible finite element).
B Extension to High Order, MUSCL firstly and after DG and HDG schemes.

B Extension to MHD (main goal). For MHD the relaxation it is ok but the splitting is
less clear.
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